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The Hausdorff distance (HD) is defined as MAX-MIN distance between two geometric
objects for measuring the dissimilarity between two objects. Because MAX-MIN distance
is sensitive with the outliers, in face recognition field, average Hausdorff distance is used
for measuring the dissimilarity between two sets of features. The computational complexity
of HD, and also average HD, is high. Various methods have been proposed in recent
decades for reducing the computational complexity of HD computing. However, these
methods could not be used for reducing the computational complexity of average HD. Line
Hausdorff distance (LHD) is a face recognition method, which uses weighted average HD
for measuring the distance between two line edge maps of face images. In this paper, the
Least Trimmed Square Line Hausdorff Distance method, LTS-LHD, is proposed for face
recognition. The LTS-LHD, which is a modification of the weighted average HD, is used
for measuring the distance between two line edge maps. The state - of - art algorithm, the
EARLYBREAK method, is used for reducing the computational complexity of the LTS-LHD.
The experimental results show that the accuracy of proposed method and LHD method are
equivalent while the runtime of proposed method is 68% lower than LHD method.

1 Introduction

The Hausdorff distance (HD) is an useful parameter for measuring
the degree of resemblance between two point sets. The advantage
of HD is that there is no requirement of point-to-point correspon-
dence. In many science and engineering fields, HD has particular
attention of researcher, such as face recognition [1–5], image match-
ing [6–8], image segmentation for medical image [9–11], image
retrieval [12, 13], shape matching [14–16].

The HD is defined as MAX-MIN distance between two point
sets, measuring how far two point sets are from each other. The
HD computing contains two loops, the outer loop for maximization
and the inner loop for minimization. Due to the sensitivity of the
MAX-MIN HD with the outlier, average Hausdorff distance or par-
tial Hausdorff distance (PHD) is used instead MAX-MIN HD in
image matching or face recognition applications. Huttenlocher et
al. The PHD was first proposed [17] for comparing the similarity
between two shapes. In [18], the robust Hausdorff distance for
face recognition was proposed, which uses PHD for measuring the
distance between two sets of feature of face gray images. However,

PHD is just an effective distance when the pollution of noise points
is low. In face recognition research, average Hausdorff distance is
commonly used.

The modified Hausdorff distance (MHD) was first presented [19]
for image matching, where the directed Hausdorff distance is the
mean of all distance from points to other sets. The ’doubly’ modified
Hausdorff distance (M2HD), which is the improved of the MHD,
was proposed for face recognition [20]. Various algorithms using
average weighted HD, an extension of MHD, were proposed for face
recognition with the difference in weighted function., i.e., spatially
weighted Hausdorff distance (SWHD) [21], spatially weighted mod-
ified Hausdorff distance (SW2HD) [22], spatially eigen-weighted
Hausdorff distances (SEWHD) [23], edge eigenface weighted Haus-
dorff distance (EEWHD) [24, 25].

The extension of M2HD, similarity measure based on Hausdorff
distance (SMBHD), was proposed for face recognition [3]. Another
version of MHD, called modified Hausdorff distance with normal-
ized gradient (MHDNG), was proposed for face recognition [8].
A new modified Hausdorff distance (MMHD) was presented for
face recognition [26], which used average weighted Hausdorff dis-
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tance for measuring the dissimilarity between two sets of dominant
points of edge maps of face images. Based on edge map of face
image, a novel face feature representation was proposed [27], line
segment edge map (LEM). The line segment Hausdorff distance
(LHD), which is the average weighted of distances between two line
segments, was proposed for face recognition. Based on LHD, the
extension of LHD, called spatial weighted line segment Hausdorff
distance (SWLHD), was presented for face recognition [28] . In
our previous work [1], we proposed a modification of LHD for face
recognition, called Robust Line Hausdorff distance RLHD.

Supporting P and Q are the number of points, or elements, in
two sets. For computing the directed distance of average HD, the
distances from each point in the first set to all points in the sec-
ond set have to be calculated to find the minimum value, which
is the distance from the point in first set to its nearest neighbor
in second set. The directed distance of average HD is the mean
of all distances from points in first set to their nearest neighbors
in second set. The computational complexities of methods using
average HD are always O (PQ), the same as MAX-MIN HD. In
recent decades, many methods have been proposed for reducing the
computational complexity of the HD computing, which is known
very high. The key of reducing the computational complexity is
reducing the average number of the inner loop. All of these methods
uses a temporary HD cmax for quickly finding the non-contributed
points in the inner loops and outer loops for final HD computing.
However, the these methods, which is proposed with the purpose of
reducing the running time of MAX-MIN HD computing, can not be
used for reducing computing complexity the average HD comput-
ing because the temporary HD cmax does not exist in average HD
computing. Due to the high computing complexity of average HD,
the face recognition methods, which use average HD for measuring
the distance between two sets of feature, are restricted from face
recognition applications.

Here we propose an extension of the method in [1], called Least
trimmed square Line Hausdorff distance (LTS-LHD) for face recog-
nition. The LTS-LHD, an extension of weighted average HD, is
used for measuring the dissimilarity between two line edge maps
(LEMs). The LTS-LHD is the average of largest distances instead
of all distances as average HD. The experimental results shows
that the face recognition accuracy of the proposed method, LTS-
LHD, is equivalent to the accuracy of LHD method, which used
average HD for measuring distance between two LEMs, with a
suitable parameter. Moreover, with LTS-LHD, the temporary HD
cmax exist, and the methods, which are proposed with the purpose
reducing the computational complexity of MAX-MIN HD com-
puting, could be used for reducing the runtime of the proposed
method. The EARLYBREAK [29], which is known as the state-
of-art algorithm for reducing the computational complexity of HD
computing, is used for reducing the computational complexity of
proposed method. The runtime of proposed method is 68% lower
than the LHD method.

The rest of the paper is structured as follows. The brief review
of methods, which were proposed for reducing the computational
complexity of the HD, is presented in Section 2. Section 3 presents
the proposed method for face recognition, which uses LTS-LHD
for measuring the distance between two LEMs. Section 3 also
presents how to apply EARLYBREAK method for reducing the

computational complexity of proposed method. Section 4 evaluates
the performance of the proposed method and the performance of
proposed method is also compared with the performance of LHD
and RLHD method. Finally, conclusion is presented in Section 5.

2 Related works
Given two nonempty point sets M =

{
m1,m2, ...,mp

}
and T ={

t1, t2, ..., tq
}
, the directed Hausdorff distance h (M,T ) between M

and T is the maximum distance of a point m ∈ M to its nearest
neighbor t ∈ T . The directed Hausdorff distance from M to T as a
mathematical formula is

h (M,T ) = max
m∈M

min
t∈T
‖m − t‖ = max

m∈M
mindist (m,T ) (1)

where ‖., .‖ is any norm distance metric, e.g. the Euclidean dis-
tance. Note that, in general case, h (M,T ) , h (T,M) and thus
directed Hausdorff distance is not symmetric. The Hausdorff dis-
tance between M and T is defined as the maximum of both directed
Hausdorff distance and thus it is symmetric. The Hausdorff distance
H (M,T ) is defined as

H (M,T ) = max (h (M,T ) , h (T,M)) (2)

With two point sets M and T , if the Hausdorff distance between
M and T is small, two point sets are partially matched, and if the
Hausdorff distance is zero, two point sets are exactly matched.

Computing HD is challenging because its characteristics contain
both maximization and minimization. Many efficient algorithms, in
recent decades, have been proposed for reducing the computational
complexity of the HD. We refer reader to the survey [17, 30] for
general overview of this field. The efficient computing HD algo-
rithms can be generally divided into two categories, approximate
HD and exact HD. In the first category, which is approximation
of HD, the algorithms try to efficiently find an approximation of
the Hausdorff distance. These algorithms have been widely used
in runtime-critical applications. On the other hand, the algorithms
of the second category aim to efficiently compute the exact HD for
point sets or special types of point sets like polygonal models or
special curves and surfaces. Depending on data type of two sets, the
HD algorithms can also be classified as polygonal models, curves
and mesh surfaces, point sets.

With data type is polygonal models, a linear time algorithm for
computing HD between two non-intersecting convex polygons was
presented in [31]. The algorithm has a computational complexity
of O (m + n), where m and n are the vertex counts. In [32], an algo-
rithm for computing the precise HD between two polygonal meshes
with the complexity of O

(
n4 log n

)
was presented. Due to the high

computational complexity of exact HD calculation, approximate
HD methods have been proposed. In [14], a method, that has the
complexity of O

(
(m + n) log(m + n)

)
, used Voronoi diagram to ap-

proximate the HD between simple polygons was presented. Another
method for approximating the HD between complicated polygonal
models was presented in [33]. By using Voronoi subdivision com-
bined with cross-culling, non-contributing polygon pairs for HD
are discarded. The method is very fast in practice and can reach
interactive speed.

www.astesj.com 558

http://www.astesj.com


C. Dang-Nguyen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 557-566 (2020)

Many efficient algorithms were also proposed for calculating
HD between mesh surfaces or curves. An efficient algorithm for
calculating HD between mesh surfaces was presented in [34]. This
algorithm is built on the specific characteristics of mesh surfaces,
where the surface consists of triangles. To avoid sampling all points
in the compared surfaces, the algorithm samples in the regions
where the maximum distance is expected. The method for calcu-
lating the HD between points and freeform curves was presented
in [35]. In [36], the improved method of [35] was presented for
computing HD between two B-spline curves. For approximating
the HD between curves, in [37], an algorithm was proposed, that
converts the problem of computing HD between curves to the prob-
lem of computing distance between grids. In [38], an algorithm to
compute the approximate HD between curves was presented. By
approximating curves with polylines, the problem of computing
HD between curves is converted to the problem of computing HD
distance between line segments.

However, above methods are not general because the algorithms
are based on specific characteristic of data types. Some general
methods were proposed for point sets. An algorithm for finding the
aggregate nearest neighbor (ANN) in database was proposed [39],
that uses the R-Tree for optimizing the searching for ANN. The
extension of [39], incremental Hausdorff distance (IHD) was pro-
posed in [40] for efficiently calculating HD between two point sets.
The algorithm uses two R-Trees for the same time, each for one
point set, to avoid the interaction of all points in both sets. The
aggregate nearest neighbor is simultaneously determined in both
directions. However, complex structure of above algorithms makes
the computation cost increase and the R-Tree is not suitable for
general point sets.

In [29], a fast and efficient algorithm for computing exact Haus-
dorff distance between two point sets, which is known as a state-of-
art algorithm, was proposed. The algorithm has two loops, with the
outer loop for maximization and the inner loop for minimization.
The inner loop can break as soon as the distance is found that is
below the temporary HD (called cmax) because the rest iterations
of inner loop do not make the value of cmax change, and the outer
loop continues with the next point. Moreover, for improving per-
formance, random sampling is also presented in this algorithm to
avoid similar distances in successive iterations. Based on EARLY-
BREAK [29], an efficient algorithm, namely local start search (LSS)
or Z-order Hausdorff distance (ZHD), for computing exact HD be-
tween two arbitrary point sets was presented [41]. The LSS method
uses Morton curve for ordering points. The main idea of the LSS
algorithm is that if the break occurs in current loop at the point x, it
is quite possible that the break will occur at the position near x in the
next loop. In the LSS algorithm, the variable preindex is used for
preserving the location of break occurrence. In the next outer loop,
the inner loop starts from preindex and scan its neighbor for finding
the distance below the value cmax. In [42], an efficient framework,
which contains two sub-algorithms Non-overlap Hausdorff Distance
(NOHD) and Overlap Hausdorff Distance (OHD), for computing the
HD between two general 3D point sets was proposed. For 3D point
sets, [43] presented diffusion search of efficient and accurate HD
computation between 3D models. This proposed method contains
two algorithms for two types of 3D model, the ZHD for sparse point
sets and the OHD for dense point sets.

In this study, we proposed the Least Trimmed Square Line Haus-
dorff Distance (LTS-LHD) for measuring the dissimilarity between
two line edge maps (LEMs), which are the sets of line segments.
The Hausdorff distance between two point set is based on the spa-
tial locality of two point sets. Thus, the structure R-Tree of ANN
and IHD or Z-order of LSS are just suitable for ordering the point
sets [41]. However, the Hausdorff distance between two sets of line
segments is based on both the spatial locality and the direction of
line segment. Therefore, the structure R-Tree of ANN and IHD
or Z-order of LSS are not suitable for the set of line segments as
LEM, and thereby, the EARLYBREAK is used for reducing the
complexity of computing the LTS-LHD.

3 Proposed method

3.1 LTS-LHD for face recognition

The original HD, the MAX-MIN distance, uses the distance of most
mismatched points for measuring the distance between two sets.
When the set is attacked with noise points, the original HD can not
be used. The PHD was proposed for solving this problem by sorting
the distance and taking the K ranked maximum value. However,
PHD is an effective distance when the pollution of noise points
is low. The MHD was also proposed for solving the problem of
sensitivity of original HD with noise by taking the mean distance.
As in [44], the LTS-HD was proposed for combining the advantage
of the PHD and the MHD. The definition of directed LTS-HD from
M to T is as follow

hLTS−HD (M,T ) =
1
K

K∑
i=1

(
min
t∈T
‖m − t‖

)
(i)

(3)

where the (min ‖m − t‖)(i) represents the ith distance in the sorted
sequence (min ‖m − t‖)m∈M . The LTS-HD takes the mean of K min-
imum distances for measuring the distance between two sets.

In this paper, a new HD, called Least Trimmed Square Line
Hausdorff Distance (LTS-LHD), for face recognition is proposed.
Supporting Ml =

{
ml

1,m
l
2, ..,m

l
P

}
and T l =

{
tl
1, t

l
2, .., t

l
Q

}
are the

LEMs of model and test images respectively; ml and tl are the line
segments in the LEMs; P and Q are the number of line segments
in model and test LEMs, respectively. The directed distance of the
LTS-LHD from LEM Ml to LEM T l, hpLTS−LHD

(
Ml,T l

)
, is defined

as

hpLTS−LHD

(
Ml,T l

)
=

1
P∑

i=Kth
lml

i

P∑
i=Kth

lml
i

(
mindist

(
ml

i,T
l
))

(i)
(4)

where
(
mindist

(
ml

i,T
l
))

(i)
presents the ith value in the sorted se-

quence in ascending order
(
mindist

(
ml,T l

))
(ml∈Ml); and Kth = f ∗P,

where f is a given fraction. The mindist
(
ml

i,T
l
)

denotes the dis-
tance from the line segment ml to its nearest neighbor in T l, and it
is defined as below

mindist
(
ml,T l

)
= min

tl∈T l
d
(
ml, tt

)
(5)
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where d
(
ml, tt

)
is the distance between two line segments ml and tl.

Here, the directed distance of the LTS-LHD is used for measuring
how far from LEM Ml to LEM T l. So, different from the LTS-HD
as in (3), where the directed distance is the average of smallest
distances, the distance as in (4) is the weighted average of largest
distances, which are greater or equal to the Kth ranked value, from
line segment ml to its nearest neighbor mindist

(
ml,T l

)
. However,

the directed distance of the LTS-LHD as in (4) still has weakness.
Supporting ml

1 and ml
2 are two line segments in Ml, d1 and d2 are

two distances from these segments to their neighbors. Assuming
d1 is greater than the Kth ranked value and d2 is less than the Kth

ranked value of the sorted sequence
(
mindist

(
ml

i,T
l
))

(ml∈Ml). As

in (4), d1 is used for the computing of hpLTS−LHD

(
Ml,T l

)
. How-

ever, it is possible that lml
1
.d1 � lml

2
.d2, because line segment ml

2 is
much longer than line segment ml

1. The miss match of the long line
segment is more serious than the short line segment. So, the line
segment ml

2 is much more important than the line segment ml
1 for

computing the directed distance of LTS-LHD. Here, we modify the
(4) for proposing the directed distance of the LTS-LHD as follow

hLTS−LHD

(
Ml,T l

)
=

1
P∑

i=Kth
lml

i

P∑
i=Kth

(
lml

i
.mindist

(
ml

i,T
l
))

(i)
(6)

where
(
lml

i
.mindist

(
ml

i,T
l
))

(i)
presents the ith value in the sorted se-

quence in ascending order
(
lml .mindist

(
ml,T l

))
(ml∈Ml). The directed

distance of the LTS-LHD is the weighted average of largest values
of the product between length of line segment and the distance from
that line segment to its nearest neighbor lml .mindist

(
ml,T l

)
.

In general, hLTS−LHD

(
Ml,T l

)
, hLTS−LHD

(
T l,Ml

)
. Thus, the

primary LTS-LHD is defined as

HpLTS−LHD

(
Ml,T l

)
= max

(
hLTS−LHD

(
Ml,T l

)
, hLTS−LHD

(
T l,Ml

))
(7)

In our previous work [1], a new data structure of LEM was
proposed. Due to the angle between line segments and the horizon-
tal axis, the line segments in LEM are grouped into N groups and
180/N degrees for each group. For example, in this paper, we use
N = 18. An example of new data structure of LEM is shown in Fig
1.

The distance between two line segments d
(
ml, tl

)
is defined as

d
(
ml, tl

)
=

{ ∥∥∥ml − tl
∥∥∥ where gtl − k ≤ gml ≤ gtl + k

V otherwise
(8)

where V is the value that is larger than the largest possible value
of distance between two line segments;

∥∥∥ml − tl
∥∥∥ is the distance

between two line segments and defined as∥∥∥ml − tl
∥∥∥ =

√
d2

pa

(
ml

i, t
l
j

)
+ d2

pe

(
ml

i, t
l
j

)
+ d2

θ

(
ml

i, t
l
j

)
(9)

where dpa is the parallel distance, which is the vertical distance
between two lines; dpe is the perpendicular distance, which is mini-
mum displacement to align either the left end points or the right end

points of two lines; and dθ
(
ml

i, t
l
j

)
= θ2

(
ml

i, t
l
j

)
/W is the orientation

distance. θ2
(
ml

i, t
l
j

)
is the smallest intersection angle between two

lines and W is a weight, which could be determined by a training
process.

Figure 1: A novel data structure for LEM

It is possible that the line segment ml could take a line tl, that
intersection angle between ml and tl is large, as it nearest neighbor.
However, the line segment reflects the structure of human face, two
corresponding line segments can not have large angle variation. For
alleviating the undesire mismatch, the line segment finds its nearest
neighbor if the group index (gml and gtl ) of two line segments are
slightly different as in (8). On the other hand, the distance between
two line segments takes a large value V .

The number of corresponding line pairs between the model and
the test LEM can be used as other measure similarity. Because
test and model images are aligned and scaled at the same size by
preprocessing before matching, if the line segment ml finds that line
segment tl is the nearest neighbor in T l and line segment tl locates
in the position neighborhood Np of ml, such line segment ml could
be named as high confident line. A high confident ratio, as in [27],
of an image could be defined as the ratio between number of high
confident line segments (Nhc) and number of total line segments in
the LEM of face image (Ntotal) as follow

R =
Nhc

Ntotal
(10)

Hence, the number disparity between two LEMs has mathemati-
cal formula as follow

D = 1 −
RM + RT

2
(11)

The complete version of Hausdorff distance between two LEMs
is defined as

HLTS−LHD =

√
H2

pLTS−LHD + W2
n D2 (12)

where Wn is a weight that be determined by a training process.

3.2 EARLYBREAK for LTS-LHD

The directed distance of the LTS-LHD as in (6) is the weighted
average of

(
P − Kth

)
largest values of the product between length of
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line segment and distance to its nearest neighbor lml .mindist
(
ml,T l

)
.

For computing the directed distance of the LTS-LHD, the distances
from line segment ml to all of line segments in T l must be calculated
for finding the minimum value, which is the distance from line
segment ml to its nearest neighbor mindist

(
ml,T l

)
. This process

could be named as the inner loop. The inner loop must be performed
with all line segments ml ∈ Ml and we call this is the outer loop.
Assuming that

(
P − Kth

)
temporary largest values are found and the

minimum of these values is assigned to cmax. If a line segment ml

in the outer loop find out a line segment tl in inner loop that makes
the product between length of line segment ml and distance d

(
ml, tl

)
between two line segments is below the value of cmax, such line
segment ml is non-contributed line segment for the computing of
the directed distance LTS-LHD. So, the computing distance from
line segment ml to the remaining line segments tl is not necessary.
Therefore, the computing of directed distance LTS-LHD could break
and continuing with the next line segment in the outer loop as soon
as a non-contributed line segment be found. Thus, the number of
iterations of the inner loop is reduced. The lower of average num-
ber of inner iteration is, the lower of computational complexity of
the LTS-LHD computing is. Here, we proposed a method using
EARLYBREAK for reducing the computational complexity of the
LTS-LHD by reducing the average number of inner iterations.

The Algorithm 1 describes our proposed method. Line 5 and
line 13 are the outer loop and the inner loop, respectively. The
function DIS T (., .) in the Algorithm 1 is used for calculating the
distance between two line segments as in (9).

The main steps of the Algorithm 1 are summarized as follows:

• A matrix h is created for saving the length of line segment ml

and the value of the product between length of line segment
ml and distance to its nearest neighbor.

• Adding line segments tl having group index gt into list.

• If there is at least one line segment in list, the inner loop
will be executed. For each line segment ml ∈ Ml, initializing
distance to nearest neighbor cmin = ∞.

– For each line segment in list, the distance from ml to tl

is calculated. If a distance makes the product between
it and length of line segment below the value of cmax,
the algorithm will break and continue with the next
line segment in the outer loop. In the other hand, this
distance is used for updating the value of cmin.

– The product between cmin and length of line segment
will be used for updating the matrix h.

• On the other hand, if there is no line segment in list, the ma-
trix h will be updated with length of line segment ml and the
large value V , which is the distance from line segment ml to
its nearest neighbor.

• The matrix h will be sorted in ascending order for each inter-
action of outer loop according to the values of the first row of
matrix h.

In the Algorithm 1, during first KM iterations of the outer loop,
the value of cmax, which is the minimum value of matrix h, is 0.

The condition as line 15 in the Algorithm 1 does not appear, thus,
the early break does not occur in first KM iterations of the outer loop.
The first KM iterations of the outer loop, the value of KM elements
in the matrix h are updated. In the next iterations of the outer loop,
the early break occurs if the value of product between the length of
line and its distance to the nearest neighbor is below cmax.

Algorithm 1 : EARLYBREAKING for LTS-LHD

1: Inputs: Edge map Ml and T l, fraction f
2: Outputs: Directed Hausdorff distance hLTS−LHD

(
Ml,T l

)
3: KM = (1 − f ) ∗ P
4: h = zeros (2,KM)
5: for each line segment ml in edge map Ml do
6: cmax = h (1, 1)
7: Get the group index gm of line segment ml

8: cmin = ∞

9: for gt = gm − k : gm + k do
10: Insert line segments tl has group index gt into list
11: end for
12: if list is not empty then
13: for each line segment tl in list do
14: d = DIS T

(
ml, tl

)
15: if d ∗ lM ≤ cmax then
16: cmin = 0
17: break
18: end if
19: if cmin > d then
20: cmin = d
21: end if
22: end for
23: if (cmin ∗ lM) > cmax then
24: h (1, 1) = cmin ∗ lM
25: h (2, 1) = lM
26: end if
27: else
28: h (1, 1) = V ∗ lM
29: h (2, 1) = lM
30: end if
31: sort h in ascending order of the value of first row
32: end for
33: hLTS−LHD

(
Ml,T l

)
= sum (h (1, :)) /sum (h (2, :))

By using the face database of Bern university [45] for training
process, we obtain that: W = 45, N p = 6 and Wn = 13.

3.3 Analysis of computational complexity

Supporting P and Q are the number of line segments in LEM Ml

and in LEM T l, respectively. In the LHD method [27], each line
segment ml ∈ Ml calculate the distance to all line segments in T l

for finding its nearest neighbor. The directed distance of the LHD is
the weighted average of the distances from line segments ml ∈ Ml

to their nearest neighbors in T l. So, the complexity of computing
directed distance of the LHD is O (PQ).

The directed distance LTS-LHD computing as in (6) has com-
putational complexity O (PQ) in the worst case. In the worst case,
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all of line segments of two LEMs are located in the same group,
and each line segment has to calculate distance to all line segments
in other LEMs for finding nearest neighbor. On the other hand,
with the best case, if all line segments of each LEM are located
in one group and two groups of two LEMs are much different, the
computational complexity of directed Hausdorff distance is O (P).
If the line segments of LEM T l are equally divided into 18 groups,
the computational complexity of directed Hausdorff distance would
be O (PQ (2k + 1) /N), where k is the difference of group index as
defined in (8). The computational complexity of the LTS-LHD is al-
ways better than the LHD because the lower bound of the LTS-LHD
computational complexity is the LHD computational complexity.

The Algorithm 1, in which the EARLYBREAK is applied
for the LTS-LHD, has the computational complexities O (P) and
O (PQ) for the best case and the worst case, respectively. In gen-
eral case, assuming that line segments of LEM are equally divided
into groups, the Algorithm 1 has a computational complexity of
O ((1 − f ) PQ (2k + 1) /N + f PX), where X is used to denote the
average number of iterations in the inner loop. The lower value of
X is, the lower of computational complexity of the method is and
vise versa. The question is, in general, how high of the value of X
is? In the formal way, the value of X in general case could be found
through the analysis of probability theory.

Considering picking a random line segment tl in the inner loop
of the Algorithm 1, the distance d measured between line segment tl

and line segment ml in current outer loop is a random variable. The
event that meeting the condition that d is over cmax is denoted as e.
The probability of that event is that P (e) = q. The event e means
non-appearance of the break in the algorithm. Obviously, the event
e, that d is less than cmax, occur with probability P (e) = p = 1 − q.

Assuming that the inner loop has been implemented for X times
before the break occurs. This is equivalent to that (X − 1) dis-
tances from line segment ml in the outer loop to the line segments
tl
1, t

l
2, ..., t

l
X−1, namely d1, d2, ..., dX−1, are over cmax and one dis-

tance dX ≤ cmax. The probability density function of X is given by

f (x) = P (d1 > cmax, ..., dx−1 > cmax, dx ≤ cmax)
= q ∗ q ∗ ... ∗ q ∗ p

= qx−1 p
(13)

Fig. 2 shows the probability distribution f (x). The expectation
of average number iterations of the inner loop X is equivalent to the
expected value of f (x)

E [X] =

∞∑
x=1

x f (x) =

∞∑
x=1

xqx−1 p (14)

The Eq. (14) could be rewritten in the form of a polynomial as
follows

E [X] = p + 2qp + 3q2 p + 4q3 p + ... (15)

By multiplying both side of (15) with q and subtracting the
resulting equation from (15) , a simpler formula of (15) is given as

E [X] (1 − q) = p
(
1 + q + q2 + q3 + ...

)
= p

1
1 − q

(16)

Then, by using p = 1−q, the expectation of number of iterations
in the inner loop X could be found as

E [X] =
1

1 − q
=

1
p

(17)

Equation (17) means that the number of iterations in the inner
loop until the break depends on the value of p, which is the proba-
bility that a distance d is less than cmax. The higher p means the
lower number of tries before early break and vice versa. The value
of p depends on the value of cmax. For a larger value of cmax, it is
easier for picking a line segment making the distance d to the current
line segment of the outer loop less than cmax. Fig. 3 illustrates the
relation between cmax and the probability p. Here, it is assumed
the distance d is a random variable with normal distribution for
illustration. The value of p does not depend on the size of set, but
rather on the value of cmax and the distribution of pairwise distance
d.

Figure 2: Probability density function f (x)

Figure 3: Normal distribution of pairwise distance is assumed. (a) Relation between
cmax and probability p. (b) Large value of cmax. (c) Small value of cmax.
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4 Experiments
In this section, the performance of the proposed method, LTS-LHD,
is evaluated for face recognition. It is done by measuring the dis-
tance from test image to all model images for finding the smallest
distance. The recognition rate, which is the ratio of number of
images correctly classified to the total number of images in the test
set, is used for evaluating.

In this study, the face database from the University of Bern [45]
and the AR face database from Purdue University [46] are used.
Bern university face database contains frontal views of 30 people.
Each person has 10 gray images with different head pose variations:
two frontal pose images, two looking to the right images, two look-
ing to the left images, two looking upward image and two looking
downward images. The AR face database contains 2599 color face
images of 100 people (50 men and 50 women), there are 26 images
for each person and be divided into 2 sessions separated by two
weeks interval. Each session has 13 images are the frontal view
faces with different facial expressions, illumination conditions, and
occlusions (sun glasses and scarf). However, one of frontal face
image is corrupted (W-027-14.bmp) and only 99 pairs of face image
are used for examining the performance of system for face recogni-
tion under normal conditions. In our experiment, a preprocessing
before recognition process is used for locating the face. All image
are normalized such that the two eyes were aligned roughly at the
same position with a distance of 80 pixels. After that, all images are
cropped with size 160 × 160 pixels. The experiments are conducted
on the PC with 3GHz CPU and 4GHz RAM.

Figure 4: Influence of fraction f on recognition rate for AR database

4.1 Influence of fraction f on the performance

The recognition rate of the proposed method is expected to be low
for both low and high values of fraction f . With high value of frac-
tion f , a low number of line segments, which have largest values of

the product between their length and distance to their neighbor, is
used for computing the directed distance of the LTS-LHD. However,
the outliers are commonly the line segments have largest values of
that product. The high value of f means most of line segments used
for computing the directed distance LTS-LHD are outliers, as in
(6). On the other hand, when the value of fraction f is too low, a
high number of line segments is used for computing the directed
distance of the LTS-LHD. This means high number of line segments
in similar regions of faces is used for the calculation of hLTS−LHD.
And thus, the contribution of line segments that discriminate the
faces becomes low.

Fig. 5 shows the recognition rate of the proposed method for the
AR database with various values of fraction f . It must be noticed
that the value f of 1 is meaningless, because the value of directed
distance of the LTS-LHD hLTS−LHD is zero for all face image pairs.
The proposed method has highest recognition rate at the fraction f
values 0.3 and 0.4.

The computational complexity of the proposed method is based
on the average number of iterations in the inner loop, and thus is
based on the value of cmax. The higher value of cmax is, the lower
of runtime is and vice versa. The low value of fraction f means
the large number of line segments is used for computing hLTS−LHD,
and the value of cmax becomes low. On the other hand, the high
value of fraction f means the high value of cmax, and thus the
computational complexity of the method is low. So, the value of
fraction f is chosen at 0.4.

Figure 5: Influence of parameter k on recognition rate of proposed method

4.2 Influence of parameter k on the performance

The recognition rate of the proposed method is expected to be low
for low value of parameter k and vice versa. As in algorithm 1, the
value of k determines the number of line segments in the inner loop.
The low value of k has strong effect on system performance. Sup-
porting ml is the line segment in current outer loop. The low value
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of k means ml has to find its nearest neighbor in a few number of line
segments in list, as in algorithm 1. And thus it is possible that list
does not contain the corresponding line segment of ml, and ml could
take another non-corresponding line segment as its nearest neighbor.
On the other hand, the higher value of k is not necessary because too
much line segments, which are too far from ml, are added into list.
Such non-contributed line segments make the number of iterations
of inner loop increase and thus the runtime of method increases.
Fig. 5 shows the recognition rates of the proposed method with
various values of k for both the Bern university database and the
AR database. The recognition rate does not change for the value of
k higher than 2 for the Bern university database and 3 for the AR
database. So, the chosen value of k is 3.

In the rest of this section, the recognition rate of the proposed
method is compared with the LHD method in [27] and the RLHD
method in [1], using average HD for measuring the dissimilarity
between LEMs.

4.3 Face recognition under normal conditions

The frontal face images in normal conditions in the Bern university
database and the AR database are used for evaluating the perfor-
mance of the proposed method. Each person has two images, one
for test set and one for the model set. The example of images in
this experiment is shown in Fig. 6. The recognition rates of dif-
ferent methods are given in Table. 1. The recognition rates of all
methods with Bern university database are higher than those with
the AR database. The reason is the different between two images
of each person in AR database is larger than Bern database. The
illumination of model image and test image in AR database are also
different. The recognition rate of the proposed method is equal to
the RLHD method.

(a) Bern University Database

(b) AR Database

Figure 6: Example of two pairs frontal face image in normal lighting condition in
the face database of Bern University and the AR face database

Table 1: Face recognition result

Recognition rate
Method Bern database AR database
LHD 100% 93%
RLHD 100% 94%
Proposed method 100% 94%

The matching time for the Bern university database of differ-
ent methods are given in Table. 2. The proposed method has the
runtime 68% lower than the LHD method and 17.5% lower than
RLHD method. The improvement in runtime is achieved by using
EARLYBREAK for reducing the average number of iterations in
the inner loop.

Table 2: Matching time of different methods

Method LHD RLHD Proposed method
Matching time (second) 337 131 108

4.4 Face recognition under varying lighting conditions
and poses

The performance of the proposed method is also compared with
the ones of the LHD and the RLHD methods for face recognition
in the non-ideal conditions, e.g. face image with different poses or
different lighting conditions. The AR database is used for evalu-
ating the performance of different methods with varying lighting
conditions of face image. Frontal face images of 100 people are
used as model set. The face images with a light source on left
side of face, with a light source on right side of face and with light
sources on both sides of face are divided into three test sets with
100 images for each set. The recognition rates of different methods
are given in Table. 3. The non-ideal lighting conditions make the
recognition rate of all methods approximate 10% decrease. The face
recognition accuracy of proposed method is 1%, on average, higher
than the LHD and the RLHD methods. The interesting point of the
experiment is that all three methods, in the condition of left light on,
give the same recognition rates as the normal lighting condition in
Table. 1 while the recognition rate in right light on condition is 6%
- 9% lower than the ideal lighting condition. This could be due to
the fact that the illumination of the right light is stronger than the
left light. When both light on, the recognition rates of all methods
are 12% lower than recognition rates in ideal lighting condition.
The over-illumination has strong effect on recognition rates of all
methods.

Table 3: Face recognition with varying lighting conditions

Lighting conditions LHD RLHD Proposed method
Left light on 93% 94% 94%
Right light on 87% 85% 88%
Both light on 71% 72% 72%
Average 83.67% 83.67% 84.67%

The Bern university database is used for evaluating the perfor-
mance of different methods with different poses of face image. The
model set contains 30 frontal face images of 30 people. The test
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set contains images of 30 people with different poses, e.g. looking
to the left and right, looking up and down, for each person. The
recognition rates of different methods are summarized in Table.
4. The pose variations have strong effect on recognition rates of
all methods, where the recognition rates decrease 40% - 50% in
comparing with the results in Table. 1. This could be explained
that there are portions of face missing in comparing with frontal
face. The recognition rate of the proposed method is lower than
the RLHD method with the looking right image and higher than
the RLHD methood in other conditions. On average, the proposed
method has the recognition rate 2% higher than the RLHD method
and 3% higher than the LHD method.

Table 4: Face recognition with varying poses

LHD RLHD Proposed method
Looking left 46.67% 53.33% 63.33%
Looking right 53.33% 46.67% 46.67%
Looking up 66.67% 63.33% 66.67%
Looking right 60% 70% 63.33%
Average rate 56.67% 58.33% 60%

5 Conclusion
The Hausdorff distance, which is used for measuring the degree of
resemblance between two geometric objects, has been widely used
in various science and engineering fields. The computational of
HD computing is high because the computing contain both maxi-
mization and minimization. Many methods have been proposed in
recent decades for reducing the computational complexity of MAX-
MIN HD computing. However, the proposed methods for reducing
the computational complexity of MAX-MIN HD computing can
not be used for reducing the computational complexity of average
HD computing. In face recognition, average HD is widely used
for measuring the distance between two sets of features, instead
of MAX-MIN HD, which is known as a sensitive measure with
noise. The computational complexity of average HD computing as
high as the MAX-MIN HD computing. The high computational
cost restricts face methods using he average HD from real time
applications.

The LHD and he RLHD use average HDfor measuring the dis-
similarity between two LEMs. In this paper, a modification of
RLHD, called LTS-LHD was proposed for face recognition. The
LTS-LHD uses only KM line segments, not all of line segments as
in RLHD, for calculating the directed distance. With a suitable pa-
rameter KM , or suitable fraction f , the proposed method, LTS-LHD,
has the performance slightly higher than the RLHD method, which
is the average HD.

Moreover, in this paper, the EARLYBREAK is used for reduc-
ing the computational complexity of the proposed method. The
early breaking can speed up the LTS-LHD by reducing the average
number of iterations in the inner loop. The experimental results
show that the runtime of proposed method is 68% lower than the
LHD method and 17.5% lower than the RLHD method.
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