

www.astesj.com 1050

Improving the Performance of Fair Scheduler in Hadoop

Shou-Chih Lo*, Ya-Wen Cheng

Department of Computer Science and Information Engineering, National Dong Hwa University, 974, Taiwan

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 28 April, 2017
Accepted: 29 June, 2017
Online: 15 July, 2017

 Cloud computing is a power platform to deal with big data. Among several software
frameworks used for the construction of cloud computing systems, Apache Hadoop, which
is an open-source software, becomes a popular one. Hadoop supports for distributed data
storage and the process of large data sets on computer clusters based on a MapReduce
parallel processing framework. The performance of Hadoop in parallel data processing is
depended on the efficiency of a job scheduling algorithm underworking. In this paper, we
improve the performance of the well-known fair scheduling algorithm adopted in Hadoop
by introducing several mechanisms. The modified scheduling algorithm can dynamically
adjust resource allocation to user jobs and the precedence of user jobs to be executed. Our
approach can properly adapt to the runtime environment’s condition with the objective of
achieving job fairness and reducing job turnaround time. Performance evaluations verify
the superiority of the proposed scheduler over the original fair scheduler. The average
turnaround time of jobs can be largely reduced in our experiments.

Keywords:
Cloud Computing
Hadoop
Fair Scheduling
MapReduce
Data Locality

1. Introduction

This paper is an extension of work originally presented in
PlatCon-17 [1], where we show the general ideas. Significant
changes are added in this extended paper to explain more about
background knowledge, related work, design philosophy, and
performance evaluation. Nowadays, huge volumes of data are
generated on the Internet every day due to the popularity of social
media and portable devices, and this opens up a new era of big data
[2]. How to extract interesting information from these data has
become a hot topic in science and commercial fields. Big data
analytics needs the support of scalable data storage and powerful
data process. Cloud computing [3], which provides distributed
storage and parallel data processing on commodity computer
clusters, just meets this requirement on data analysis.

Cloud computing, as defined by National Institute of Standards
and Technology (NIST) [4], should be composed of five essential
characteristics: broad network access, rapid elasticity, measured
service, on-demand self-service, and resource pooling. Moreover,
cloud computing has four basic deployment models: public cloud,
private cloud, community cloud, and hybrid cloud, and has three
service models: software as a service (SaaS), platform as a service
(PaaS), and infrastructure as a service (IaaS).

Many large on-line services are constructed by the technique
of cloud computing. These services are usually developed on
business-based cloud platforms such as Amazon’s EC2, Google’s
GAE, and Microsoft’s Azure. In academic research, Apache
Hadoop is a popular cloud platform to test and verify research
ideas. Hadoop is a Java-based and open-source software
framework that supports a full set of cloud techniques: distributed
file system, parallel data processing, and distributed database
system.

To do parallel data processing in Hadoop, users need to write
MapReduce programs [5]. These kinds of programs include two
major processing codes: map and reduce to reflect a two-phase
data processing flow. The map code mainly deals with data
filtering and data transforming, and the reduce code mainly deals
with data aggregating. Users submit these MapReduce programs
into the Hadoop system as jobs. Each job contains several map
tasks and reduce tasks. The map task typically reads an input data
file in the form of key-value pairs, and then generates an
intermediate result file in key-value pairs as well. All values with
the same key will be grouped together, and then are processed by
the reduce task that usually generates aggregated values.

The WordCount application that outputs the frequency of each
distinct word occurred in a document file is usually used to explain
the MapReduce framework. The map task will scan the input file
and output the occurrence of each word in the format of (founded

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Shou-Chih Lo, Email: sclo@gms.ndhu.edu.tw

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1050-1058 (2017)

www.astesj.com

 Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj0203133

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0203133

Shou-Chih Lo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1050-1058 (2017)

www.astesj.com 1051

word, 1). Apparently, we only need to accumulate this value 1 for
those outputs having the same founded word to be the word
frequency. The reduce task just does this grouping and counting.

A Hadoop system can be built over clusters of computers that
are typically named as nodes. All map and reduce tasks will be
dispatched to these nodes. For parallel data processing, the input
data file to a MapReduce job will be equally partitioned into
several data chunks (or blocks) with a typical size of 64 MB. Each
of these data chunks will be replicated and distributed into different
nodes for fault tolerance. The same number of map tasks to the
number of data chunks are cloned, and each copy of the map task
handles one data chunk. Because there are redundant data chunks,
the map task will select the closest data chunk for access
efficiency. The reduce task can be cloned as well, and each copy
handles the values corresponding to a certain set of keys. This
MapReduce working model is outlined in Figure 1.

The Hadoop system can simultaneously run many map and
reduce tasks from different users in a computer cluster
environment. These tasks will contend system resources such as
CPU, memory, and disk I/O for the completion of their jobs.
Moreover, those tasks reading data chunks from far-away nodes
will compete for network bandwidth. Therefore, a proper task
scheduling algorithm is necessary for optimizing resource
utilization and avoiding any resource starvation.

Hadoop provides three built-in scheduling modules: First-In-
First-Out (FIFO) scheduler, fair scheduler, and capacity scheduler.
These schedulers have their own features and have different
influences on performance such as execution time and waiting time
in different situations [6-10]. Fair scheduler and capacity scheduler
generally perform better than FIFO scheduler. These built-in
schedulers have a common drawback, which the scheduling policy
is almost fixed and is not flexible to the change of working
conditions. In this paper, we focus on the fair scheduler and
propose some modifications to improve the scheduling throughput
under the goal of resource fairness among users.

Our proposed scheduling algorithm is adaptive, because it can
dynamically tune some working parameters such as the job priority
and the waiting time for resource allocation. The runtime
environment’s conditions such as current workload and remaining
resources are considered in the determination of job running order
and the amount of resources allocated to each job. A modified fair
scheduler is then coded into the Hadoop system and is examined
in a real testing environment. Evaluation results show that the
modified fair scheduler can significantly reduce the average
turnaround time of a job by over 20 percent as compared to the
original fair scheduler.

The remainder of this paper is organized as follows. Section 2
briefly introduces the basic job scheduling architecture in Hadoop
and the related work on scheduling algorithms. Section 3 presents
and discusses the proposed five mechanisms of improving the
performance of fair scheduler. Performance evaluation is
conducted in Section 4. Finally, some concluding remarks are
given in Section 5.

2. Background Knowledge and Related Work

Hadoop, which is developed under the Apache projects, is an
open-source software for reliable, scalable, and distributed
computing. The Hadoop system is composed of two basic units: a
distributed file system and a distributed data processing engine.
The Hadoop distributed file system (HDFS), following the similar

Figure 1. MapReduce working model

concept of Google file system (GFS) [11], can manage distributed
data storage across computer clusters built from commodity
hardware. A HDFS cluster consists of a single namenode, a master
server that manages the namespace and access of files, and
multiple datanodes, slave servers that store data chunks and are
coordinated by the master server. A file is split into several data
chunks which are then stored into datanodes. The namenode will
record the mapping of each data chunk to each datanode.

The distributed processing engine in Hadoop is based on the
MapReduce framework. A MapReduce program contains a map
procedure that performs the data filtering and sorting operations,
and a reduce procedure that performs the data summarizing
operations. MapReduce programs are submitted by users to
Hadoop as jobs. These jobs will be executed over a set of
computing nodes where one master node is selected to schedule
job executions on the other slave (or worker) nodes. The
management functions of system resource and job execution are
included in the MapReduce module for Hadoop version 1. These
functions, however, are dedicated to anther software module for
Hadoop version 2: Yet Another Resource Negotiator (YARN)
[12]. No matter the different versions of Hadoop, the job
scheduling process is relied on a job scheduler. In this paper, we
follow the framework of Hadoop version 1 to illustrate the
operation of different job schedulers.

Figure 2 shows the job execution flow in Hadoop. There is a
JobTracker at the master node that plays the roles of monitoring/
allocating system resources and scheduling user jobs. The
JobTracker gives each submitted job a job ID as an internal
identification number and puts the job into a job queue (or pool).
A certain sorting policy is applied to these jobs in the queue
according to some comparing factors such as job ID, job priority,
and job submitted time. When a job is ready to be executed, the
associated map and reduce tasks are created. The number of map
tasks is determined by the number of data chunks split from an
input file. The number of reduce tasks can be configured by the
user but is usually one by default.

The JobTracker will manage and monitor all system resources
such as CPU, memory, and disk contributed from all slave nodes.
These system resources for job running are configured as resource
slots in Hadoop. The resource slot used for the running of a map
(or reduce) task is called a map (or reduce) slot, respectively. Due
to the limited system resource, map and reduce tasks will contend
these resource slots. On each slave node, a TaskTracker will
manage the actual running of tasks. The TaskTracker will request
a task to run from the JobTracker whenever there is a free resource
slot. The TaskTracker will also periodically report the execution
status and the available resource to the JobTracker by sending a
heartbeat message.

Input
File

Chunk0

Chunk1

Chunk2

Map

Map

Map

Reduce

Reduce

Output
File

Split Sort/Merge Aggregate
Copy

Filter

http://www.astesj.com/

Shou-Chih Lo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1050-1058 (2017)

www.astesj.com 1052

Figure 2. The job execution flow in Hadoop

A map task will read an input data chuck through the HDFS.
To save network bandwidth, this data retrieval should happen
locally or be done from a close node. This raises the data locality
issue when assigning a task to a slave node [13]. There are three
levels of data localities (see Figure 3) from good to bad:

• Node-locality: The node where data are stored is the same
as the node where data are processed.

• Rack-locality: The node where data are stored is different
from the node where data are processed, but these two
nodes are located in the same rack.

• Non-locality: The node where data are stored is different
from the node where data are processed, and these two
nodes are located in different racks.

Figure 3. Data locality: (1) Node-locality, (2) Rack-locality, and (3) Non-locality

The Hadoop scheduling problem can be described below:
Suppose that each node is configured with some map and reduce
slots for the execution of map and reduce tasks, respectively. Given
a set of jobs and nodes, we need to determine the order of running
jobs and the slot assignment to tasks with the objective of high data
locality and high execution throughput. This problem with multi-
objective optimization is proven to be NP-hard [14].

In Hadoop, there are three well-known scheduling algorithms
implemented as three schedulers: FIFO scheduler, fair scheduler,
and capacity scheduler, respectively. The default FIFO scheduler
uses one job queue to do slot allocation. Jobs in the queue are
sorted in ascending order of their submitted times. To break the tie,
the job ID assigned by the JobTracker is considered. All free map
and reduce slots in the system can serve the job being scheduled.

In the example of Figure 4, suppose that there are three map slots
and three reduce slots in the system, and each job (i.e., Job1~Job3)
has three map tasks and three reduce tasks. The sequence to
allocate slots to these jobs is Job1, Job2, and then Job3. For
simplicity, we assume that each task uses one resource slot with
the same occupation time in the figure. At first, all the map tasks
of Job1 get map slots for 20 s execution time. Next, these map slots
are released and re-allocated to the map tasks of Job2. Meanwhile,
all the reduce tasks of Job1 get reduce slots for 20 s execution time.
As can be seen, reduce tasks start executing just after the finish of
all map tasks of the same job. The drawback of this scheduler is
the possible long waiting time for a task to be executed when there
are many jobs in the queue. This becomes unfair particularly when
a user submits many jobs and the latter users need to wait.

The fair scheduler developed by Facebook equally allocates
resources to job users. Each user has its own job queue (or pool),
and all resource slots are fairly distributed to these user pools.
Figure 5 shows the example slot allocation under the same
condition with the previous example. Here three pools (P1, P2, and
P3) are introduced with each pool having the resource of one map
slot and one reduce slot. Each map task of these three jobs gets one
map slot at the same time and runs for 20 s. The same case happens
for reduce tasks. As compared to the previous example, each
submitted job can start running immediately but the time to finish
the job becomes longer. In a real situation, one pool without
sufficient resources can borrow free (or idle) slots from another
pool to increase resource utilization. To prevent resource
unfairness, each pool is configured with the minimum and
maximum resource capacity. Fair scheduler also supports
preemptive mode by which a low-priority running job can be
aborted for releasing resource to a high-priority job.

Figure 4. A scheduling example using FIFO scheduler

Figure 5. A scheduling example using fair scheduler

The capacity scheduler developed by Yahoo acts similar to fair
scheduler, but uses queues instead of pools. Each queue has a
defined resource capacity and is assigned to an organization or a
group of users. Due to the nature of organization structure, queues
can be constructed into a multi-level hierarchy. To increase
running efficiency, capacity scheduler can allocate more than one
resource slot to a heavy task. Moreover, several tasks can be
assigned together to the same TaskTracker in batch mode to reduce
the scheduling overhead. Overusing this batch mode, however,
would cause load unbalancing among slave nodes. A summary
table (see Table 1) is given to compare the characteristics of these
three schedulers.

MapReduce
Program JobClient

(1) Run job

Client Node

(5) Initialize job

JobTracker

Master Node

HDFS

Data Chunks

Job Queues

(3) Copy job resources

(2) Get job ID

(4) Submit job

TaskTracker

Slave Node

Map or
Reduce

(7) Send heartbeat

(8) Pick task

(9) Assign Task

(11) Run task

Rack 1 Rack 2 Rack 3

Node

1

2

3

Map task Data chunk

HDFS

0 10 20 30 40 50 60 70 80 90 100 110 120

Map
slots

Reduce
slots

Job1

Job2

Job3

Time (s)

Map
slots

Reduce
slots

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (s)

Job1

Job2

Job3

P1
P2
P3

P1
P2
P3

http://www.astesj.com/

Shou-Chih Lo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1050-1058 (2017)

www.astesj.com 1053

There are several scheduling algorithms proposed to improve
the built-in schedulers. The reader is referred to [15-16] for a
complete view. To increase data locality, the LATE (Longest
Approximate Time to End) scheduler was proposed [17], where a
delay timer is set during which a TaskTracker will wait for a
suitable task that can fetch data locally. When a TaskTracker
requests a task to do from the JobTracker, the JobTracker will scan
the job queue to find a task with the node-locality data access level
within a short time interval. If it is failed to find such a task, a task
with the rack-locality data access level is then searched within a
long time interval. If it is still failed, the JobTracker will randomly
select one task to this TaskTracker.

The delay concept above is introduced into the naïve fair
scheduler [18-19]. The setting of suitable delay time would be
challenging in a dynamic changing environment. This delay time
is configured as a fixed value in fair scheduler. To increase data
locality, one research work implements two job queues for the
FIFO scheduler [20]. Jobs having the node-locality potential are
put into one queue, and jobs having the rack-locality potential are
put into the other queue. Finally, these two queues are merged
together and are fed into the FIFO scheduler. The process of data
may have certain relationships. For example, some rare data are
only processed by certain tasks. In this situation, the system can
mark the locations of these rare data and assign irrelevant tasks to
other locations for increasing data locality [21].

Table 1. Summary of different schedulers

Scheduler Characteristics
FIFO
Scheduler

• Single job queue
• Resource allocation to jobs is considered one

by one.
• Scheduling overhead is low
• There are resource starvation problems

Fair
Scheduler

• Multiple job queues
• Resource allocation to jobs is considered

together.
• System resources are fairly allocated to users
• Support preemptive mode and resource

borrowing
Capacity
Scheduler

• Multiple job queues
• Resource allocation to jobs is considered

together.
• System resources are allocated to users

according to a certain organization policy
• More than one resource slot can be allocated to

one task
• Support batch mode in job scheduling

The job priority will affect the job order in a job queue. If each
user can freely assign the job priority, all users tend to set their jobs
to the highest level, and this does not make sense. One auto-setting
mechanism is proposed in [22] by considering several factors such
as the job size, the average execution time and the scheduled time
of a task in a job. A high priority is usually given to a small-size or
fast running job. The job size can be simply estimated by the
number of tasks involved in a job [23].

In Hadoop, map slots and reduce slots are separated and cannot
be interchangeably used. Dynamic borrowing between them can
improve slot utilization and system throughput [24]. The map or

reduce slot in Hadoop represents a computing unit and the amount
of available slots in a node is configured in advance. Dynamically
changing the slot number according to the real computing power
in speeds of CPU and I/O can also improve system performance
[25-26].

The diversity of data, jobs, and computer nodes will also affect
the scheduling performance, and this is called the skew problem
[27]. Different map tasks from the same job may generate different
amounts of data, causing data skew. Different jobs take different
execution times depending on algorithms but not job sizes, causing
computational skew. Resource slots from different computer nodes
have different computing powers, causing machine skew. These
skews cause unbalancing workload in a distributed computer
cluster. There are many research efforts on designing load
balancing scheduling algorithms [28-31]. For example, jobs are
classified into CPU-bound and I/O-bound types and are put into
different job queues [31].

3. Modified Fair Scheduler

Fair scheduler with the delay mechanism has good
performance in general against the other schedulers in Hadoop.
However, fair scheduler overemphasizes fair resource allocation to
jobs and ignores the differences between jobs. These differences
may even change over time when jobs are running. We hope to
improve the performance of fair scheduler by considering some
runtime conditions and further adjusting resource allocation to
jobs. We provide some modifications to the fair scheduler by
introducing the following mechanisms: job classification, pool
resource allocation, resource-aware job sorting, delay time
adjustment, and job priority adjustment. Their brief introductions
are given in Table 2.

Table 2. The goal of each proposed mechanism

Mechanism Goal
Job classification Separate small-sized jobs from

large-sized jobs
Pool resource allocation Periodically reallocate resource

slots to pools according to their
remaining actual needs

Resource-aware job sorting Determine the job or pool order
for resource allocation based on
more criteria including resource
requirement and occupation

Delay time adjustment Dynamically adjust the delay
time for a suitable task with high
data locality

Job priority adjustment Dynamically adjust the job
priority based on the change of
its data locality level

3.1. Job Classification

In fair scheduler, system resources are equally allocated to user
pools. All jobs belonging to the same pool will contend for the
limited resource. In real cases, different jobs would have different
resource requirements. A large-sized job consumes more resource
than a small-sized job. Based on the principle of shortest job first,
we separate small-sized jobs from large-sized jobs and allocate
resources to them individually.

The job size is measured by the number of map and reduce
tasks in a job. In general, the number of map tasks is greater than

http://www.astesj.com/

Shou-Chih Lo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1050-1058 (2017)

www.astesj.com 1054

that of reduce tasks, because most MapReduce jobs focus on data
extraction from large input data sets. For simplicity, we
concentrate on the map slot allocation to map tasks, so the job size
is defined as the number of map tasks only. A job is recognized as
a small-sized one if its job size is no greater than a threshold
(minJobSize). This threshold value is not a fixed value but is
updated periodically by the JobTracker (per 500 ms in our
implementation) to be the currently smallest job size among all
jobs in the system.

The basic concept of the proposed job classification is to direct
all small-sized jobs into another system pool (called sharedPool)
and all large-sized jobs into their originally belonging pools. In
other words, there is a system pool shared by all users besides
individual user pools. Jobs in the sharedPool are scheduled using
FIFO for simplicity.

In an extreme case, if all jobs are small-sized, this job
classification becomes useless. To prevent this condition, the ratio
of the number of total small-sized jobs (SmallJobs) to the number
of total jobs (TotalJobs) in the current system is considered. If this
ratio is greater than a threshold, the sharedPool mechanism is
disabled and all small-sized jobs remain in their own user pools.
This threshold value is set to be the reciprocal of the average
number of map slots configured in a salve node. For example, if
each slave node has four map slots on average, the threshold value
is 0.25. This means that we allow using sharePool when there is at
most one small-sized job running on a slave node on average.
Figure 6 shows the flow of job classification.

Figure 6. Job classification flow

3.2. Pool Resource Allocation

System resources are proportionally allocated to user pools
according to weighted values assigned to user pools in fair
scheduler. Without the pre-knowledge of traffic shape, it is hard to
set a suitable weighted value to each user pool, and this weighted
value is set to be equal most of the time. However, if this weighted
value can automatically reflect the current resource requirement,
resource allocation can always fit real situations and becomes more
efficient. Based on this concept, a dynamic pool resource
allocation is proposed.

The resource allocation to pools is periodically adjusted every
500 ms in our implementation. The allocation of map slots and
reduce slots to each user pool is performed separately. We first
check whether the sharedPool is enabled without any allocated
resource. If that is the case, a certain amount of resource slots is
allocated to the sharedPool. For the efficient schedule of this small

amount of small-sized jobs in the sharePool, the FIFO scheduler is
applied here. We allocate a half of resource slots needed by the
currently smallest job in the system to the sharedPool. That is, the
number of resource slots allocated to the sharedPool is
⌈minJobSize/2⌉. This decision is for the reason that large-sized jobs
should get more resource and hence we allocate limited resource
to small-sized jobs. For example, if minJobSize is four in map
tasks and two in reduce tasks, this sharedPool gets two map slots
and one reduce slots.

The remaining free resource slots (RemainingSlots) are
proportionally allocated to the other user pools according to their
actual needs. The portion of total resources allocated to a user pool
is based on the ratio of the number of pending tasks in a user pool
(PoolTasks) to the number of total pending tasks in all user pools
(allPoolsTasks). A pending task is a task that is not allocated with
any resource slots and is waiting for execution. The ratio above
indicates the remaining resource requirements of a user pool
against the total remaining resource requirements of all jobs.
Remember that only map (or reduce) tasks are considered in the
counting of the number of tasks when map (or reduce) slots are
allocated. To prevent one user pool with heavy workload from
getting too much resource, the actual number of allocated slots
cannot exceed the maximum number (maxAllocated) configured
in the system. Figure 7 shows the flow of this dynamic pool
resource allocation.

Figure 7. Pool resource allocation flow

3.3. Resource-Aware Job Sorting

The order to allocate resource to jobs is based on the order of
jobs. All jobs are in the same system pool for FIFO scheduler, but
are in different user pools for fair scheduler. Therefore, another
pool sorting is necessary besides the job sorting for fair scheduler.
The job or pool order is determined based on a sorting policy
applied in the FIFO comparator or the FairShare comparator in
Hadoop. These two comparators, which are involved in FIFO
scheduler and fair scheduler, respectively, will return the order
between two target jobs or two target pools based on some
reference factors. Normally, these reference factors include the job
priority, job ID, and submitted time. Here, we additionally
consider the remaining resource requirements and the current
resource occupation of a job or a user pool to do fine-grained
sorting. The principle is to allocate resource first to those jobs or
pools that have occupied less resource or desire for more resource.

At first, we describe the way to determine the job order in the
same pool, which can be used both in FIFO scheduler and fair
scheduler. We measure the remaining resource requirements of a

Measure JobSize
Submit a job

JobSize <=
minJobSize

SmallJobs/TotalJobs
<= Threshold

Put the job into sharedPool Put the job into the original pool

Yes

Yes

No

No

Periodically allocate pool resource

sharedPool is
enabled without any

resource

Yes No

Allocate resource to
sharedPool with

𝑚𝑖𝑛𝐽𝑜𝑏𝑆𝑖𝑧𝑒/2 slots

Allocate resource to each user pool with
min(maxAllocated, ⌈𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑙𝑜𝑡𝑠×

(𝑃𝑜𝑜𝑙𝑇𝑎𝑠𝑘𝑠 𝑎𝑙𝑙𝑃𝑜𝑜𝑙𝑠𝑇𝑎𝑠𝑘𝑠⁄)⌉) slots

http://www.astesj.com/

Shou-Chih Lo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1050-1058 (2017)

www.astesj.com 1055

job by the number of pending map or reduce tasks in the job.
Remember that only map tasks are counted when we consider the
map slot allocation. We define the pending task ratio of a job
(JobPendingRatio) in (1) as the number of pending tasks in a job
to the number of total pending tasks in a pool. This ratio is high if
the corresponding job has more unfinished tasks against other jobs,
implying high resource requirements in the future.

JobPendingRatio = (#pending tasks in a job) ⁄ (#pending tasks in
a pool) (1)

The current resource occupation of job is measured by the
number of currently running tasks in the job. We define the
occupied resource ratio of a job (JobOccupiedRatio) in (2) as the
number of currently running tasks in a job to the number of totally
allocated slots to a pool. If a task is assigned with at most one
resource slot, the number of allocated slots is equal to the number
of running tasks. A job with more occupied resource should have
low precedence to contend new resource.

JobOccupiedRatio = (#running tasks in a job) ⁄ (#allocated slots
to a pool)
 (2)

Our sorting policy for jobs in the same pool is designed as
follows. Five comparing factors are examined in sequence if there
is a tie as in Figure 8. The high order is given to the job with a high
job priority (more detailed settings are discussed latter). The
subsequent order is given to the job with a high JobPendingRatio
and then with a low JobOccupiedRatio. To break the tie, the
submitted time and the job ID are then examined.

Figure 8. Sequence to examine the job order

In fair scheduler, there are several pools and the order of these
pools should be determined before jobs are scheduled. Our sorting
policy for pools is also from the perspective on resource
requirements. First, the number of all pending tasks for each job in
a pool is accumulated as the maximal resource demand of a pool
(PoolDemand) in (3). Suppose that each user pool is configured
with the minimum number of resource slots (minAllocated) in
advance. If PoolDemand is less than minAllocated, minAllocated
would be set to be PoolDemand to reflect the actual minimum
resource need. This step is for tuning the minAllocated value.

PoolDemand = ∑#pending tasks, for all jobs in a pool (3)

Next, the number of currently running tasks for each job in a
pool is accumulated as the current workload of a pool
(PoolWorkload) in (4). If PoolWorkload is no greater than
minAllocated, this means that the pool has sufficient resource to
accommodate new tasks and hence a high pool order is given. That
is, the pools are in the order of pools with sufficient resource
followed by pools with insufficient resource.

PoolWorkload = ∑ #running tasks, for all jobs in a pool
(4)

Those pools having sufficient resource are further sorted by
comparing the occupied resource ratio (PoolOccupiedRatio) of
PoolWorkload to minAllocated in (5). The remaining resource is
large if this ratio is low, and hence a high order is given to a pool
with small PoolOccupiedRatio.

PoolOccupiedRatio = PoolWorkload ⁄ minAllocated
(5)

Those pools having insufficient resource are further sorted by
comparing the PoolWorkload and the weight of a pool that is given
by the user or the system to indicate the pool priority. The ratio of
these two values is computed in (6) and is denoted as
WeightedPoolWorkload. A high order is given to the pool with
small WeightedPoolWorkload. Here we suppose that the pool
priority is high if the corresponding pool weight is large. Figure 9
shows the comparing sequence. If any tie happens, a random order
is given.

WeightedPoolWorkload = PoolWorkload ⁄ (weight of a pool)
(6)

Figure 9. Sequence to examine the pool order

3.4. Delay Time Adjustment

To increase data locality during job scheduling, JobTracker
will seek first for those tasks in pools having node-locality or rack-
locality levels. The setting of delay time during task scheduling is
proven to be helpful on data locality. The TaskTracker will wait
for a suitable task satisfying node-locality in a pool until the time
out of a short delay timer. If no such task is found, the TaskTracker
continues waiting for a suitable task satisfying rack-locality in a
pool until the time out of a long delay timer. Otherwise, one task
is randomly selected from a pool and is fed to the TaskTracker.

The fixed setting of these delay timers in the current
implementation of fair scheduler is not suitable in a dynamically
changing environment. A long delay timer will increase the
average turnaround time of jobs, and a short delay time will
decrease the average data locality level. Here, a dynamic approach
is applied by setting the timer according to the recently average
waiting time as follows:

NodeLocalityWaitedTime = the average waiting time of tasks
satisfying node locality (7)

RackLocalityWaitedTime = the average waiting time of tasks
satisfying rack locality (8)

In our implementation, we use two pairs of counters
(TimeCount and NumberCount) to maintain each waited timer as
the value of TimeCount/NumberCount. If a task is scheduled with
node-locality level, the scheduled waiting time is added into
TimeCount and NumberCount is increased by one. Another pair of
TimeCount and NumberCount is used when a task is scheduled
with rack-locality level.

High job priority

High JobPendingRatio Low JobOccupiedRatio

Early submitted time Small job ID

(PoolWorkload <= minAllocated)

Small PoolOccupiedRatio

(PoolWorkload > minAllocated)

Small WeightedPoolWorkload

http://www.astesj.com/

Shou-Chih Lo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1050-1058 (2017)

www.astesj.com 1056

3.5. Job Priority Adjustment

In Hadoop, each job can be given with one of five priority
values from high to low: VERY_HIGH, HIGH, NORMAL, LOW,
and VERY_LOW. However, the job priority is not fully used and
is set to a fixed value (NORMAL) without any specific
specification. This priority value is one of the factors that are
considered in job sorting. If this priority value can be dynamically
adjusted to reflect the data locality level of a task for a job, the job
with high data locality will be scheduled with high precedence.
This strategy can increase overall data locality level and hence
reduce the data access time.

We consider the change of the data locality level according to
two recently scheduled tasks of the same job. There are nine
possible changes as listed in the first column of Table 3. The job
priority remains the same if there is no change on data locality. If
the data locality is downgraded with one level (or two levels), the
job priority is also downgraded with one level (or two levels). This
job after downgrading will be sorted behind other jobs, and hence
JobTracker has more opportunities to find other tasks with good
data locality levels. Similarly, the job priority is upgraded with one
level (or two levels) if the data locality is upgraded with one level
(or two levels). If the job priority keeps in VERY_HIGH (or
VERY_LOW) due to no change of data locality level, a minor
adjustment to HIGH (or LOW) is applied for the balance of
fairness. This prevents a job from keeping with very high or very
low priority for a long period of time. The former case makes a job
having high priority to seize system resource, and the latter case
makes a job having the chance to starve for system resource.

Table 3. Change of job priorities

Data
locality
change

Original Job Priority
VERY_
HIGH HIGH NORM

AL LOW VERY_
LOW

NodeNode VERY_
HIGH HIGH NORM

AL LOW
VERY_
LOW

NodeRack HIGH NORMA
L LOW VERY_

LOW
LOW

NodeNone NORMA
L LOW VERY_

LOW
VERY_
LOW

LOW

RackNode HIGH VERY_
HIGH HIGH NORMA

L
LOW

RackRack VERY_
HIGH HIGH NORM

AL LOW
VERY_
LOW

RackNone HIGH NORMA
L LOW VERY_

LOW
LOW

NoneNode HIGH NORMA
L LOW VERY_

LOW
LOW

NoneRack HIGH VERY_
HIGH HIGH NORMA

L
LOW

NoneNone VERY_
HIGH HIGH NOMA

L LOW
VERY_
LOW

4. Performance Evaluation

An experimental testing environment is established to evaluate
the proposed fair-share-based algorithm against the original
algorithm. The capacity scheduler is not examined, since it is little
bit hard to configure a uniform testing environment to compare
these schedulers together. Two physical computer servers are
selected from two buildings on our campus. Each server is
configured with four virtual machines (VMs) using the software of
VMware ESXi. Each VM is installed with the operation system of
CentOS 5.5 and Hadoop 1.2.1. These VMs are configured with

physical IP addresses and are connected together to be one Hadoop
cluster. That is, we have eight nodes in the cluster, and one node
acts as both master and slave nodes and the other seven nodes act
as slave nodes. Those nodes on the same physical computer are
viewed as on the same rack. The hardware specification of the
master node is: one dual-core CPU, 8GB memory, and 200 GB
disk space. The specification of the slave node is: one dual-core
CPU, 4 GB memory, and 200 GB disk space.

The replication factor of HDFS is set to three by default in
Hadoop, which implies one data chunk is replicated to three nodes.
However, we set the replication factor to one here and make the
general node-locality level low. The reason is for the easy
observation on the improvement of data locality. All the submitted
jobs are based on the WordCount program which outputs the
frequency of each distinct word occurred in an input document file.
The job size is controlled by the size of input file. In other words,
each job can contain a different number of map tasks but contain
one single reduce task. The initial job priorities of all jobs are
NORMAL. There are three user pools with equal weight in the
system. All the submitted jobs will evenly be distributed into these
pools. The minAllocated and maxAllocated values for each user
pool is three and six in number of map slots, respectively. The
default delay time in the original fair scheduler is 3000 ms. The
above experimental settings are summarized in Table 4.

Table 4. Experimental settings

Physical server 2
Virtual machine 8
Hadoop system 1.2.1
HDFS replication 1
Default delay time 3000 ms
Job size 6~25 map tasks
User pool 3

Two sets of experiments are performed. All jobs in the first
experiment have the same size, but have different sizes in the
second experiment. For each experiment, two cost metrics are
observed as follows:

• Average turnaround time: The average time taken between
the submission of a job for execution and the completion
of result output.

• Average node-locality ratio: The ratio of the number of
task schedules satisfying node locality to the number of
total task schedules.

4.1. Experiment A

In this experiment, each node is configured with four map slots
and one reduce slot. There are totally 32 map slots in the system.
The job size (in number of map tasks) is set to be 6, 10, and 18.
For each case, 5, 10, and 15 jobs are respectively examined. That
is, all submitted jobs in each testing round have the same size. For
this reason, the following proposed mechanisms does not
contribute too much on performance improvement. First, the job
classification does not work here. Second, the pool resource
allocation makes no significant difference on each user pool.
Therefore, we mainly observe the proposed mechanisms on
resource-aware job sorting, delay time and job priority
adjustments. Experimental results are listed in Table 5 and Table

http://www.astesj.com/

Shou-Chih Lo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1050-1058 (2017)

www.astesj.com 1057

6. Each gain value shown in the tables, indicating the improvement
percentage, is defined as follows:

Gain = (Modified FS – Original FS) / Original FS × 100%
(9)

As the total number of tasks is increased, the average
turnaround time is increased for both the original fair scheduler
and our modified fair scheduler because of heavy workload. The
modified fair scheduler can significantly reduce the average
turnaround time by 21.4% to 54.5% against the original fair
scheduler. This indicates that the modified fair scheduler performs
proper job sorting and decreases unnecessary waiting delays.
These make the utilization of resource slots high. In general, more
reduction gains are achieved if the job size is getting large under
the same number of jobs. This shows that the modified fair
scheduler makes efficient schedule on many map tasks. The
original fair scheduler will suffer from serious resource
contentions under heavy workload and the lack of flexible
scheduling makes the performance worse.

Table 5. Comparison of average turnaround time for jobs of same size

Job size Number
of jobs

Original
FS

Modifie
d FS

Gain
(%)

6 5 289.6 s 188.2 s -35%
10 1083.2 s 761.3 s -29.7%
15 1791.7 s 1175.2 s -34.4%

10 5 886.9 s 462.2 s -47.8%
10 1433.7 s 1103.3 s -23%
15 2008.1 s 1577.6 s -21.4%

18 5 2212.3 s 1003 s -54.6%
10 3845 s 1894.1 s -50.7%
15 5681.4 s 2988.7 s -47.3%

Table 6. Comparison of average node-locality ratio for jobs of same size

Job size Number
of jobs

Original
FS

Modified
FS

Gain
(%)

6 5 0.09 0.13 +44.4%
10 0.22 0.23 +4.5%
15 0.28 0.28 +0%

10 5 0.29 0.32 +10.3%
10 0.34 0.32 -5.9%
15 0.33 0.35 +6.1%

18 5 0.21 0.25 +19%
10 0.28 0.34 +21.4%
15 0.3 0.36 +20%

Table 6 shows the performance comparison on data locality.
First, the general node-locality ratio is low, because the replication
factor is only one. Second, the node-locality ratio is improved in
general by using our modified fair scheduler. Among our proposed
mechanisms, only the mechanism of job priority adjustment
considers the factor of data locality. Therefore, our scheduler can
slightly increase the node-locality level but cannot guarantee this
is always true as one counterexample in the table. Third,
improvement gains become clearer when the job size is getting
large. When we take a close look at the experimental result of each
round, we found that data-locality levels in the original fair
scheduler are variant over different testing rounds. For example,
there may have several task schedules with node-locality level in
the current testing round but with rack-locality level in the next
testing round. However, our modified fair scheduler keeps data-
locality level in a more stable state under the same input condition.

4.2. Experiment B

In this experiment, each node is configured with two map slots
and one reduce slot. There are totally 16 map slots in the system.
The job sizes are mixed with five different scales: 6, 10, 16, 21,
and 25. For each job size, one, two, and three jobs are respectively
generated such that there are totally 5, 10, and 15 jobs in the
system. All the proposed mechanisms will function in this
experiment. The experimental results are listed in Table 7 and
Table 8. As can be seen, the modified fair scheduler largely
decreases the average turnaround time by 57% in average, and
slightly increases the average node-locality ratio by 3.87% in
average.

As compared to Experiment A where only three proposed
mechanisms function well, improvement gains become excellent
in this experiment. This means that the proposed job classification
works very well and the dynamic pool resource allocation based
on real resource requirement makes slot allocation more efficient.

In this experiment, we also examine the FIFO scheduler. The
FIFO scheduler runs worse in the first two testing suits of Table 7,
but accidently has good performance in the last testing suit. This is
because that any fair-based schedulers need to set an upper bound
on the number of allocated resource slots to a user pool. The
performance is affected when this upper bound is reached. This
setting is for allowing more users to share system resources and
preventing one user to occupy all resources. The FIFO scheduler
however allocates all available resources to the current user and
does not consider the future resource needs for other coming users
to the system. It is expected that the FIFO scheduler would perform
worse when there are many users and many large-size jobs in the
system.

The average node-locality ratio is close for these three
schedulers as shown in Table 8. This implies that data locality is
not a dominant factor on the job turnaround time. Our modified
fair scheduler performs more stable and efficient than other
schedulers do due to multiple considerations.

Table 7. Comparison of average turnaround time for jobs of different sizes

Job size Number
of jobs

Original
FS

Modified
FS

FIFO Gain
(%)

6/10/16
/21/25

5 1242 s 364.6 s 513.6 s -70.6%
10 2343.1 s 1372.5 s 1532.2 s -41.4%
15 5585.3 s 2285.5 s 2131.933 s -59.1%

Table 8. Comparison of average node-locality ratio for jobs of different sizes

Job size Number
of jobs

Original
FS

Modified
FS

FIFO Gain
(%)

6/10/16/
21/25

5 0.25 0.26 0.27 +4%
10 0.32 0.44 0.36 +3.8%
15 0.32 0.44 0.36 +3.8%

5. Conclusions

Hadoop provides parallel data processing based on the
MapReduce framework. The performance of MapReduce
programs is dominated by a job scheduling algorithm. Fair
scheduler, which is one of the built-in schedulers in Hadoop,
provides good performance in general and is widely used.
However, the scheduling policy of this naïve fair scheduler is
almost fixed and is not flexible to the change of working
conditions. In this paper, we propose five mechanisms: job
classification, pool resource allocation, resource-aware job sorting,

http://www.astesj.com/

Shou-Chih Lo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1050-1058 (2017)

www.astesj.com 1058

delay time adjustment, and job priority adjustment to improve the
fair scheduler by monitoring the actual resource usage and the
runtime environment’s condition. The conducted experiments on a
real testing platform show that the modified fair scheduler can
largely reduce the average turnaround time of a job and slightly
increase data locality against the naïve fair scheduler.

In the future, more types of jobs such as CPU-intensive and
I/O-intensive programs will be conducted in the experiment. Also,
our current work only emphasizes the slot allocation and data
locality for map tasks, more enhancements for reduce tasks can be
furthered considered.

Acknowledgment

The authors would like to thank the anonymous referees for
their helpful suggestions. This research was partially supported by
Ministry of Science and Technology of the Republic of China
under Contract No. MOST 104-2221-E-259-016.

References

[1] Y. W. Cheng and S. C. Lo, "Improving Fair Scheduling Performance on
Hadoop," in Intl. Conf. on Platform Technology and Service, Feb. 2017.

[2] A. Labrinidis and H.V. Jagadish, "Challenges and opportunities with big
data," in VLDB Endowment, 5(12), 2032-2033, Aug. 2012.

[3] M. Armbrust, A. Fox, R. Griffith, and A. D. Joseph et al., "A view of cloud
computing," Communications of the ACM, 53(4), 50-58, Apr. 2010.

[4] The NIST Definition of Cloud Computing, Sept. 2011,
http://dx.doi.org/10.6028/NIST.SP.800-145

[5] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large
clusters," Communications of the ACM, 51(1), 107-113, Jan. 2008.

[6] S. Liu, J. Xu, Z. Liu, and X. Liu, "Evaluating task scheduling in Hadoop-
based cloud systems," in IEEE Intl. Conf. on Big Data, 47-53, Oct. 2013.

[7] A. Rasooli and D. G. Down, "A hybrid scheduling approach for scalable
heterogeneous Hadoop systems," in SC Companion: High Performance
Computing, Networking Storage and Analysis, 1284-1291, Nov. 2012.

[8] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, "The case for evaluating
MapReduce performance using workload suites," in IEEE Intl. Symposium
on Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS) , 390-399, Jul. 2011.

[9] L. Li, Z. Tang, R. Li, and L. Yang "New improvement of the Hadoop relevant
data locality scheduling algorithm based on LATE," in Intl. Conf. on
Mechatronic Science, Electric Engineering and Computer (MEC), 1419-
1422, Aug. 2011.

[10] K. Yamazaki, R. Kawashima, S. Saito, and H. Matsuo, "Implementation and
evaluation of the JobTracker initiative task scheduling on Hadoop," in Intl. on
Symposium Computing and Networking (CANDAR), 622-626, Dec. 2013.

[11] S. Ghemawat, H. Gobioff, and S. T. Leung, "The Google file system," in
ACM Symposium on Operating Systems Principles (SOSP), 29-43, Oct.
2003.

[12] V. K. Vavilapalli et al., "Apache Hadoop YARN: yet another resource
negotiator," in Annual Symposium on Cloud Computing, Oct. 2013.

[13] J. Xie, S. Yin, X. Ruan, and Z. Ding et al., "Improving MapReduce
performance through data placement in heterogeneous Hadoop clusters," in
IEEE Intl. Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), 1-9, Apr. 2010.

[14] D. A. Heger, "Optimized resource allocation & task scheduling challenges in
cloud computing environments," dheger@dhtusa.com, 2010.

[15] B. T. Rao and L. S. S. Reddy, "Survey on improved scheduling in Hadoop
MapReduce in cloud environments," Intl. Journal of Computer Applications,
34(9), 29-33, Nov. 2011.

[16] N. Tiwari, S. Sarkar, U. Bellur, and M. Indrawan, "Classification framework
of MapReduce scheduling algorithms," ACM Computing Surveys, 47(3),
Apr. 2015.

[17] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, "Improving
MapReduce performance in heterogeneous environment, " in USENIX Conf.
on Operating Systems Design and Implementation, 29-42, Aug. 2008.

[18] M. Zaharia, D. Borthakur, J.S. Sarma, and K. Elmeleegy et al., "Delay
scheduling: a simple technique for achieving locality and fairness in cluster
scheduling," in Proc. European Conf. on Computer Systems, 265-278, Apr.
2010.

[19] M. Zaharia, D. Borthakur, J. S. Sarma, and K. Elmeleegy et al., "Job
scheduling for multi-user map reduce clusters," ECS Department, University
of California, Berkeley, Apr. 2009.

[20] H. Zhao, S. Yang, Z. Chen, H. Yin, and S. Jin, "A locality-aware scheduling
based on a novel scheduling model to improve system throughput of
MapReduce cluster, " in Proc. Intl. Conf. on Computer Science and Network
Technology (ICCSNT), 111-115, Dec. 2012.

[21] T. Y. Chen, H. W. Wei, M. F. Wei, and Y. J. Chen et al., "LaSA: A locality-
aware scheduling algorithm for Hadoop-MapReduce resource assignment,"
in Proc. Intl. Conf. on Collaboration Technologies and Systems (CTS), 342-
346, May 2013.

[22] P. Nguyen, T. Simon, M. Halem, D. Chapman, and Q. Le, "A hybrid
scheduling algorithm for data intensive workloads in a MapReduce
environment," in IEEE Intl. Conf. on Utility and Cloud Computing (UCC),
161-167, Nov 2012.

[23] M. Pastorelli, A. Barbuzzi, D. Carra, M. Dell'Amico, and P. Michiardi,
"HFSP: size-based scheduling for Hadoop," in IEEE Intl. Conf. on Big Data,
51-59, Oct. 2013.

[24] S. Tang, B. S. Lee, and B. He, "Dynamic slot allocation technique for
MapReduce clusters," in IEEE Intl. Conf. on Cluster Computing
(CLUSTER), 1-8, Sept. 2013.

[25] S. Tang, B. S. Lee, and B. He, "DynamicMR: A dynamic slot allocation
optimization framework for MapReduce clusters," IEEE Trans. on Cloud
Computing, 2(3), 333-347, Jul.-Sept. 2014.

[26] S. Kurazumi, T. Tsumura, S. Saito, and H. Matsuo, "Dynamic processing slots
scheduling for I/O intensive jobs of Hadoop MapReduce," in Intl. Conf. on
Networking and Computing (ICNC), 288-292, Dec. 2012.

[27] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, "Skew-resistant parallel
processing of feature-extracting scientific user-defined functions," in ACM
Symposium on Cloud computing (SoCC), Jun. 2010.

[28] B. S. Kapil and S. S. Kamath, "Resource aware scheduling in Hadoop for
heterogeneous workloads based on load estimation," in Intl. Conf. on
Computing, Communications and Networking Technologies (ICCCNT), 1-5,
Jul. 2013.

[29] Y. Le, J. Liu, F. Ergun, and D. Wang, "Online load balancing for MapReduce
with skewed data input," in IEEE INFOCOM Conf., Apr. 2014.

[30] X. Xu, L. Cao, and X. Wang, "Adaptive task scheduling strategy based on
dynamic workload adjustment for heterogeneous Hadoop cluster," IEEE
Systems Journal, 10(2), 471-482, Jun. 2016.

[31] S. Y. Hsieh, C. T. Chen, C. H. Chen, H. C. Hsiao, and R. Buyya "Novel
scheduling algorithms for efficient deployment of MapReduce applications in
heterogeneous computing environments," IEEE Trans. on Cloud Computing,
http://doi.ieeecomputersociety.org/10.1109/TCC.2016.2552518

http://www.astesj.com/

	2. Background Knowledge and Related Work
	3. Modified Fair Scheduler
	3.1. Job Classification
	3.2. Pool Resource Allocation
	3.3. Resource-Aware Job Sorting
	3.4. Delay Time Adjustment
	3.5. Job Priority Adjustment

	4. Performance Evaluation
	4.1. Experiment A
	4.2. Experiment B

	5. Conclusions
	Acknowledgment
	References

