
 

www.astesj.com     119 

 

 

 

 

Design of an EEG Acquisition System for Embedded Edge Computing 

Kanishk Rai1,*, Keshav Kumar Thakur1, Preethi K Mane1, Narayan Panigrahi2 

1Department of Electronics and Instrumentation, BMS College of Engineering, 560019, India 

2Centre for Artificial Intelligence and Robotics, DRDO, 560093, India 

A R T I C L E   I N F O  A B S T R A C T 
Article history: 
Received: 17 April, 2020 
Accepted: 17 June, 2020 
Online: 12 July, 2020 

 The human brain is one of the most complex machines on the planet. Being the only method 
to get real-time data with high temporal resolution from the brain makes EEG a highly 
sought upon signal in the neurological and psychiatric domain. However, recent 
developments in this field have made EEG more than just a tool for medical professionals. 
The decreasing size and increasing complexity of EEG acquisition systems have brought it 
out of the lab and into the field where it is used for varied applications like neurofeedback, 
person recognition and other recreational activities. Amalgamation of the EEG signal with 
new developing standards of Industry 4.0 to control basic IOT devices using edge 
computing techniques marks the next step in the design and development our low-cost yet 
robust Brain Computer Interface (BCI); which is just one of the many applications that a 
versatile and well-built EEG acquisition system can be used for. 
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1. Introduction 

What makes the human brain so complex is not just the 100 
billion neurons that it is constituted of but also the 100 trillion plus 
synapses or the unique ways in which those neurons connect and 
communicate with each other. Even with more than 7.5 billion 
people on the planet, no two brains are alike. Therefore, designing 
a unified device that can capture the diverse Electroencephalogram 
(EEG) signals emanating from different brains is a challenging 
task. EEG signals can be processed to extract the characteristic 
patterns of the brain to study its spatio-temporal characteristics. 

Though other methods of measuring brain activity like 
Magnetic Resonance Imaging (MRI) and Functional Magnetic 
Resonance Imaging (fMRI) have more spatial resolution yet, they 
lack temporal resolution and are often more costly to setup and 
operate. EEG on the other hand offers better temporal resolution 
and is a cost-effective solution which can directly measure brain 
activity. EEG can approximate spatial activity with the use of 
greater number of electrodes placed on the scalp, providing better 
resolution and thus, making it a scalable choice. 

A low cost yet robust design of an EEG acquisition system was 
presented at the IEEE International Symposium on Smart 

Electronic Systems (iSES) (Formerly iNiS), 2019 [1]. Though the 
design was primarily focused on reduction of cost of 
manufacturing so that the system becomes affordable, yet there 

were many limitations of the design. We studied the base design 
and propose a refined design which will overcome the followings 
drawbacks of the initial design: 

a) Overcome the limitations of low sampling rate 

b) To perform filtering and feature extraction from acquired 
EEG signal on the board itself 

c) To reduce and eliminate the noise during the EEG signal 
acquisition process by reducing wires in the system 

d) Better processing mechanism to extract and interpret the 
EEG data acquired, in real-time 

 The whole system has now been fabricated on a Printed Circuit 
Board (PCB) and the primary mode of communication between the 
acquisition system and the host computer is now wireless to 
minimize artefacts introduced due to wire movements and other 
Electromagnetic Interference (EMI) / Electromagnetic 
Compatibility (EMC) interference. The detailed design update is 
enumerated in the system design section. 

The next section discusses current research trend in the field of 
BCI (Brain Computer Interface) and HMI (Human Machine 
Interface) using EEG, followed by the Problem Definition. Next, 
we briefly look at the testing results from our initial design and 
highlight its shortcomings. We then move on to introduce the 
updated block diagram and directly compare the initial and the 
updated components. This serves the double purpose of 
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introducing the initial design while highlighting the updates in the 
improved model. We next discuss the results obtained during 
testing of the improved EEG acquisition system and finally, we 
illustrate one of the many applications of our system - which is to 
automatically control IoT devices such as the television, lights, 
wheel chair and fan depending upon the state of the subject e.g. 
active, semi active, asleep in real time. 

2. Literature Review 
2.1. Background 

Since the first experiments of electroencephalography on 
humans in 1929, the electroencephalogram (EEG) of the human 
brain has been used mainly to evaluate neurological disorders in 
the clinical environment and to investigate brain functions in the 
laboratory. An idea that brain activity could be used as a 
communication channel between the subject and an IoT device has 
gradually emerged [2-6]. The possibility of recognizing a single 
message or command, considering the complexity, distortion, and 
variability of brain signals appeared to be extremely remote. Yet 
EEG demonstrates direct correlations with user intentions, thereby 
enabling a direct brain-computer communication channel.  

Brain-Computer Interface (BCI) technology, as it is known, is 
a communication channel that enables users to control devices and 
applications without the use of muscles. The development of 
cognitive neuroscience field has been instigated by recent 
advances in brain imaging technologies such as 
electroencephalography, magneto encephalography and functional 
magnetic resonance imaging. The first BCI prototype was created 
by Dr. Vidal in 1973. This system was intended to be used as a 
promising communication channel for persons with severe 
disabilities, such as paralysis, Amyotrophic Lateral Sclerosis 
(ALS), stroke or cerebral paralysis. 

Since then BCI research has been successfully used not only 
for helping the disabled, but also as being an additional data input 
channel for healthy people. It can be exploited as an extra channel 
in game control, augmented reality applications, household device 
control, fatigue and stress monitoring and other applications. BCI 
design represents a new frontier in science and technology that 
requires multidisciplinary skills from fields such as neuroscience, 
engineering, computer science, psychology and clinical 
rehabilitation. 
2.2. Review of EEG for BCI Applications 

Controlling real-world objects with nothing more than our 
mind is no longer science fiction. Jaime, et al [7] have proved the 
same by demonstrating the fact that the steering of a tractor by use 
of surface EOG and EEG signals is just as accurate as manual 
guidance or GPS guidance with a minimal variation in response 
time. 

Furthermore, Yuan, et al [8] have conclusively established the 
feasibility of using a consumer-level EEG headset to realize an 
online steady-state visual-evoked potential (SSVEP)-based BCI 
during human walking using a 14 channel commercially available 
EEG headset to implement a four-target online SSVEP decoding 
system which has in-turn helped bridge the gap between laboratory 
BCI demonstrations and real-life application of consumer-level 
EEG headsets. 

Starting with some simple applications, Gerardo Rosas-
Cholula, et al [9] have successfully controlled a mouse pointer 

using a commercially available EEG headset. They have 
implemented Empirical Mode Decomposition (EMD) to reduce 
noise and simulated mouse clicks with the help of blinks. Next we 
come across articles [10-14] that focus on controlling robotic arms 
or wheelchairs for amputees and paraplegics using different 
computational techniques for identification and classification of 
various signals in the EEG like Event-related Potential (ERP), 
P300, Mu rhythm, etc. and demonstrate the accuracy and ease with 
which these EEG based BCIs can control simple devices. 

Taking this use of EEG one step forward multiple articles [15-
21] discuss integrating EEG with the Internet of Things (IOT) to 
control different devices in a smart home using protocols like 
Message Queue Telemetry Transport (MQTT) and Extensible 
Messaging and Presence Protocol (XMPP). These interfaces can 
further be used to improve healthcare and the general living 
standard of differently-abled people and in-turn make everyone’s 
life easier. However, there is much work still to be done in this 
domain considering the new threats that continuously emerge in 
the realm of cyber security. 

Researchers have worked upon and built multiple EEG 
acquisition systems [22-28] but have not used these systems to 
demonstrate an application. Others have demonstrated the use of 
EEG for various applications be it in terms of person recognition 
[29-32] or in the field of healthcare [33-38] or the ones mentioned 
above, but they have either used commercially available EEG 
acquisition systems or pre-existing datasets. With our research we 
aim to bridge this gap by not only building a robust yet low-cost 
EEG acquisition system but also using the same system to control 
IoT devices in real-time, and in doing so we not only design the 
hardware to acquire EEG data but also develop the software for 
data representation and signal processing which showcase the 
edge computing capabilities of our device. 

3. Problem Definition (Limitations of Existing Designs of 
EEG Acquisition Systems) 

The research trends towards problems addressed in the EEG 
and BCI/HMI domain [1] show us that only 3 out of 30 
publications focus on data acquisition and 5 out of 30 discuss EEG 
signal processing. However, this can paint a slightly misleading 
picture. To fully understand the need to design and develop a low-
cost yet robust EEG acquisition system capable of edge processing 
we need to look at the research trends towards adaptation of 
technology where only 2 out of 21 publications [1] use custom-
built EEG acquisition systems, while others rely on expensive 
alternatives available in the market or pre-existing datasets [1]. 

The above gaps in research are the major motivation behind 
this research, but the problems encountered while designing a 
robust yet low-cost EEG acquisition system are two-fold: 

Domain specific problems are: - 

• To ensure that the pickup, amplification and transmission of 
EEG signal is done while introducing minimum noise in the 
signal. 

• To ensure that the sampling rate of the acquisition system is 
at lest 2.5 times the highest frequency of input EEG signal, but 
at the same time not too high so as to avoid the problem of 
oversampling. 
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• To ensure that the resolution of the system is enough to 
register minute changes in the peak-to-peak amplitude and the 
frequency of the EEG signal. 

Problems specific to the design of our acquisition system are: 

• To build a Graphical User Interface (GUI) that accurately 
represents the EEG signal picked up by the acquisition system 
in real-time. 

• To perform real-time processing and feature extraction from 
EEG signal in order to build a device capable of edge 
processing. 

4. System Design 

After careful examination of EEG signals and other medical 
grade systems available in the market, we have arrived at the 
following design-constraints to design our EEG acquisition 
system. 

Design constraints: 

• EEG voltage range: 10 µV to 100 µV 

• Useable EEG frequency range: 0.3 Hz to 60 Hz 

• Max variation of input signal per unit time: 50µV 

• Sampling Rate: 256 to 1k SPS 

The subsequent sections talk about the step by step design of 
each component in the acquisition system. Beginning with an 
introduction to the initial system design, its results and drawbacks. 

4.1. Initial Block Diagram, Testing and Observations 

For the initial design [1] as shown in Figure 1, gold plated, cup 
shaped electrodes (placed on the scalp using the international 10-
20 system) were connected to the instrumentation amplifiers 
(INA333) which were then directly connected to the analog input 
pins of Arduino Mega. We only used 3 input channels; two for data 
and one for reference. Arduino IDE however, is neither capable of 
plotting data from multiple channels nor is it capable of performing 
complex algorithms on the acquired data. 

 
Figure 1: Initial block diagram 

Therefore, to overcome the abovementioned drawbacks, we 
interfaced Arduino with MATLAB, which is used to plot real time 
frequency domain and time domain spectrum of the incoming EEG 
signal with further possibility of manipulating data and 
representing it in different formats. 

Figure 2 shows the acquired EEG data from a single channel 
connected to analog port A0 of the Arduino at a baud rate of 9600. 
Subplot 1 shows the real time RAW EEG signal amplified 101 
times whereas subplot 2 shows the real time Frequency plot (FFT). 

A brief description of output from the initial design of our EEG 
acquisition system is as follows: 

 
Figure 2: Data Acquisition in MATLAB interfaced with Arduino 

 
Figure 3: Power spectral density of data acquired from single sensor coming from 

instrumentation amplifier with a gain of 101 

Once the data acquisition is complete, MATLAB then 
computes the power spectral density of the acquired EEG signal as 
observed in Figure 3. Major peaks seen around 5, 10, 25 and 32 Hz 
correspond to Alpha, Beta and Theta waves which contribute 
majorly to awake EEG patterns. 

 
Figure 4: Comparison of data acquired from a medical grade system and our 

proposed system 

Figure 4 shows the comparison of saccade, fix and blink data. 
Subplot 1 shows the data from our system, while Subplot 2 shows 
the data from the medical grade system. Similar for Subplot 3 and 
4. It is evident from the above figure that our proposed system 
captures the correct data as all peaks match between both signals. 
The drawback here is the low sampling rate because of which the 
reconstructed signal does not have as much detail as is required for 
complex analysis – this can be seen when comparing Subplot 3 and 
4. The maximum rate at which the data is captured by our initial 
system is about 5 to 20 Hz [1]. 
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4.2. Drawbacks of the Initial System 

Due to the low sampling rates which are in-turn caused by the 
hardware limitations of the 10-bit ADC on Arduino Mega2560, we 
were only able to capture data at a maximum rate of 20 Hz. But the 
Practical Nyquist Sampling Theorem states that to properly 
capture and reconstruct incoming signal, the sampling frequency 
of the acquisition system must be at-least 2.5 times the maximum 
frequency component of the incoming signal, therefore to capture 
brain waves with a maximum useable frequency component of 60 
Hz, the acquisition system must have a sampling rate of 150 Hz or 
higher. To overcome this issue of lower sampling rate, we propose 
the use of an ADC (ADS1299) introduced after the instrumentation 
amplifier and before the microcontroller as shown in the block 
diagram of our initial design (Figure 1). 

The microcontroller Arduino Mega does not have the inherent 
capability to transmit data wirelessly meaning more noise is 
introduced in the signal due to the movement of the wires. This is 
overcome by replacing Arduino with NodeMCU that has an inbuilt 
wireless transmitter. 

Moreover, the use of MATLAB for signal processing and 
representation poses its own set of limitations including the need 
for a MATLAB license to use our system, hence the same is 
replaced by a GUI built using open-source code in Python. 

4.3. Improved Block Diagram 

The initial components of the system like the Electrodes (gold-
plated, cup shaped, copper, non-invasive), Electrode Placement 
(international 10-20 system), Electrode Cap and the 
Instrumentation Amplifier (INA333) remain the same and are 
carried over from the initial design (Figure 1). 

 

Figure 5: Updated Block Diagram 

Figure 5 shows the block diagram of the updated hardware with 
an Analog to Digital Converter introduced in the system after the 
instrumentation amplifier to handle the conversion of analog data 
to digital domain at a much faster rate. The ADS1299 connects to 
the NodeMCU using SPI, which then transmits the data wirelessly 
to the host computer that runs a Python GUI for data processing, 
filtration and signal representation. 

4.4. Analog to Digital Converter (ADC) 

The ADC chosen for our application is the TI analog front-end 
chip ADS1299, which is specifically designed to capture 
biopotential signals like EEG, ECG, EOG, EMG, among others. 
The chip has a 24-bit Sigma-Delta based architecture, with a 
maximum data rate of 16 kSPS. It boasts of a -110 dB CMRR and 
a Signal to Noise Ratio of 121 dB. It is a low power, low noise, 
high precision chip. It can further be multiplexed to use more 
channels and is available in 4, 6 and 8 channel alternatives. 

The chip communicates with the microcontroller using SPI 
(Serial Programming Interface) which can be used to configure the 
chip to read data in Continuous mode or Single Shot mode and also 
to read the output data from the inbuilt registers. 

4.5. Microcontroller 

Arduino Mega from the initial design has now been replaced 
with ESP 8266 NodeMCU as the choice of microcontroller for our 
system. The NodeMCU has a L106 32-bit RISC microprocessor 
running at 80 MHz. It supports 32 KB instruction RAM and 80 KB 
user-data RAM. It comes with integrated IEEE 802.11 b/g/n Wi-
Fi connectivity and matching network WEP or WPA/WPA2 
authentication. It has 16 GPIO pins and also supports SPI 
communication – all of which is ideal for our application. The 
NodeMCU does not only have more GPIO pins, better clock speed 
of the processor and more flash and SRAM than the Arduino, but 
also operates at a lower 3.3 V which translates to less power 
consumption for battery powered wireless use of our EEG 
acquisition system. 

4.6. Initial Observations with ADS1299 

To set up and test the SPI connection between ADS1299 and 
NodeMCU, ADS is soldered on an adaptor (Figure 6) and the 
connections are made on a bread-board (Figure 7). It must be noted 
that for this initial testing, ADS is connected to Arduino. Once the 
connections are verified, the final PCB is interfaced with 
NodeMCU. 

 
Figure 6: ADS1299 soldered on an adaptor 

 
Figure 7: ADS1299 connected to Arduino Mega using SPI on a bread board 
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 After running multiple tests Arduino Mega is able to read the 
correct Device ID (Figure 8). The device ID reads 1111 1100 
where the last four bits correspond to the 4 channel ADS1299 chip. 
This means that the SPI communication was successful, but due to 
the inherent noise of the system which is set-up on a bread-board, 
the output is not consistent. 

Therefore, the next logical step is to design a PCB to acquire 
the signals. This is carried out in the next subsection. 

 
Figure 8: Correct device ID of ADS1299-4PAG displayed on serial monitor of 

Arduino IDE connected to Arduino 

4.7. Design for PCB Fabrication 

The PCB is designed using an open-source software called 
PCB Artist. The schematic for the design is shown in Figure 10. 
The design comprises of a power supply unit which steps down the 
incoming 220V AC to 5V and 3.3V DC. Both the 5V and 3.3V 
lines have been taken out as well to provide power to the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

microcontroller NodeMCU and for other purposes. Internally, the 
ADC has multiple pins that require 5V and 3.3V to power up the 
Analog and Digital circuits in the chip respectively. 

For the input electrodes, each channel is first passed through 
the non-inverting pin of the instrumentation amplifier INA333 for 
first stage amplification. The signal is then passed through an RC 
high-pass filter to remove DC offsets and fed to the ADC via 
referential montage with one reference electrode and an internal 
bias. The example Schematic using the ADS1299 in an EEG Data 
Acquisition Application in Referential Montage from its datasheet 
is shown in Figure 9. The advantage of using the referential 
montage is that all electrodes are referenced to a single reference 
electrode instead of being referenced to each-other as is the case 
with sequential montage. 

 

 

 

 

 

 

 

 
Figure 9: Use of ADS1299 in referential montage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Schematic for PCB design 
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The final fabricated, two-layer PCB is shown in Figure 11 and 
Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Fabricated PCB (top) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Fabricated PCB (bottom) 

5. Output from PCB 

Once the PCB is fabricated, it is connected to the 
microcontroller using SPI interface. The ADS1299 is then 
configured to transmit continuous data with 24-bit resolution at 
250 SPS. The register values corresponding to the above 
configuration are shown in Figure 13 with the correct device ID. 
Even though the chip is capable of acquiring data at speeds up to 
16 kSPS, we have not used these higher sampling rates to avoid 
the problem of oversampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 13: Register configuration of ADS1299 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 14: Incoming data from EEG electrodes in ADS1299 
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Figure 14 shows the filtered data acquired from the EEG 
sensors connected to the input channels of ADS1299. The RAW 
data is in Hexadecimal format. This is converted to Decimal format 
and then scaled down to convert into Volts. Since we have used a 
4 channel ADS1299 chip, the data format as observed in the output 
is <start bit> <channel 1> <channel 2> <channel 3> <channel 4>. 
The last 4 bits in each row are of no use to us because those 
channels don’t exist on an ADS1299-4PAG chip. 

6. Data Representation using Python GUI 

6.1. Design 

The code for the GUI is burnt on the NodeMCU using the 
Arduino IDE after installing relevant drivers. First off, this code 
checks the device ID coming from the attached ADS1299 chip and 
if it is correct, modifies the register values to acquire data. In our 
case the ADS is set to acquire data at 250 SPS in continuous mode. 
It then creates the GUI window as shown in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15: Python GUI window 

This GUI window has options to toggle the 50 Hz filter, Low 
Pass filter and the band pass filter all of which are deployed in the 
python code using digital filtering. No hardware filters are 
deployed because they clip waveforms; due to the cutoff from op-
amp power supply and induce more noise and drift in the system. 

6.2. Output 

A simple test to capture EEG data is run on the subject for 60 
seconds. The real-time time domain plot and the frequency plot are 
observed in Figure 16. 

The GUI has a continuous rolling time domain plot with a 4 
second window (customizable) and frequency domain plot that 
accumulates frequency responses over the course of time that the 
experiment is run. 

As observed in Figure 16, our acquisition system performs 
filtering in real-time on the PCB itself with the use of hardware 
high-pass filter implemented using the RC filter and low-pass & 
notch filter implemented in software in the code burned on to the 

microcontroller. Furthermore, the splitting of acquired EEG signal 
into its component waves based on their frequency ranges and 
feature classification & identification in different frequency ranges 
is also implemented on the microcontroller. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: Real-time frequency and time domain plot of acquired EEG signal 

The major peaks observed in the frequency domain plot of 
Figure 16 are in the range of 7 to 30 Hz which comprise mainly of 
Alpha (7-12 Hz) and Beta (12-30 Hz) waves that constitute a major 
portion of awake EEG. 

7. Use of EEG for IOT application 

Now that we have successfully designed and built a plug and 
play device for EEG acquisition and a GUI for data representation 
it is time to use it for an IOT application to highlight its edge 
computing capabilities. 

We know in hospitals; the staff has to keep an eye on patients 
that cannot move to ensure that they are comfortable. The lights 
are off when they sleep and the fan is turned on as and when 
needed. Keeping this equipment running all the time does not only 
cause discomfort to the patient but also a higher electricity bill and 
waste of energy. 

To tackle this issue, we use our EEG acquisition system to 
monitor the Alpha and Beta waves of the patient. We know that in 
awake EEG the Alpha waves’ peak-to-peak amplitude is low when 
our eyes are open and high when our eyes are closed. This variation 
can be used to turn off lights in a room when the patient closes 
his/her eyes to sleep. Similar interactions are observed in the Beta 
waves when an individual moves or even thinks of moving their 
limbs to perform a certain function or action. These variations in 
frequency and peak-to-peak amplitude can be monitored and with 
the right threshold can be used to turn on or off a fan. 

7.1. Block Diagram 

In Figure 17 our acquisition system is now represented as a 
black-box which wirelessly transmits data to the host computer 
where the GUI displays EEG waves in both time and frequency 
domain in real-time.
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Figure 17: Block diagram for IOT application using EEG 

Once the data is received by the GUI, it is transmitted to MATLAB 
using serial communication. MATLAB checks the peak-to-peak 
amplitude of the incoming signal and matches it against a set 
threshold in real-time. Once the threshold is met; in case of Alpha 
waves the peak-to-peak amplitude crosses the threshold, the 
program sends a command to Arduino Mega which in-turn 
transmits it wirelessly using an IR module to actuate or control the 
final control element which in this case are the lights. 

 

7.2. Algorithm Work-flow 
As shown in Figure 18 the incoming EEG data from the Python 

GUI is serially transmitted to MATLAB where an algorithm 
continuously scans this data and based upon the initial value of the 
light (on or off) compares it with the upper (light on) or lower (light 
off) threshold. When the EEG peak-to-peak amplitude crosses the 
respective threshold, the Arduino sends a command wirelessly to 
the actuator to change the state of the light. 

A similar algorithm is applied to control the fan, however in 
that case, changes in a combination of frequency and amplitude; in 
the Beta range of frequency (12 – 30 Hz), meeting the threshold 
result in the change of state of the fan. Based on further analysis of 
the EEG signal in various frequency ranges, multiple such IOT 
devices can be controlled. However, for such an application the 
processing module will have to apply AI, machine learning and 
deep learning algorithms to improve efficiency and the user will 
also have to be trained enough to concentrate in certain ways in 
order to control different objects. 

8. Results and Discussion 
Figure 19 shows the output plotted from channels F1 and F2. 

The x-axis is time and y-axis is amplitude in milli-volts. The 
experiment in this case lasted for 20 seconds, where the subject’s 
eyes were open for the first 10 seconds and then closed for the next 
10 seconds. As observed in the figure, the EEG peak-to-peak 
variation is less when the subject’s eyes were open except for a few 
spikes which correspond to blinks. The variation in peak-to-peak 
voltage increases dramatically half way through the experiment 
when the subject’s eyes were closed. This corresponds to the 
increase in Alpha Wave activity in Awake EEG when our eyes are 
closed. 

At the 12 second mark in the experiment when the subject’s 
eyes were closed, the lights turned off after detection of increase 
in Alpha wave activity at the 10 second mark. The 2 second delay 
is introduced to reduce the chance of false positives. 

The above experiment, quite simply demonstrates the accuracy 
of the data coming from our EEG acquisition system and its ability 
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to control an IOT device (the lights) precisely in real-time. It is 
generally observed that the filtering of noise from the EEG signal 
is done post its collection. Same goes for the removal of artifacts 
from the EEG signal. Also, the analysis of the signal such as 
selection of features, classification and training of the classifier is 
carried out after the data is acquired and stored in a secondary 
device making the entire flow of denoising, analysis and 
classification of EEG a delayed process. 

 
Figure 19: Plotted output from serial data communicated to MATLAB 

However, our recommended design can be used to remove the 
noise in the EEG acquisition system and detect the features from 
the signal at the time of the acquisition in the device itself. 
Therefore, moving the denoising of the signal and classification in 
the EEG acquisition system to a real time system (Edge 
computing). 

Table 1 shows a comparison of our EEG acquisition system 
with other commercially available systems. 

Table 1: Cost comparison of EEG acquisition systems 

S.no. Product Cost 

1. NeuroSky (1 or 3 channels) INR 6999 (1 channels) 

INR 18,000 (3 
channels) 

2. EMOTIV EPOC (5 or 14 
channels) 

USD 299 (5 channels) 
{INR 21,220} 

USD 799 (14 
channels) {INR 
56,707} 

3. OpenBCI (8 – 16 Channels) USD 249.99 (4 
channels) {INR 
17,742} 

USD 499.99 (8 
channels) {INR 
35,485} 

USD 949.99 (16 
channels) {INR 
67,423} 

4. Neuro Insight (4,6,8 can be 
daisy-chained) – our acquisition 
system 

INR 15,821 (4 
channels) 

INR 16,242 (6 
channels) 

INR 16,604 (8 
channels) 

The cost of our EEG acquisition system is much less compared 
to other commercially available EEG acquisition systems because 
of the fact that we have stripped down the design to a bare 
minimum and have only retained the most essential components 
that make it work efficiently and effortlessly. It must be noted that 
the cost mentioned for our system is applicable when single parts 
were ordered, the cost will further come down by about 15-20% 
when ordering parts and fabricating PCBs in bulk. 

For our particular application we have used the ADS1299 – 
4PAG chip that has 4 input EEG channels and one reference 
channel. For other applications that require more input channels, 
more ADS1299 chips can be daisy-chained to achieve a 16, 32 or 
even a 64 channel EEG acquisition system. 

 
Figure 20: Daisy chain configuration of two ADS1299 chips 

Figure 20 shows how two ADS1299 chips can be daisy-
chained to achieve up-to 64 input channels. 

Furthermore, Table 2 shows a broad specification comparison 
of our EEG acquisition system with others available in the market. 
The performance metrics considered are sampling rate, bandwidth, 
number of EEG acquisition channels, mode of transmission 
between the acquisition system and the host computer, placement 
of reference electrodes and the medium of conduction used 
between the electrode and the scalp. It is worth mentioning that all 
devices considered, use non-invasive electrodes for data 
acquisition. A direct comparison of data is also shown in Figure 4. 

As evident in table 2, our EEG acquisition system is not only 
the most cost effective, but also happens to be superior when 
comparing hardware specifications with those of other 
commercially available products. The use of Wi-Fi for wireless 
transmission gives our system the maximum range of 
communication. Our system also gives the user the ability to 
choose the number of channels (by daisy-chaining ADS1299, 
ADS1299-4PAG and ADS1299-6PAG chips), bandwidth (by 
manipulating the cut-off frequency of high-pass and low-pass 
filters) and sampling rate (by changing the register value on 
ADS1299 to be as high as 16kSPS). None of these are offered by 
any other product in the market right now. 
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Table 2: Comparison of EEG acquisition systems 

S. 
no. 

EEG 
System 

Sampling rate 
(Hz) 

Bandwidth 
(Hz) 

# of EEG Channels Transmission Reference Conductive 
Mechanism 

1. NeuroSky 512 100 1 or 3 Bluetooth Earlobe None 

2. EMOTIV 
EPOC 

256 43 5 or 14 Bluetooth Left / right 
mastoid 

Saline based 

3. OpenBCI 1000 60 8 to 16 RFD 
Bluetooth 

Earlobe Gel / Dry 

4. Neuro 
Insight 
(our 
system) 

1000 
(configurable) 

100 4,6,8 (can be daisy-
chained up to 64) 

Wi-Fi Earlobe Gel 

 

9. Conclusion 

From the above design and application, the followings can be 
concluded: 

• The proposed system captures accurate EEG signal despite the 
commercially available off the shelf electronic components 
used in designing the overall system - making it a low-cost yet 
robust instrument for capturing EEG data. 

• In order to improve the robustness of the signal captured the 
ADC with the instrumentation amplifier is soldered on the 
same board with the microcontroller, resulting in a single 
smaller unit, making the overall device more portable. 

• To increase the number of EEG signal channels to be captured 
through the proposed system more ADS1299 chips must be 
daisy-chained, this will further make the system modular and 
robust, where more input channels can be added on demand 
based on the needs of the user. 

 Further research can be carried out to compare the power 
consumption v/s performance of various components like the 
instrumentation amplifier, ADC and microcontroller to design a 
truly power efficient, battery powered EEG acquisition system 
capable of collecting data over long periods of time. The reason for 
moving from an AC powered device to a battery powered one is to 
get rid of the noise at 50 Hz and its harmonics. 

 On the software front, the python code can be improved to 
display more than one EEG channel at a time. Further 
computational capabilities and the ability to connect with more 
than one device at a time can be added to completely eliminate the 
use of MATLAB and finally, the software must also have the 
ability to export recorded data in popular EEG formats like 
European Data Format (EDF), CSV, etc. for further analysis and 
storage. 
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