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 Cloud computing is a power platform to deal with big data. Among several software 
frameworks used for the construction of cloud computing systems, Apache Hadoop, which 
is an open-source software, becomes a popular one. Hadoop supports for distributed data 
storage and the process of large data sets on computer clusters based on a MapReduce 
parallel processing framework. The performance of Hadoop in parallel data processing is 
depended on the efficiency of a job scheduling algorithm underworking. In this paper, we 
improve the performance of the well-known fair scheduling algorithm adopted in Hadoop 
by introducing several mechanisms. The modified scheduling algorithm can dynamically 
adjust resource allocation to user jobs and the precedence of user jobs to be executed. Our 
approach can properly adapt to the runtime environment’s condition with the objective of 
achieving job fairness and reducing job turnaround time. Performance evaluations verify 
the superiority of the proposed scheduler over the original fair scheduler. The average 
turnaround time of jobs can be largely reduced in our experiments. 
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1. Introduction  

This paper is an extension of work originally presented in 
PlatCon-17 [1], where we show the general ideas. Significant 
changes are added in this extended paper to explain more about 
background knowledge, related work, design philosophy, and 
performance evaluation. Nowadays, huge volumes of data are 
generated on the Internet every day due to the popularity of social 
media and portable devices, and this opens up a new era of big data 
[2]. How to extract interesting information from these data has 
become a hot topic in science and commercial fields. Big data 
analytics needs the support of scalable data storage and powerful 
data process. Cloud computing [3], which provides distributed 
storage and parallel data processing on commodity computer 
clusters, just meets this requirement on data analysis. 

Cloud computing, as defined by National Institute of Standards 
and Technology (NIST) [4], should be composed of five essential 
characteristics: broad network access, rapid elasticity, measured 
service, on-demand self-service, and resource pooling. Moreover, 
cloud computing has four basic deployment models: public cloud, 
private cloud, community cloud, and hybrid cloud, and has three 
service models: software as a service (SaaS), platform as a service 
(PaaS), and infrastructure as a service (IaaS). 

Many large on-line services are constructed by the technique 
of cloud computing. These services are usually developed on 
business-based cloud platforms such as Amazon’s EC2, Google’s 
GAE, and Microsoft’s Azure. In academic research, Apache 
Hadoop is a popular cloud platform to test and verify research 
ideas. Hadoop is a Java-based and open-source software 
framework that supports a full set of cloud techniques: distributed 
file system, parallel data processing, and distributed database 
system. 

To do parallel data processing in Hadoop, users need to write 
MapReduce programs [5]. These kinds of programs include two 
major processing codes: map and reduce to reflect a two-phase 
data processing flow.  The map code mainly deals with data 
filtering and data transforming, and the reduce code mainly deals 
with data aggregating. Users submit these MapReduce programs 
into the Hadoop system as jobs. Each job contains several map 
tasks and reduce tasks. The map task typically reads an input data 
file in the form of key-value pairs, and then generates an 
intermediate result file in key-value pairs as well. All values with 
the same key will be grouped together, and then are processed by 
the reduce task that usually generates aggregated values. 

The WordCount application that outputs the frequency of each 
distinct word occurred in a document file is usually used to explain 
the MapReduce framework. The map task will scan the input file 
and output the occurrence of each word in the format of (founded 
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word, 1). Apparently, we only need to accumulate this value 1 for 
those outputs having the same founded word to be the word 
frequency. The reduce task just does this grouping and counting. 

A Hadoop system can be built over clusters of computers that 
are typically named as nodes. All map and reduce tasks will be 
dispatched to these nodes. For parallel data processing, the input 
data file to a MapReduce job will be equally partitioned into 
several data chunks (or blocks) with a typical size of 64 MB. Each 
of these data chunks will be replicated and distributed into different 
nodes for fault tolerance. The same number of map tasks to the 
number of data chunks are cloned, and each copy of the map task 
handles one data chunk. Because there are redundant data chunks, 
the map task will select the closest data chunk for access 
efficiency. The reduce task can be cloned as well, and each copy 
handles the values corresponding to a certain set of keys. This 
MapReduce working model is outlined in Figure 1. 

The Hadoop system can simultaneously run many map and 
reduce tasks from different users in a computer cluster 
environment. These tasks will contend system resources such as 
CPU, memory, and disk I/O for the completion of their jobs. 
Moreover, those tasks reading data chunks from far-away nodes 
will compete for network bandwidth. Therefore, a proper task 
scheduling algorithm is necessary for optimizing resource 
utilization and avoiding any resource starvation. 

Hadoop provides three built-in scheduling modules: First-In-
First-Out (FIFO) scheduler, fair scheduler, and capacity scheduler. 
These schedulers have their own features and have different 
influences on performance such as execution time and waiting time 
in different situations [6-10]. Fair scheduler and capacity scheduler 
generally perform better than FIFO scheduler. These built-in 
schedulers have a common drawback, which the scheduling policy 
is almost fixed and is not flexible to the change of working 
conditions. In this paper, we focus on the fair scheduler and 
propose some modifications to improve the scheduling throughput 
under the goal of resource fairness among users. 

Our proposed scheduling algorithm is adaptive, because it can 
dynamically tune some working parameters such as the job priority 
and the waiting time for resource allocation. The runtime 
environment’s conditions such as current workload and remaining 
resources are considered in the determination of job running order 
and the amount of resources allocated to each job. A modified fair 
scheduler is then coded into the Hadoop system and is examined 
in a real testing environment. Evaluation results show that the 
modified fair scheduler can significantly reduce the average 
turnaround time of a job by over 20 percent as compared to the 
original fair scheduler. 

The remainder of this paper is organized as follows. Section 2 
briefly introduces the basic job scheduling architecture in Hadoop 
and the related work on scheduling algorithms. Section 3 presents 
and discusses the proposed five mechanisms of improving the 
performance of fair scheduler. Performance evaluation is 
conducted in Section 4. Finally, some concluding remarks are 
given in Section 5. 

2. Background Knowledge and Related Work 

Hadoop, which is developed under the Apache projects, is an 
open-source software for reliable, scalable, and distributed 
computing. The Hadoop system is composed of two basic units: a 
distributed file system and a distributed data processing engine. 
The Hadoop distributed file system (HDFS), following the similar  

 
Figure 1. MapReduce working model 

concept of Google file system (GFS) [11], can manage distributed 
data storage across computer clusters built from commodity 
hardware. A HDFS cluster consists of a single namenode, a master 
server that manages the namespace and access of files, and 
multiple datanodes, slave servers that store data chunks and are 
coordinated by the master server. A file is split into several data 
chunks which are then stored into datanodes. The namenode will 
record the mapping of each data chunk to each datanode. 

The distributed processing engine in Hadoop is based on the 
MapReduce framework. A MapReduce program contains a map 
procedure that performs the data filtering and sorting operations, 
and a reduce procedure that performs the data summarizing 
operations. MapReduce programs are submitted by users to 
Hadoop as jobs. These jobs will be executed over a set of 
computing nodes where one master node is selected to schedule 
job executions on the other slave (or worker) nodes. The 
management functions of system resource and job execution are 
included in the MapReduce module for Hadoop version 1. These 
functions, however, are dedicated to anther software module for 
Hadoop version 2: Yet Another Resource Negotiator (YARN) 
[12]. No matter the different versions of Hadoop, the job 
scheduling process is relied on a job scheduler. In this paper, we 
follow the framework of Hadoop version 1 to illustrate the 
operation of different job schedulers. 

Figure 2 shows the job execution flow in Hadoop. There is a 
JobTracker at the master node that plays the roles of monitoring/ 
allocating system resources and scheduling user jobs. The 
JobTracker gives each submitted job a job ID as an internal 
identification number and puts the job into a job queue (or pool). 
A certain sorting policy is applied to these jobs in the queue 
according to some comparing factors such as job ID, job priority, 
and job submitted time. When a job is ready to be executed, the 
associated map and reduce tasks are created. The number of map 
tasks is determined by the number of data chunks split from an 
input file. The number of reduce tasks can be configured by the 
user but is usually one by default. 

The JobTracker will manage and monitor all system resources 
such as CPU, memory, and disk contributed from all slave nodes. 
These system resources for job running are configured as resource 
slots in Hadoop. The resource slot used for the running of a map 
(or reduce) task is called a map (or reduce) slot, respectively. Due 
to the limited system resource, map and reduce tasks will contend 
these resource slots. On each slave node, a TaskTracker will 
manage the actual running of tasks. The TaskTracker will request 
a task to run from the JobTracker whenever there is a free resource 
slot. The TaskTracker will also periodically report the execution 
status and the available resource to the JobTracker by sending a 
heartbeat message. 
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Figure 2. The job execution flow in Hadoop 

A map task will read an input data chuck through the HDFS. 
To save network bandwidth, this data retrieval should happen 
locally or be done from a close node. This raises the data locality 
issue when assigning a task to a slave node [13]. There are three 
levels of data localities (see Figure 3) from good to bad: 

• Node-locality: The node where data are stored is the same 
as the node where data are processed. 

• Rack-locality: The node where data are stored is different 
from the node where data are processed, but these two 
nodes are located in the same rack. 

• Non-locality: The node where data are stored is different 
from the node where data are processed, and these two 
nodes are located in different racks. 

 
Figure 3. Data locality: (1) Node-locality, (2) Rack-locality, and (3) Non-locality 

The Hadoop scheduling problem can be described below: 
Suppose that each node is configured with some map and reduce 
slots for the execution of map and reduce tasks, respectively. Given 
a set of jobs and nodes, we need to determine the order of running 
jobs and the slot assignment to tasks with the objective of high data 
locality and high execution throughput. This problem with multi-
objective optimization is proven to be NP-hard [14]. 

In Hadoop, there are three well-known scheduling algorithms 
implemented as three schedulers: FIFO scheduler, fair scheduler, 
and capacity scheduler, respectively. The default FIFO scheduler 
uses one job queue to do slot allocation. Jobs in the queue are 
sorted in ascending order of their submitted times. To break the tie, 
the job ID assigned by the JobTracker is considered. All free map 
and reduce slots in the system can serve the job being scheduled. 

In the example of Figure 4, suppose that there are three map slots 
and three reduce slots in the system, and each job (i.e., Job1~Job3) 
has three map tasks and three reduce tasks. The sequence to 
allocate slots to these jobs is Job1, Job2, and then Job3. For 
simplicity, we assume that each task uses one resource slot with 
the same occupation time in the figure. At first, all the map tasks 
of Job1 get map slots for 20 s execution time. Next, these map slots 
are released and re-allocated to the map tasks of Job2. Meanwhile, 
all the reduce tasks of Job1 get reduce slots for 20 s execution time. 
As can be seen, reduce tasks start executing just after the finish of 
all map tasks of the same job. The drawback of this scheduler is 
the possible long waiting time for a task to be executed when there 
are many jobs in the queue. This becomes unfair particularly when 
a user submits many jobs and the latter users need to wait. 

The fair scheduler developed by Facebook equally allocates 
resources to job users. Each user has its own job queue (or pool), 
and all resource slots are fairly distributed to these user pools. 
Figure 5 shows the example slot allocation under the same 
condition with the previous example. Here three pools (P1, P2, and 
P3) are introduced with each pool having the resource of one map 
slot and one reduce slot. Each map task of these three jobs gets one 
map slot at the same time and runs for 20 s. The same case happens 
for reduce tasks. As compared to the previous example, each 
submitted job can start running immediately but the time to finish 
the job becomes longer. In a real situation, one pool without 
sufficient resources can borrow free (or idle) slots from another 
pool to increase resource utilization. To prevent resource 
unfairness, each pool is configured with the minimum and 
maximum resource capacity. Fair scheduler also supports 
preemptive mode by which a low-priority running job can be 
aborted for releasing resource to a high-priority job. 

 
Figure 4. A scheduling example using FIFO scheduler 

 
Figure 5. A scheduling example using fair scheduler 

The capacity scheduler developed by Yahoo acts similar to fair 
scheduler, but uses queues instead of pools. Each queue has a 
defined resource capacity and is assigned to an organization or a 
group of users. Due to the nature of organization structure, queues 
can be constructed into a multi-level hierarchy. To increase 
running efficiency, capacity scheduler can allocate more than one 
resource slot to a heavy task. Moreover, several tasks can be 
assigned together to the same TaskTracker in batch mode to reduce 
the scheduling overhead. Overusing this batch mode, however, 
would cause load unbalancing among slave nodes. A summary 
table (see Table 1) is given to compare the characteristics of these 
three schedulers. 
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There are several scheduling algorithms proposed to improve 
the built-in schedulers. The reader is referred to [15-16] for a 
complete view. To increase data locality, the LATE (Longest 
Approximate Time to End) scheduler was proposed [17], where a 
delay timer is set during which a TaskTracker will wait for a 
suitable task that can fetch data locally. When a TaskTracker 
requests a task to do from the JobTracker, the JobTracker will scan 
the job queue to find a task with the node-locality data access level 
within a short time interval. If it is failed to find such a task, a task 
with the rack-locality data access level is then searched within a 
long time interval. If it is still failed, the JobTracker will randomly 
select one task to this TaskTracker. 

The delay concept above is introduced into the naïve fair 
scheduler [18-19]. The setting of suitable delay time would be 
challenging in a dynamic changing environment. This delay time 
is configured as a fixed value in fair scheduler. To increase data 
locality, one research work implements two job queues for the 
FIFO scheduler [20]. Jobs having the node-locality potential are 
put into one queue, and jobs having the rack-locality potential are 
put into the other queue. Finally, these two queues are merged 
together and are fed into the FIFO scheduler. The process of data 
may have certain relationships. For example, some rare data are 
only processed by certain tasks. In this situation, the system can 
mark the locations of these rare data and assign irrelevant tasks to 
other locations for increasing data locality [21]. 

Table 1. Summary of different schedulers 

Scheduler Characteristics 
FIFO 
Scheduler 

• Single job queue 
• Resource allocation to jobs is considered one 

by one. 
• Scheduling overhead is low 
• There are resource starvation problems 

Fair 
Scheduler 

• Multiple job queues 
• Resource allocation to jobs is considered 

together. 
• System resources are fairly allocated to users 
• Support preemptive mode and resource 

borrowing 
Capacity 
Scheduler 

• Multiple job queues 
• Resource allocation to jobs is considered 

together. 
• System resources are allocated to users 

according to a certain organization policy 
• More than one resource slot can be allocated to 

one task 
• Support batch mode in job scheduling 

 

The job priority will affect the job order in a job queue. If each 
user can freely assign the job priority, all users tend to set their jobs 
to the highest level, and this does not make sense. One auto-setting 
mechanism is proposed in [22] by considering several factors such 
as the job size, the average execution time and the scheduled time 
of a task in a job. A high priority is usually given to a small-size or 
fast running job. The job size can be simply estimated by the 
number of tasks involved in a job [23]. 

In Hadoop, map slots and reduce slots are separated and cannot 
be interchangeably used. Dynamic borrowing between them can 
improve slot utilization and system throughput [24]. The map or 

reduce slot in Hadoop represents a computing unit and the amount 
of available slots in a node is configured in advance. Dynamically 
changing the slot number according to the real computing power 
in speeds of CPU and I/O can also improve system performance 
[25-26]. 

The diversity of data, jobs, and computer nodes will also affect 
the scheduling performance, and this is called the skew problem 
[27]. Different map tasks from the same job may generate different 
amounts of data, causing data skew. Different jobs take different 
execution times depending on algorithms but not job sizes, causing 
computational skew. Resource slots from different computer nodes 
have different computing powers, causing machine skew. These 
skews cause unbalancing workload in a distributed computer 
cluster. There are many research efforts on designing load 
balancing scheduling algorithms [28-31]. For example, jobs are 
classified into CPU-bound and I/O-bound types and are put into 
different job queues [31]. 

3. Modified Fair Scheduler 

Fair scheduler with the delay mechanism has good 
performance in general against the other schedulers in Hadoop. 
However, fair scheduler overemphasizes fair resource allocation to 
jobs and ignores the differences between jobs. These differences 
may even change over time when jobs are running. We hope to 
improve the performance of fair scheduler by considering some 
runtime conditions and further adjusting resource allocation to 
jobs. We provide some modifications to the fair scheduler by 
introducing the following mechanisms: job classification, pool 
resource allocation, resource-aware job sorting, delay time 
adjustment, and job priority adjustment. Their brief introductions 
are given in Table 2. 

Table 2. The goal of each proposed mechanism 

Mechanism Goal 
Job classification Separate small-sized jobs from 

large-sized jobs 
Pool resource allocation Periodically reallocate resource 

slots to pools according to their 
remaining actual needs 

Resource-aware job sorting Determine the job or pool order 
for resource allocation based on 
more criteria including resource 
requirement and occupation 

Delay time adjustment Dynamically adjust the delay 
time for a suitable task with high 
data locality 

Job priority adjustment Dynamically adjust the job 
priority based on the change of 
its data locality level 

 

3.1. Job Classification 

In fair scheduler, system resources are equally allocated to user 
pools. All jobs belonging to the same pool will contend for the 
limited resource. In real cases, different jobs would have different 
resource requirements. A large-sized job consumes more resource 
than a small-sized job. Based on the principle of shortest job first, 
we separate small-sized jobs from large-sized jobs and allocate 
resources to them individually. 

The job size is measured by the number of map and reduce 
tasks in a job. In general, the number of map tasks is greater than 
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that of reduce tasks, because most MapReduce jobs focus on data 
extraction from large input data sets. For simplicity, we 
concentrate on the map slot allocation to map tasks, so the job size 
is defined as the number of map tasks only. A job is recognized as 
a small-sized one if its job size is no greater than a threshold 
(minJobSize). This threshold value is not a fixed value but is 
updated periodically by the JobTracker (per 500 ms in our 
implementation) to be the currently smallest job size among all 
jobs in the system. 

The basic concept of the proposed job classification is to direct 
all small-sized jobs into another system pool (called sharedPool) 
and all large-sized jobs into their originally belonging pools. In 
other words, there is a system pool shared by all users besides 
individual user pools. Jobs in the sharedPool are scheduled using 
FIFO for simplicity. 

In an extreme case, if all jobs are small-sized, this job 
classification becomes useless. To prevent this condition, the ratio 
of the number of total small-sized jobs (SmallJobs) to the number 
of total jobs (TotalJobs) in the current system is considered. If this 
ratio is greater than a threshold, the sharedPool mechanism is 
disabled and all small-sized jobs remain in their own user pools. 
This threshold value is set to be the reciprocal of the average 
number of map slots configured in a salve node. For example, if 
each slave node has four map slots on average, the threshold value 
is 0.25. This means that we allow using sharePool when there is at 
most one small-sized job running on a slave node on average. 
Figure 6 shows the flow of job classification. 

 
Figure 6. Job classification flow 

3.2. Pool Resource Allocation 

System resources are proportionally allocated to user pools 
according to weighted values assigned to user pools in fair 
scheduler. Without the pre-knowledge of traffic shape, it is hard to 
set a suitable weighted value to each user pool, and this weighted 
value is set to be equal most of the time. However, if this weighted 
value can automatically reflect the current resource requirement, 
resource allocation can always fit real situations and becomes more 
efficient. Based on this concept, a dynamic pool resource 
allocation is proposed. 

The resource allocation to pools is periodically adjusted every 
500 ms in our implementation. The allocation of map slots and 
reduce slots to each user pool is performed separately. We first 
check whether the sharedPool is enabled without any allocated 
resource. If that is the case, a certain amount of resource slots is 
allocated to the sharedPool. For the efficient schedule of this small 

amount of small-sized jobs in the sharePool, the FIFO scheduler is 
applied here. We allocate a half of resource slots needed by the 
currently smallest job in the system to the sharedPool. That is, the 
number of resource slots allocated to the sharedPool is 
⌈minJobSize/2⌉. This decision is for the reason that large-sized jobs 
should get more resource and hence we allocate limited resource 
to small-sized jobs. For example, if minJobSize is four in map 
tasks and two in reduce tasks, this sharedPool gets two map slots 
and one reduce slots. 

The remaining free resource slots (RemainingSlots) are 
proportionally allocated to the other user pools according to their 
actual needs. The portion of total resources allocated to a user pool 
is based on the ratio of the number of pending tasks in a user pool 
(PoolTasks) to the number of total pending tasks in all user pools 
(allPoolsTasks). A pending task is a task that is not allocated with 
any resource slots and is waiting for execution. The ratio above 
indicates the remaining resource requirements of a user pool 
against the total remaining resource requirements of all jobs. 
Remember that only map (or reduce) tasks are considered in the 
counting of the number of tasks when map (or reduce) slots are 
allocated. To prevent one user pool with heavy workload from 
getting too much resource, the actual number of allocated slots 
cannot exceed the maximum number (maxAllocated) configured 
in the system. Figure 7 shows the flow of this dynamic pool 
resource allocation. 

 
Figure 7. Pool resource allocation flow 

3.3. Resource-Aware Job Sorting 

The order to allocate resource to jobs is based on the order of 
jobs. All jobs are in the same system pool for FIFO scheduler, but 
are in different user pools for fair scheduler. Therefore, another 
pool sorting is necessary besides the job sorting for fair scheduler. 
The job or pool order is determined based on a sorting policy 
applied in the FIFO comparator or the FairShare comparator in 
Hadoop. These two comparators, which are involved in FIFO 
scheduler and fair scheduler, respectively, will return the order 
between two target jobs or two target pools based on some 
reference factors. Normally, these reference factors include the job 
priority, job ID, and submitted time. Here, we additionally 
consider the remaining resource requirements and the current 
resource occupation of a job or a user pool to do fine-grained 
sorting. The principle is to allocate resource first to those jobs or 
pools that have occupied less resource or desire for more resource. 

At first, we describe the way to determine the job order in the 
same pool, which can be used both in FIFO scheduler and fair 
scheduler. We measure the remaining resource requirements of a 
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job by the number of pending map or reduce tasks in the job. 
Remember that only map tasks are counted when we consider the 
map slot allocation. We define the pending task ratio of a job 
(JobPendingRatio) in (1) as the number of pending tasks in a job 
to the number of total pending tasks in a pool. This ratio is high if 
the corresponding job has more unfinished tasks against other jobs, 
implying high resource requirements in the future. 

JobPendingRatio = (#pending tasks in a job) ⁄ (#pending tasks in 
a pool)  (1) 

The current resource occupation of job is measured by the 
number of currently running tasks in the job. We define the 
occupied resource ratio of a job (JobOccupiedRatio) in (2) as the 
number of currently running tasks in a job to the number of totally 
allocated slots to a pool. If a task is assigned with at most one 
resource slot, the number of allocated slots is equal to the number 
of running tasks. A job with more occupied resource should have 
low precedence to contend new resource. 

JobOccupiedRatio = (#running tasks in a job) ⁄ (#allocated slots 
to a pool)     
 (2) 

Our sorting policy for jobs in the same pool is designed as 
follows. Five comparing factors are examined in sequence if there 
is a tie as in Figure 8. The high order is given to the job with a high 
job priority (more detailed settings are discussed latter). The 
subsequent order is given to the job with a high JobPendingRatio 
and then with a low JobOccupiedRatio. To break the tie, the 
submitted time and the job ID are then examined. 

 
Figure 8. Sequence to examine the job order 

In fair scheduler, there are several pools and the order of these 
pools should be determined before jobs are scheduled. Our sorting 
policy for pools is also from the perspective on resource 
requirements. First, the number of all pending tasks for each job in 
a pool is accumulated as the maximal resource demand of a pool 
(PoolDemand) in (3). Suppose that each user pool is configured 
with the minimum number of resource slots (minAllocated) in 
advance. If PoolDemand is less than minAllocated, minAllocated 
would be set to be PoolDemand to reflect the actual minimum 
resource need. This step is for tuning the minAllocated value. 

PoolDemand = ∑#pending tasks, for all jobs in a pool       (3) 

Next, the number of currently running tasks for each job in a 
pool is accumulated as the current workload of a pool 
(PoolWorkload) in (4). If PoolWorkload is no greater than 
minAllocated, this means that the pool has sufficient resource to 
accommodate new tasks and hence a high pool order is given. That 
is, the pools are in the order of pools with sufficient resource 
followed by pools with insufficient resource. 

PoolWorkload = ∑ #running tasks, for all jobs in a pool            
(4) 

Those pools having sufficient resource are further sorted by 
comparing the occupied resource ratio (PoolOccupiedRatio) of 
PoolWorkload to minAllocated in (5). The remaining resource is 
large if this ratio is low, and hence a high order is given to a pool 
with small PoolOccupiedRatio. 

PoolOccupiedRatio = PoolWorkload ⁄ minAllocated                  
(5) 

Those pools having insufficient resource are further sorted by 
comparing the PoolWorkload and the weight of a pool that is given 
by the user or the system to indicate the pool priority. The ratio of 
these two values is computed in (6) and is denoted as 
WeightedPoolWorkload. A high order is given to the pool with 
small WeightedPoolWorkload. Here we suppose that the pool 
priority is high if the corresponding pool weight is large. Figure 9 
shows the comparing sequence. If any tie happens, a random order 
is given. 

WeightedPoolWorkload = PoolWorkload ⁄ (weight of a pool)        
(6) 

 
Figure 9. Sequence to examine the pool order 

3.4. Delay Time Adjustment 

To increase data locality during job scheduling, JobTracker 
will seek first for those tasks in pools having node-locality or rack-
locality levels. The setting of delay time during task scheduling is 
proven to be helpful on data locality. The TaskTracker will wait 
for a suitable task satisfying node-locality in a pool until the time 
out of a short delay timer. If no such task is found, the TaskTracker 
continues waiting for a suitable task satisfying rack-locality in a 
pool until the time out of a long delay timer. Otherwise, one task 
is randomly selected from a pool and is fed to the TaskTracker.  

The fixed setting of these delay timers in the current 
implementation of fair scheduler is not suitable in a dynamically 
changing environment. A long delay timer will increase the 
average turnaround time of jobs, and a short delay time will 
decrease the average data locality level. Here, a dynamic approach 
is applied by setting the timer according to the recently average 
waiting time as follows: 

NodeLocalityWaitedTime = the average waiting time of tasks 
satisfying node locality                                                                  (7) 

RackLocalityWaitedTime = the average waiting time of tasks 
satisfying rack locality                                                                   (8) 

In our implementation, we use two pairs of counters 
(TimeCount and NumberCount) to maintain each waited timer as 
the value of TimeCount/NumberCount. If a task is scheduled with 
node-locality level, the scheduled waiting time is added into 
TimeCount and NumberCount is increased by one. Another pair of 
TimeCount and NumberCount is used when a task is scheduled 
with rack-locality level. 

High job priority

High JobPendingRatio Low JobOccupiedRatio

Early submitted time Small job ID

(PoolWorkload <= minAllocated)

Small PoolOccupiedRatio

(PoolWorkload > minAllocated)

Small WeightedPoolWorkload
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3.5. Job Priority Adjustment 

In Hadoop, each job can be given with one of five priority 
values from high to low: VERY_HIGH, HIGH, NORMAL, LOW, 
and VERY_LOW. However, the job priority is not fully used and 
is set to a fixed value (NORMAL) without any specific 
specification. This priority value is one of the factors that are 
considered in job sorting. If this priority value can be dynamically 
adjusted to reflect the data locality level of a task for a job, the job 
with high data locality will be scheduled with high precedence. 
This strategy can increase overall data locality level and hence 
reduce the data access time. 

We consider the change of the data locality level according to 
two recently scheduled tasks of the same job. There are nine 
possible changes as listed in the first column of Table 3. The job 
priority remains the same if there is no change on data locality. If 
the data locality is downgraded with one level (or two levels), the 
job priority is also downgraded with one level (or two levels). This 
job after downgrading will be sorted behind other jobs, and hence 
JobTracker has more opportunities to find other tasks with good 
data locality levels. Similarly, the job priority is upgraded with one 
level (or two levels) if the data locality is upgraded with one level 
(or two levels). If the job priority keeps in VERY_HIGH (or 
VERY_LOW) due to no change of data locality level, a minor 
adjustment to HIGH (or LOW) is applied for the balance of 
fairness. This prevents a job from keeping with very high or very 
low priority for a long period of time. The former case makes a job 
having high priority to seize system resource, and the latter case 
makes a job having the chance to starve for system resource. 

Table 3. Change of job priorities 

Data 
locality 
change 

Original Job Priority 
VERY_
HIGH HIGH NORM

AL LOW VERY_
LOW 

NodeNode VERY_
HIGH HIGH NORM

AL LOW 
VERY_
LOW 

NodeRack HIGH NORMA
L LOW VERY_

LOW 
LOW 

NodeNone NORMA
L LOW VERY_

LOW 
VERY_
LOW 

LOW 

RackNode HIGH VERY_
HIGH HIGH NORMA

L 
LOW 

RackRack VERY_
HIGH HIGH NORM

AL LOW 
VERY_
LOW 

RackNone HIGH NORMA
L LOW VERY_

LOW 
LOW 

NoneNode HIGH NORMA
L LOW VERY_

LOW 
LOW 

NoneRack HIGH VERY_
HIGH HIGH NORMA

L 
LOW 

NoneNone VERY_
HIGH HIGH NOMA

L LOW 
VERY_
LOW 

 

4. Performance Evaluation 

An experimental testing environment is established to evaluate 
the proposed fair-share-based algorithm against the original 
algorithm. The capacity scheduler is not examined, since it is little 
bit hard to configure a uniform testing environment to compare 
these schedulers together. Two physical computer servers are 
selected from two buildings on our campus. Each server is 
configured with four virtual machines (VMs) using the software of 
VMware ESXi. Each VM is installed with the operation system of 
CentOS 5.5 and Hadoop 1.2.1. These VMs are configured with 

physical IP addresses and are connected together to be one Hadoop 
cluster. That is, we have eight nodes in the cluster, and one node 
acts as both master and slave nodes and the other seven nodes act 
as slave nodes. Those nodes on the same physical computer are 
viewed as on the same rack. The hardware specification of the 
master node is: one dual-core CPU, 8GB memory, and 200 GB 
disk space. The specification of the slave node is: one dual-core 
CPU, 4 GB memory, and 200 GB disk space. 

The replication factor of HDFS is set to three by default in 
Hadoop, which implies one data chunk is replicated to three nodes. 
However, we set the replication factor to one here and make the 
general node-locality level low. The reason is for the easy 
observation on the improvement of data locality. All the submitted 
jobs are based on the WordCount program which outputs the 
frequency of each distinct word occurred in an input document file. 
The job size is controlled by the size of input file. In other words, 
each job can contain a different number of map tasks but contain 
one single reduce task. The initial job priorities of all jobs are 
NORMAL. There are three user pools with equal weight in the 
system. All the submitted jobs will evenly be distributed into these 
pools. The minAllocated and maxAllocated values for each user 
pool is three and six in number of map slots, respectively. The 
default delay time in the original fair scheduler is 3000 ms. The 
above experimental settings are summarized in Table 4. 

Table 4. Experimental settings 

Physical server 2 
Virtual machine 8 
Hadoop system 1.2.1 
HDFS replication 1 
Default delay time 3000 ms 
Job size 6~25 map tasks 
User pool 3 

 

Two sets of experiments are performed. All jobs in the first 
experiment have the same size, but have different sizes in the 
second experiment. For each experiment, two cost metrics are 
observed as follows: 

• Average turnaround time: The average time taken between 
the submission of a job for execution and the completion 
of result output. 

• Average node-locality ratio: The ratio of the number of 
task schedules satisfying node locality to the number of 
total task schedules. 

4.1. Experiment A 

In this experiment, each node is configured with four map slots 
and one reduce slot. There are totally 32 map slots in the system. 
The job size (in number of map tasks) is set to be 6, 10, and 18. 
For each case, 5, 10, and 15 jobs are respectively examined. That 
is, all submitted jobs in each testing round have the same size. For 
this reason, the following proposed mechanisms does not 
contribute too much on performance improvement. First, the job 
classification does not work here. Second, the pool resource 
allocation makes no significant difference on each user pool. 
Therefore, we mainly observe the proposed mechanisms on 
resource-aware job sorting, delay time and job priority 
adjustments. Experimental results are listed in Table 5 and Table 
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6. Each gain value shown in the tables, indicating the improvement 
percentage, is defined as follows: 

Gain = (Modified FS – Original FS) / Original FS × 100%       
(9) 

As the total number of tasks is increased, the average 
turnaround time is increased for both the original fair scheduler 
and our modified fair scheduler because of heavy workload. The 
modified fair scheduler can significantly reduce the average 
turnaround time by 21.4% to 54.5% against the original fair 
scheduler. This indicates that the modified fair scheduler performs 
proper job sorting and decreases unnecessary waiting delays. 
These make the utilization of resource slots high. In general, more 
reduction gains are achieved if the job size is getting large under 
the same number of jobs. This shows that the modified fair 
scheduler makes efficient schedule on many map tasks. The 
original fair scheduler will suffer from serious resource 
contentions under heavy workload and the lack of flexible 
scheduling makes the performance worse.  

Table 5. Comparison of average turnaround time for jobs of same size 

Job size Number 
of jobs 

Original 
FS 

Modifie
d FS 

Gain 
(%) 

6 5 289.6 s 188.2 s -35% 
10 1083.2 s 761.3 s -29.7% 
15 1791.7 s 1175.2 s -34.4% 

10 5 886.9 s 462.2 s -47.8% 
10 1433.7 s 1103.3 s -23% 
15 2008.1 s 1577.6 s -21.4% 

18 5 2212.3 s 1003 s -54.6% 
10 3845 s 1894.1 s -50.7% 
15 5681.4 s 2988.7 s -47.3% 

 

Table 6. Comparison of average node-locality ratio for jobs of same size 

Job size Number 
of jobs 

Original 
FS 

Modified 
FS 

Gain 
(%) 

6 5 0.09 0.13 +44.4% 
10 0.22 0.23 +4.5% 
15 0.28 0.28 +0% 

10 5 0.29 0.32 +10.3% 
10 0.34 0.32 -5.9% 
15 0.33 0.35 +6.1% 

18 5 0.21 0.25 +19% 
10 0.28 0.34 +21.4% 
15 0.3 0.36 +20% 

 

Table 6 shows the performance comparison on data locality. 
First, the general node-locality ratio is low, because the replication 
factor is only one. Second, the node-locality ratio is improved in 
general by using our modified fair scheduler. Among our proposed 
mechanisms, only the mechanism of job priority adjustment 
considers the factor of data locality. Therefore, our scheduler can 
slightly increase the node-locality level but cannot guarantee this 
is always true as one counterexample in the table. Third, 
improvement gains become clearer when the job size is getting 
large. When we take a close look at the experimental result of each 
round, we found that data-locality levels in the original fair 
scheduler are variant over different testing rounds. For example, 
there may have several task schedules with node-locality level in 
the current testing round but with rack-locality level in the next 
testing round. However, our modified fair scheduler keeps data-
locality level in a more stable state under the same input condition. 

4.2. Experiment B 

In this experiment, each node is configured with two map slots 
and one reduce slot. There are totally 16 map slots in the system. 
The job sizes are mixed with five different scales: 6, 10, 16, 21, 
and 25. For each job size, one, two, and three jobs are respectively 
generated such that there are totally 5, 10, and 15 jobs in the 
system. All the proposed mechanisms will function in this 
experiment. The experimental results are listed in Table 7 and 
Table 8. As can be seen, the modified fair scheduler largely 
decreases the average turnaround time by 57% in average, and 
slightly increases the average node-locality ratio by 3.87% in 
average. 

As compared to Experiment A where only three proposed 
mechanisms function well, improvement gains become excellent 
in this experiment. This means that the proposed job classification 
works very well and the dynamic pool resource allocation based 
on real resource requirement makes slot allocation more efficient. 

In this experiment, we also examine the FIFO scheduler. The 
FIFO scheduler runs worse in the first two testing suits of Table 7, 
but accidently has good performance in the last testing suit. This is 
because that any fair-based schedulers need to set an upper bound 
on the number of allocated resource slots to a user pool. The 
performance is affected when this upper bound is reached. This 
setting is for allowing more users to share system resources and 
preventing one user to occupy all resources. The FIFO scheduler 
however allocates all available resources to the current user and 
does not consider the future resource needs for other coming users 
to the system. It is expected that the FIFO scheduler would perform 
worse when there are many users and many large-size jobs in the 
system. 

The average node-locality ratio is close for these three 
schedulers as shown in Table 8. This implies that data locality is 
not a dominant factor on the job turnaround time. Our modified 
fair scheduler performs more stable and efficient than other 
schedulers do due to multiple considerations. 

Table 7. Comparison of average turnaround time for jobs of different sizes 

Job size Number 
of jobs 

Original 
FS 

Modified 
FS 

FIFO Gain 
(%) 

6/10/16
/21/25 

5 1242 s 364.6 s 513.6 s -70.6% 
10 2343.1 s 1372.5 s 1532.2 s -41.4% 
15 5585.3 s 2285.5 s 2131.933 s -59.1% 

 

Table 8. Comparison of average node-locality ratio for jobs of different sizes 

Job size Number 
of jobs 

Original 
FS 

Modified 
FS 

FIFO Gain 
(%) 

6/10/16/
21/25 

5 0.25 0.26 0.27 +4% 
10 0.32 0.44 0.36 +3.8% 
15 0.32 0.44 0.36 +3.8% 

 

5. Conclusions 

Hadoop provides parallel data processing based on the 
MapReduce framework. The performance of MapReduce 
programs is dominated by a job scheduling algorithm. Fair 
scheduler, which is one of the built-in schedulers in Hadoop, 
provides good performance in general and is widely used. 
However, the scheduling policy of this naïve fair scheduler is 
almost fixed and is not flexible to the change of working 
conditions. In this paper, we propose five mechanisms: job 
classification, pool resource allocation, resource-aware job sorting, 
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delay time adjustment, and job priority adjustment to improve the 
fair scheduler by monitoring the actual resource usage and the 
runtime environment’s condition. The conducted experiments on a 
real testing platform show that the modified fair scheduler can 
largely reduce the average turnaround time of a job and slightly 
increase data locality against the naïve fair scheduler. 

In the future, more types of jobs such as CPU-intensive and 
I/O-intensive programs will be conducted in the experiment. Also, 
our current work only emphasizes the slot allocation and data 
locality for map tasks, more enhancements for reduce tasks can be 
furthered considered. 
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