
Advances in Science, Technology and Engineering Systems Journal
Vol. 6, No. 2, 161-174 (2021)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

A Large Empirical Study on Automatically Classifying Software Maintain-
ability Concerns from Issue Summaries
Celia Chen*,1, Michael Shoga2

1Department of Computer Science, Occidental College, Los Angeles, 90041, United States of America
2Center for Systems and Software Engineering, Department of Computer Science, University of Southern California, Los Angeles, 90089,
United States of America

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 22 December, 2020
Accepted: 19 February, 2021
Online: 10 March, 2021

Keywords:
Software Maintainability
Open Source Software
Empirical Study
Linguistic Analysis

Software maintenance contributes the majority of software system life cycle costs. However,
existing approaches with automated code analysis are limited by accuracy and scope.
Using human-assessed methods or implementing quality standards are more comprehensive
alternatives, but they are much more costly for smaller organizations, especially in open-
source software projects. Instead, bugs are generally used to assess software quality, such as
using bug fixing time as an estimate of maintenance effort. Although associated bug reports
contain useful information that describe software faults, the content of these bug reports
are rarely used. In this paper, we incorporate quality standards with natural language
processing techniques to provide insight into software maintainability using the content of
bug reports and feature requests. These issues are classified with an automated approach
into various maintainability concerns whose generalizability has been validated against
over 6000 issue summaries extracted from nine open source projects in previous works.
Using this approach, we perform a large empirical study of 229,329 issue summaries from
61 different projects. We evaluate the differences in expressed maintainability concerns
between domains, ecosystems, and types of issues. We have found differences in relative
proportions across ecosystem, domain and issue severity. Further, we evaluate the evolution
of maintainability across several versions in a case study of Apache Tomcat, identifying
some trends within different versions and over time. In summary, our contributions include a
refinement of definitions from the original empirical study on maintainability related issues,
an automated approach and associated rules for identifying maintainability related quality
concerns, identification of trends in the characteristics of maintainability related issue
summaries through a large-scale empirical study across two major open source ecosystems,
and a case study on changes in maintainability over versions in Apache Tomcat.

1 Introduction
Software maintainability measurements provide organizations with
a greater understanding of how difficult it is to repair or enhance
their software. The importance of having this understanding is
underscored in [1], which reported that 75-90% of business and
command&control software and 50-80% of cyber-physical system
software costs are incurred during maintenance. In addition, main-
tainability serves as a crucial link to other quality characteristics.
In [2], the author lists maintainability as a contributing quality to
life cycle efficiency, changeability and dependability. In [3], the
maintainability is a key quality in understanding software quality
interrelationships. Thus, having comprehensive knowledge of soft-

ware maintainability is significant in the software development and
maintenance process.

A number of metrics and approaches have been developed to
provide ways to measure and evaluate software maintainability. In
this study, they are classified into the following categories:

• Automated analysis: Automatic analysis involves analyzing
source code or other software artifacts and quantifying soft-
ware maintainability into numeric results. This includes static
code analysis such as measuring Maintainability Index, tech-
nical debt, code smells, and other Object-Oriented metrics
[4, 5], as well as bug-focused metrics such as bug fixing time
[6] and accumulated defect density [7].

*Corresponding Author: Celia Chen, Email: qchen2@oxy.edu

www.astesj.com
https://dx.doi.org/10.25046/aj060219

161

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj060219

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

• Human-assessed analysis: Human-assessed analysis includes
reuse cost models that estimate maintainability of potentially
reusable components based on human-assessed maintainabil-
ity aspects, such as code understandability, documentation,
and developer self-reported surveys [8, 9].

• Software ontology, standards and frameworks: These intro-
duce immense high-level knowledge, which are mostly com-
ing from consensus wisdom, professional discipline and ex-
pert sources. This includes standards such as the ISO/IEC
25010 and Software Engineering Body of Knowledge.

While the automated analysis metrics are easy to use and often
require relatively low human effort, in [10] author points out that
the effective use of accuracy measures for these metrics has not
been observed and there is a need to further validate maintainabil-
ity prediction models. Moreover, despite having the advantage of
identifying the particular parts of the software most needing main-
tainability improvement at the module and method level, they do
not provide an overall quality status for the current version of the
software.

Although bug fixing times may reflect maintenance effort [6],
these bug-focused metrics also do not provide a systematic under-
standing of software maintainability. Furthermore, these metrics
do not utilize the information provided by the natural language
descriptions due to their unstructured nature.

On the other hand, human-assessed analyses are able to more
accurately reflect maintenance effort, yet they are limited in use due
to cost and subjectivity based on developers’ skills and experience
[8, 11].

Software ontology, standards and frameworks tend to be used in
larger organizations as guidelines during the development process.
They provide insightful knowledge in understanding, evaluating,
and improving a system’s maintainability planning, staffing, and
preparation of technology for cost-effective maintenance. However,
it is very difficult to enforce standards on actual program behavior.
Moreover, while standardizing the process can help make sure that
no steps are skipped, standardizing to an inappropriate process can
reduce productivity, and thus leave less time for quality assurance.
Especially in smaller organizations and open source ecosystems, it
is extremely difficult to apply and enforce these paradigms due to
their limited resources and functionality-focused nature.

To provide a way to effectively measure and keep track of the
overall maintainability while involving relatively low human effort,
we utilize bug report information in conjunction with a software
maintainability ontology to assess software maintainability at the
system level in an initial empirical study [12]. By manually mapping
over 6000 bug reports to maintainability subgroup software qual-
ities (SQs) in the ontology, we validated the approach to evaluate
overall system maintainability. However, this approach is limited
by the amount of manual effort needed for mapping the bug re-
ports. To overcome the high effort requirements, we incorporate
natural language processing techniques to automatically classify
“issue summaries,” which include the descriptions of bug reports
and feature requests, to the maintainability subgroup SQs. In this
paper, we provide a refinement of definitions from the original em-
pirical study on maintainability related issues and the rule set. We
expand upon the scale of the analysis done in [12], made possible

by the fuzzy classifier, to identify trends in maintainability related
issue summaries from two major open-source software ecosystems.
We further perform an in-depth case study on the maintainability
changes over versions and time in Apache Tomcat. In total we
classify 229,329 issue summaries from 61 projects and the trends
over 7 versions and 20 years in Apache Tomcat.

The rest of this paper is organized as follows. Section 2 summa-
rizes related work and presents the differences of those compared
to our study. Section 3 describes the background of the automated
approach and introduces the research questions and design of an em-
pirical study on maintainability trends in two open-source software
ecosystems. Section 4 discusses the results, analysis and implica-
tions. Section 5 concludes the study.

2 Related Work

2.1 Software Maintainability Measurement

Maintainability Index (MI) is the most widely used metric to quan-
tify maintainability in software projects. Since its introduction in
1992 [13], several variations have been developed [14, 15]. While
it is widely used, the metric’s effectiveness has been brought into
question and several shortcomings identified [16].

Other approaches to measuring maintainability have incorpo-
rated other metrics as well as frameworks and ontology. In [17],
the author provided an overview of an approach that uses a stan-
dardized measurement model based on the ISO/IEC 9126 definition
of maintainability and source code metrics. These metrics include
volume, redundancy, complexity and more.

In [18], the author investigated 11 different types of source code
metrics in an empirical study to develop a maintainability predic-
tion model for Service-Oriented software and compare their model
with the Multivariate Linear Regression (MLR) and Support Vector
Machine (SVM) approaches. They found that using a smaller set of
source code metrics performed better than when they used all of the
available metrics.

Approaches utilizing machine learning have also been proposed.
In [19], the author conducted a comparative study on using machine
learning algorithms for predicting software maintainability on two
commercial ADA datasets. They examined Group Method of Data
Handling, Genetic Algorithms, and Probabilistic Neural Network
with Gaussian activation function for predicting a surrogate main-
tenance effort measure, the number of lines of code changed per
class over a three year maintenance period. Their results showed
improvement over previously reported models.

In [20], the author proposed an LSTM algorithm for software
maintainability metrics prediction. They considered 29 OO met-
rics and applied their approach on a large number of open source
projects. In addition to comparing against other machine learning
algorithms, they also used FSS to determine which metrics are most
relevant for maintainability prediction.

In [21], the author presented a study using several classifiers to
evaluate maintainability at the class level using the output of dif-
ferent static analysis tools. In their approach, ConQAT, Teamscale,
and Sonarqube are used to extract metrics such as SLOC, average
method length, clone coverage, etc. The classifiers are trained using

www.astesj.com 162

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

expert-labeled data from three different systems. Their best results
provided a classification accuracy of 81% and a precision of 80%.

2.2 Bug Characteristics Analysis with Natural Lan-
guage Processing

Several studies have investigated the characteristics of bugs and bug
reports through the use of natural language processing.

In [22], the author collected 709 bugs including security related
and concurrency bugs. They analyzed the characteristics of those
bugs in terms of root causes, impacts and software components.
Their findings reveal characteristics of memory bugs, semantic bugs,
security bugs, GUI bugs, and concurrency bugs. They verified their
analysis results on the automatic classification results by using text
classification and information retrieval techniques.

In [23], the author proposed an approach to binary classification
of bug reports into ‘bug’ and ‘nonbug’ by leveraging text mining and
data mining techniques. Analyzing the summary and some struc-
tured features including severity, priority, component, and operating
systems, they use Bayesian Net Classifier as the machine learner.
They performed an empirical study of 10 open source projects to
validate their method and provide a MyLyn plugin prototype system
that will classify given reports.

In [24], the author analyzed bug reports from nine systems and
found that a large percentage of bug reports lack Steps to Reproduce
(S2R) and Expected Behavior (EB) information. They in turn devel-
oped an automated approach to detect missing S2R and EB from
bug reports. They produced three versions using regular expressions,
heuristics and natural language processing, and machine learning.
They found their machine learning version to be the most accurate
with respect to F1 score, but the regular expressions and heuristics
and natural language processing approaches had similar accuracy
results without training.

In [25], the author constructed models for identifying security
and performance related bug reports utilizing feature selection, ran-
dom under-sampling, and Naive Bayes Multinominal approach.
They evaluated their approach on datasets of bug reports from four
software projects, achieving average AUC values of 0.67 and 0.71
for their security and performance models respectively.

Summing up, here is how our work differs from the existing
studies: with regard to measurement of maintainability, our work
enables study of maintainability evolution with relatively low cost.
By using issues, preexisting software artifacts, it allows for expert
knowledge to be applied to open source software systems wherein
there is less control over development and maintenance tasks.

3 Empirical Study

3.1 Background

This section presents the software maintainability ontology used and
an extension of the SQ definitions provided in [12]. It also provides
a brief summary on our previous works and the overall automated
approach.

3.1.1 Software Maintainability Ontology Background

The ontology provided in [2] presents maintainability as depending
on two alternative SQs, repairability and modifiability, which handle
defects and changes respectively. These SQs are further enabled by
several subgroups. The automated approach focuses on maintain-
ability in the context of these mean-ends SQs as shown in Figure
1.

Figure 1: Software maintainability ontology hierarchy

The following are the refined definitions for each subgroup SQ
to better capture the scope of these quality concerns.

Repairability involves handling of defects in software. It is
enabled by the following SQs:

• Diagnosability:

Diagnosability is the characteristic of being diagnosable. It is
the property of a partially observable system with a given set
of potential faults, which can be detected with the certainty
given finite observation. Issues that affect this SQ involve
problems with lack of logging and diagnosability manage-
ment, faulty error messages and the process of tracing where
they originate, failure of tests, and insufficient information
provided for accurate assessments [26]–[28].

• Accessibility:

Accessibility [29] generally describes the ability of a soft-
ware system to accommodate people with special needs. This
requires a software system to be suitable for most of the poten-
tial users without any modifications and be easily adaptable to
different users with adaptable and customized user interfaces.

Another definition for accessibility is at the architecture level.
The JCIDS manual [30] defines the Accessibility of Archi-
tectures as the ability to grant access to authorized users in a
timely fashion in order to “support architecture-based analysis
and decision making processes.” In this paper, accessibility
is defined as the quality of being available and reachable,
which involves whether the intended areas of a software sys-
tem can be accessed as desired. Issues that affect this SQ
prevent authorized users from accessing data or functions due
to things such as redirects to unintended locations, broken
links to intended areas, and incorrect user permission and
authorization.

www.astesj.com 163

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

• Restorability:

Restorability describes the ability of a software system to re-
store to a previous state. Issues that affect this SQ include ac-
tivities such as clearing of caches, refreshing settings, proper
removal of data and backups of the current system.

Modifiability involves handling of software changes. It is en-
abled by the following SQs:

• Understandability:

Software understandability can be considered in the context
of source code as well as non-source code artifacts and fur-
ther depends on the person assessing the software. This may
include the level of experience and familiarity with the soft-
ware’s code base if considering a developer’s perspective or
whether or not the software is clear in its usage and applicabil-
ity if considering an end user’s perspective. Understandability
can have an impact on maintenance tasks especially in cases
where the original developers are not the ones responsible
for maintaining the system. Further explanation of software
understandability is provided in [31].

Issues that affect this SQ involve activities such as system
enhancement, lack of explanations and comments, confusing
or inaccurate descriptions, presence of deprecated software
and more.

• Modularity:

Modularity involves separation of code into modules. It indi-
cates the degree to which a system’s components are made
up of relatively independent components or parts which can
be combined [32, 33].

Issues that affect this SQ involve unwanted interactions be-
tween different modules and separation of one module into
multiple modules.

• Scalability:

Scalability is the ability of a system to continue to meet its
response time or throughput objectives as the demand for the
software functions increases [34, 35]. Issues that affect this
SQ involve latency in functionality, hangs, and insufficient
resources for functionality to scale up or down.

• Portability:

Portability refers to the ability of a software unit to be ported
to a given environment and being independent of hardware,
OS, middle-ware, and databases [36, 37]. Issues that affect
this SQ prevent proper interfacing between software compo-
nents and external platforms.

3.1.2 Background Studies

In our previous empirical study [12], we manually analyzed 6372
bugs found in the Mozilla community. By categorizing them into
one of the subgroup SQs described above, we identified various

trends in maintainability changes as software evolves and the rela-
tionships between these subgroup SQs. The findings were valuable
but it was difficult to scale up the study due to the large amount
of manual effort required to produce such mappings between bug
reports and subgroup SQs.

Thus, a manual analysis on the ground-truth dataset1 was first
performed, and we identified three types of linguistic patterns from
bug reports: lexical patterns, syntax patterns and semantic patterns.
These patterns illustrate the recurrent linguistic rules that users are
likely to use when reporting bugs or requesting new features. Mo-
tivated by these heuristic linguistic patterns, we proposed a fuzzy
classifier [31, 38] that aims to identify the maintainability subgroup
SQ concerns expressed in issue summaries. Based on the definitions
of these patterns, a set of 24 initial fuzzy rules was generated by
heuristically identifying them from subgroup SQ definitions and
practice guidelines. To improve this initial fuzzy rule set, an in-
cremental approach was constructed to identify potential new rules
from issue summaries mined from four open-source projects. The
rule performance was used to determine whether the existing rule
set should be updated. As a result, we obtained a final set of 99
rules2. To evaluate the generalizability of the obtained rule set,
we evaluated it on projects that were not used in generating the
rules. All metrics (accuracy, precision, recall, and f-measure) had
an average above 0.8, indicating that the rule set is able to perform
well in classifying issue summaries with all of the subgroup SQs.
Thus, with such an automated classifier that can identify maintain-
ability concerns expressed in issue summaries, we conduct a large
empirical study to investigate the trends of maintainability across 61
open-source software projects and over 200,000 issue summaries.

3.2 Research Questions

To explore the characteristics of maintainability, we look to answer
the following research questions:

• RQ1: How are software maintainability concerns expressed in
different domains and ecosystems? For this RQ, each project
is classified as one of the following:

– Applications: these projects are designed to have some
sort of direct interaction with general users [39]. Ex-
amples of these projects include web browsers, email
clients, and office suites.

– Infrastructure: these projects are not designed to inter-
act with users directly. Instead, they provide facilities
and services for other software to run [39]. Examples
of these projects include build tools, web servers, and
libraries.

To answer this RQ, we analyze the differences for subgroup
SQs between these domains as well as between Apache and
Mozilla projects.

• RQ2: How are software maintainability concerns expressed
across different types of issues? For this empirical study, we
report on the following characteristics:

1Dataset can be found: https://bit.ly/2WhtWJx
2The final rule set can be found: http://bit.ly/3az2CRy

www.astesj.com 164

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

– Won’t Fix: Issues whose resolutions are WONTFIX
have been classified such that they are not planned to
be fixed. This can be for a variety of reasons, such as
when the issue involves an unsupported method or tool,
or when the issue is not worth the cost [40].

– Reopened: Issues that have been previously closed can
be reopened in cases such as when new reproducibil-
ity information is reported, previous root causes are
identified as misunderstood, reports with insufficient
information are updated, or the priority of the issue has
been increased [41].

– Unresolved: Some issues are left unresolved without
updates. To investigate these unresolved issues, we filter
the lists to identify issues whose status is not resolved
or closed, and whose last changed or updated date is
more than a year from June 30, 2020. This date is based
on the point up to when the issues were collected.

– Severity: Issues are often classified depending on their
impact, with most of the projects defining them as
blocker, critical, major, etc. The MozillaWiki defines
severity in terms of levels: S1, S2, S3, S4 for catas-
trophic, serious, normal, and small/trivial respectively;
however, the previously mentioned descriptors are used
more commonly. Thus for this RQ, the severities are
defined as follows:

∗ Blocker: Blocker, S1
∗ Critical: Critical
∗ Major: Major, S2
∗ Others: All other categories

• RQ3: How does software maintainability change as software
evolves?

To gain a better understanding of how maintainability changes
as software evolves, we look to the issues of Apache Tomcat.
This project has been selected as it has a long history: the
Apache Bugzilla contains issues from Tomcat 3 to Tomcat 9,
and it has versions separated to the patch level of granularity.
To answer this RQ, we look at the data in three ways: by ma-
jor version, within major version by year, and by year overall.
The last updated date in the Apache Tomcat Archive is used
to map each patch to a year. Evaluation by changes in minor
version is not done as many versions have at most 2 minor
versions for a given major version. In cases where versions
have patch variants, such as release candidates or betas, the
versions are combined. For example, Tomcat 4 has issues of
version 4.0 Beta 1, Beta 2, etc. These are combined with the
release candidates, milestones, and final version issues into a
single 4.0.0 category.

3.3 Study Design

3.3.1 Study Subjects

This empirical study focuses on projects found within the Mozilla
and Apache ecosystems. Table 1 provides the characteristics of the
projects chosen for this study. Some projects are filtered out of the

study subjects. From Mozilla, projects from other and graveyard
are excluded from the study as they contain many projects that do
not focus on software. From Apache, projects that contain fewer
than 100 issues are excluded. Apache OpenOffice and Apache Spa-
mAssassin have their own Bugzilla repositories which are included
with the other Apache projects.

3.3.2 Data Extraction and Analysis

Issue summaries from the selected projects are downloaded from
their respective Bugzilla repositories along with the issue character-
istics such as version, Open Date, etc. The issues are then classified
as described in Section 3.1.2. They are then separated according to
the criteria described in the RQs. Issues that are identified as invalid
or duplicates are filtered out to avoid over-counting. For each SQ,
the overall proportion is calculated from the number of expressing
issues over the total number of issues to correct for differences in the
number of issues reported between groups. Relative proportion is
calculated from the number of expressing issues over the total num-
ber of issues that express any maintainability concern to compare
how much each subgroup SQ contributes to overall maintainability.

In total, 229,329 issues are analyzed and classified as relating to
one of the maintainability subgroup SQs or as non-maintainability.
Of these, 82,577 (36%) are maintainability related and 146,752
(64%) are non-maintainability related. Figure 2 shows the relative
and overall proportions of each of the maintainability subgroup SQs.
The most prevalent maintainability subgroup SQs are understand-
ability, portability, and accessibility.

4 Results and Discussion

4.1 RQ1

Of the 229,329 issues analyzed and classified, 180,706 come from
Mozilla systems and 48,623 from Apache systems.

Table 2 complies the number of issues expressing each SQ,
the overall proportion of each SQ over the total number of issues,
and the relative proportion of each SQ over the total number of
maintainability issues.

Figures 3a and 3b show the proportion of issue summaries that
express maintainability concerns across the chosen ecosystems and
domains respectively. There is not a large difference between the
proportion of maintainability issues when considering ecosystem or
domain.

4.1.1 Overall Proportions

A MANOVA is performed to examine whether there is a signifi-
cant association between the overall proportion of maintainability
and each maintainability subgroup SQ with ecosystems or domains.
More specifically, whether ecosystems or domains have a significant
effect on the overall proportions of maintainability and each main-
tainability subgroup SQ. While there is a significant association
found between ecosystem and the overall proportions of maintain-
ability and its subgroup SQs, F = 19.136, df = 8, p=0.014 (<0.05),
univariate analysis does not identify statistically significant SQs
that contribute to the differences between ecosystems. In addition,

www.astesj.com 165

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

Table 1: Study subject characteristics

Apache Mozilla
Project Number of Issues Domain Project Number of Issues Domain

Ant 6144 Infrastructure Bugzilla 10000 Infrastructure
Apache httpd-1.3 898 Infrastructure bugzilla.mozilla.org 10000 Application
Apache httpd-2 8288 Infrastructure Calendar 10000 Application
APR 818 Infrastructure Chat Core 1295 Infrastructure
Batik 1029 Infrastructure Cloud Services 9932 Application
BCEL 168 Infrastructure Conduit 1713 Infrastructure
Fop 2170 Application Core 10000 Infrastructure
JMeter 4609 Infrastructure Data Platform and Tools 4251 Application
Lenya 1449 Application DevTools 10000 Infrastructure
Log4j 1387 Infrastructure Directory 726 Infrastructure

OpenOffice 10000 Application
External Software
Affecting Firefox 1567 Application

POI 4667 Infrastructure Firefox 10000 Application
Regex 102 Infrastructure Firefox Build System 10000 Infrastructure
Security 252 Infrastructure Firefox for Android 10000 Application
Slide 432 Application Firefox for iOS 7067 Application
Spamassassin 7713 Application Gecko View 2523 Infrastructure
Taglibs 764 Infrastructure Instantbird 1709 Application
Tomcat Connectors 804 Infrastructure JSS 455 Infrastructure
Tomcat Modules 187 Infrastructure MailNews Core 10000 Infrastructure
Tomcat Native 178 Infrastructure Mozilla Localizations 10000 Application
Tomcat 3 1129 Infrastructure NSS 10000 Infrastructure
Tomcat 4 3374 Infrastructure Remote Protocol 650 Infrastructure
Tomcat 5 3118 Infrastructure SeaMonkey 10000 Application
Tomcat 6 1386 Infrastructure Socorro 8822 Infrastructure
Tomcat 7 1643 Infrastructure Testing 10000 Infrastructure
Tomcat 8 1213 Infrastructure Testopia 920 Infrastructure
Tomcat 9 486 Infrastructure Thunderbird 10000 Application
XercesJ 426 Infrastructure Toolkit 10000 Infrastructure
Xindice 163 Infrastructure Tree Management 6673 Infrastructure

Web Compatibility 4603 Application
WebExtensions 8344 Infrastructure
WebTools 5682 Infrastructure

(a) Relative proportion (b) Overall proportion

Figure 2: Proportions of subgroup SQ concerns across all issues

www.astesj.com 166

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

Ta
bl

e
2:

SQ
is

su
e

co
un

ts
(#

),
ov

er
al

lp
ro

po
rt

io
ns

(O
),

an
d

re
la

tiv
e

pr
op

or
tio

ns
(R

)b
y

va
ri

ou
s

ty
pe

s
an

d
cl

as
si

fic
at

io
ns

Ty
pe

A
cc

.
D

ia
.

M
od

.
Po

r.
R

es
.

Sc
a.

U
nd

.

#
O

.
%

R
.

%
#

O
.

%
R

.
%

#
O

.
%

R
.

%
#

O
.

%
R

.
%

#
O

.
%

R
.

%
#

O
.

%
R

.
%

#
O

.
%

R
.

%
E

co
sy

st
em

A
pa

ch
e

45
06

9
25

12
64

3
7

66
9

1
4

40
21

8
22

43
4

1
2

12
92

3
7

61
43

13
34

M
oz

ill
a

16
19

1
9

21
73

61
4

9
40

79
2

5
19

48
2

11
25

20
88

1
3

40
57

2
5

25
20

1
14

32
D

om
ai

n
A

pp
lic

at
io

n
95

86
10

22
21

32
2

5
19

51
2

4
12

55
3

13
29

11
16

1
3

20
90

2
5

14
25

8
14

33
In

fr
as

tr
uc

tu
re

11
11

1
8

21
64

93
5

12
27

97
2

5
10

95
0

8
21

14
06

1
3

32
59

2
6

17
08

6
13

32
Se

ve
ri

ty
B

lo
ck

er
57

2
12

24
11

2
2

5
11

7
2

5
91

0
19

38
43

1
2

12
8

3
5

50
7

10
21

C
ri

tic
al

15
50

9
24

18
9

1
3

36
9

2
6

25
67

14
40

13
9

1
2

10
72

6
17

55
6

3
9

M
aj

or
21

52
14

32
32

2
2

5
33

9
2

5
19

36
13

29
22

1
1

3
58

1
4

9
11

22
7

17
O

th
er

s
16

42
3

9
20

80
02

4
10

39
23

2
5

18
09

0
9

22
21

19
1

3
35

68
2

4
29

15
9

15
36

O
th

er
R

es
ol

ut
io

ns
R

eo
pe

ne
d

11
4

9
23

10
7

9
21

23
2

5
88

7
18

19
2

4
24

2
5

12
7

10
25

W
on

’t-
Fi

x
13

92
8

20
48

4
3

7
34

8
2

5
20

17
12

29
18

5
1

3
30

5
2

4
21

23
13

31
U

nr
es

ol
ve

d
16

23
9

22
94

1
5

13
38

1
2

5
14

50
8

20
25

3
1

3
49

2
3

7
22

95
12

31

www.astesj.com 167

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

(a) By ecosystem (b) By domain

(c) By characteristic (d) By severity

Figure 3: Distributions of maintainability versus non-maintainability issues

no statistically significant results are found for the overall propor-
tions of maintainability and its subgroup SQs in terms of different
domains, F = 13.036, df=8, p=0.192 (>0.05).

4.1.2 Relative Proportions

Pearson’s Chi-squared tests are performed to examine whether the
ecosystems or the domains are associated with the distributions of
the relative proportion of each SQ. Overall, the distributions of the
relative proportion of each SQ differ significantly in domains, χ2 (6,
N = 61) = 2226.5, p < 0.001; and also in ecosystems, χ2 (6, N =

61) = 2921.2, p < 0.001.
As shown in Table 2, understandability, portability, and acces-

sibility are most prevalent expressed concerns. When considering
ecosystem, these SQs comprise the majority for both Mozilla and
Apache; however, the Apache systems tend to express more accessi-
bility concerns than portability concerns. In considering domain, the
same three SQs are the most prevalent; however, for infrastructure
type software, there tend to be more diagnosability issues and fewer
relating to portability when compared to application type software.

Summary of RQ1: To summarize, in this study, there is a sta-
tistically significant association between ecosystem and the overall
proportions of maintainability and its subgroup SQs. The distribu-

tions of relative proportions of subgroup SQs differ significantly
between ecosystems and domains; there is a trend in application
software which tends to have more portability issues and fewer
diagnosability issues compared to infrastructure software. As appli-
cation type software is targeted toward end-users, there may be a
larger variety of use cases which would necessitate compatibility
with other software. In contrast, infrastructure software is targeted
toward developers. In this case, they may place more importance on
being able to diagnose issues with the software and may already be
aware of incompatibilities with other software.

4.2 RQ2

4.2.1 RQ2a: Reopened, Won’t-fix and Unresolved

Of the 229,329 issues classified, 1,251 are marked as REOPENED,
16,909 are marked as WONTFIX, and 18,809 are identified as un-
resolved. Figure 3c shows the proportion of issue summaries that
expressed maintainability concerns across these three categories.
Similar to the overall proportion, these categories are comprised of
about 35% maintainability issues.

Table 2 compiles the number of issues expressing each SQ, the
overall proportion that these SQs make of all tagged issues, and

www.astesj.com 168

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

the relative proportion that these SQs make of all maintainability
related issues across categories. For won’t-fix and unresolved issues,
understandability, portability, and accessibility make up the largest
percentage of expressed maintainability concerns. For reopened
issues, diagnosability replaces portability of the top 3 subgroup SQ
concerns. Won’t-fix issues tend to express more portability concerns
with relatively fewer diagnosabilty concerns compared to the other
two categories.

4.2.2 RQ2b: Severity

Comparing the number of issues within each category of sever-
ity, the issues are divided into 4887, 17799, 15424, and 191219
issues associated with Blocker, Critical, Major, and Others types
respectively. Figure 3d shows the proportion of issue summaries
expressing maintainability concerns across these different levels of
severity. For the highest severity category, blocker, maintainability
issues make up 41%. Interestingly, the relative proportion of main-
tainabilty issues decreases for the next severity category, Critical, to
30%, while increasing again to 36% in the Major and Others cate-
gories. Table 2 compiles the number of issues expressing each SQ,
the overall proportion that these SQs make of all tagged issues, and
the relative proportion that these SQs make of all maintainability
related issues across severities.

Portability, accessibility, and understandability remain the most
prevalent expressed SQs except for the Critical category, where
understandability is replaced by scalability. Blocker and Critical
issues have similar proportions of portability and accessibility is-
sues while accessibity issues have higher prevalence in Major issues.
Finally, the less severe Others category is comprised largely of
understandability issues.

A MANOVA is performed to examine whether there is a signifi-
cant association between the overall proportion of maintainability
and each maintainability subgroup SQs with different levels of sever-
ity. There is a statistically significant association found between
levels of severity and the overall proportions of maintainability and
its subgroup SQs, F = 166.42, df = 24, p < 0.001. Of the subgroup
SQs, accessibility, portability, scalability, and understandability are
found to have statistically significant differences across severity
levels, with p < 0.001 after Bonferroni correction.

Pearson’s Chi-squared tests are performed to examine whether
levels of severity are associated with the distributions of the relative
proportion of each SQ. Overall, the distributions of the relative pro-
portion of each SQ differ significantly across severity, χ2 (18, N =

61) = 5795.8, p < 0.001.
Summary of RQ2: To summarize, in this study, won’t-fix and

unresolved issues tend to express understandability, portability, and
accessibility concerns. Reopened issues tend to express diagnos-
ability concerns in addition to understandability and accessibility.
For the case of won’t-fix issues tending to express more portability
concerns than the baseline-total, this result could be explained as
portability issues involve factors external to the system. These types
of issues are more likely to involve unsupported tools or potentially
costly integrations, leading to a classification of WONTFIX.

The highest severity issues tend to have a higher proportion
of maintainability issues than lower severity issues, and there is a
significant association between levels of severity and the overall and

relative proportions of the different subgroup SQs. This finding val-
idates our results from the previous empirical study. As these issues
have a high impact on the system, this reinforces the importance of
ensuring high maintainability to avoid these types of issues.

4.3 RQ3

4.3.1 Changes between major versions

When comparing between major versions, there does not appear to
be a strong trend in terms of the percentage maintainability issues
make of the total. Figure 4a shows the relative proportions of each
subgroup SQ. There appears to be a decreasing trend for accessi-
bility and an increasing trend for understandability related issues
for later versions. Figure 4b shows the overall proportions of each
subgroup SQ. In this case, the increase in understandability related
issues continues.

4.3.2 Changes within major version by year

To provide an analysis of the relationship between the subgroup SQs
and time, we map each patch to a year based on the last updated
date in the Apache Tomcat Archive and perform linear regression
within each major version. Figures 5a, and 5b show the statistically
significant trends (p< 0.05) in relative proportions, overall propor-
tions, and number of issues reported respectively. For clarity, the
scales of the y-axes are set individually by version in Figure 6 due
to relatively large differences in overall proportions and number of
issues between versions.

• Version 3: Only restorability showed a statistically significant
decline in number of issues reported. Relative and overall
proportions did not have statistically significant relationships.
We acknowledge that very few issues overall were reported
in 2003 and 2004 which may contribute to this trend.

• Version 4: Other than modularity, all subgroup SQs showed
statistically significant decline in number of issues reported.
However, the decline in number of issues reported is also
present for issues in general. In terms of relative propor-
tions, accessibility and understandability showed declines
while portability showed an increase over time. For overall
proportions, accessibility, modularity, restorability, and under-
standability all showed declines. We acknowledge that very
few issues overall were reported from 2005 to 2008 which
results in the relative proportions of 0 for accessibility and un-
derstandability and the relative proportions of 1 in portability
within those years. These values may skew the significance
of the trends.

• Version 5: Portability and understandability showed statis-
tically significant decline over years for number of issues
reported. Those SQs showed similar declines, and accessibil-
ity showed statistically significant increase for relative and
overall proportion of SQs.

• Version 6: Accessibility and portability showed a statistically
significant decrease in number of issues reported over years.

www.astesj.com 169

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

(a) Relative proportion (b) Overall proportion

Figure 4: Proportions by major version of Apache Tomcat

(a) Version 4 (b) Version 5

Figure 5: Statistically significant relative proportions of subgroup SQ concerns across years by versions

This was shared with the number of maintainability, non-
maintainability, and total issues reported. No SQs were found
to have a statistically significant change in relative proportion;
however, the overall proportion of portability related issues
increased.

• Version 7: Accessibility, portability, scalability, and under-
standability all had declines over time along with decreases
in numbers of maintainability, non-maintainability, and total
issues reported. Overall proportions of portability and main-
tainability had increases over time, but no trends were found
for relative proportions.

• Version 8: Accessibility, portability, and understandability
all had declines over time along with decreases in number of
maintainability, non-maintainability, and total issues reported.
No trends were found for relative or overall proportions.

• Version 9: No significant trends were found for version 9

4.3.3 Changes by year overall

When considering all issues by year, there is a general decline in
the number of issues reported overall which is found for all SQs.
This trend is found in general for the number of issues reported; Fig-
ure 6 shows the number of maintainability and non-maintainability

related issue summaries reported per year for Tomcat. However,
when looking at the overall and relative proportions, there are no
statistically significant trends across the SQs.

Summary of RQ3: To summarize, although there is not a sig-
nificant trend in terms of the percentage of maintainability issues
between major versions, there is a decreasing trend for accessibility
while an increasing trend for understandability for later versions. In
addition, various subgroup SQs show statistically significant trends
in relative proportions, overall proportions and the number of issues
reported.

While there are a number of statistically significant trends within
versions, the most common is a decline in number of issues reported
overall over time and within the versions themselves. Possible rea-
sons for the decline in issues reported include that people are not
reporting as many issues in general compared to in the past, the later
versions are still being maintained and developed so there has been
less time to report issues, and finally that the maintainability has
increased over time.

As there are no statistically significant trends in terms of rela-
tive or overall proportions of the subgroup SQs when looking at
changes by year overall, this may indicate that focusing on the great-
est relative proportions overall (i.e. accessibility, portability, and
understandability) will be effective regardless of time in the life
cycle.

www.astesj.com 170

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

(a) Version 4 (b) Version 5

(c) Version 6 (d) Version 7

Figure 6: Statistically significant overall proportions of subgroup SQ concerns across years by version

4.4 Threats to Validity

This study depends on the model developed in [38]. The accuracy
of classification is subject to the limitations and threats to validity
detailed in the prior work.

Some information in issue summaries is self-reported by the
developers of the different software projects such as severity, version
information, etc. Validation of this information is out of the scope
of this study; however, the developers reporting the issues are the
most qualified to assess these metrics given their familiarity with
the projects. Thus, we assume the reported information is correctly
identified.

As our case study focused only on Apache Tomcat, our findings
with regard to quality changes within versions and over the life
of the project should not be generalized to other projects without
further study.

5 Conclusion
Motivated by the lack of effective systematic measurement of main-
tainability in practice, we presented a novel approach to achieve
automatic identification on how software maintainability and its sub-
group SQs are expressed in a series of publications. Enabled by the
automated approach to scale up analysis of maintainability through
issue summaries, in this article, a large empirical study on 229,329
issue summaries from 61 different projects was conducted. Out of
all the issue summaries, 82,577 issues were classified as expressing

maintainability concerns. These issues were further analyzed to
evaluate the differences between domains, ecosystems, and types.
We found differences in relative proportions across ecosystems,
domain and issue severity. Additional analysis was performed on
Apache Tomcat to evaluate the evolution of maintainability across
several versions. We identified several trends within versions and
over time, such as a general decline in the number of issues reported
overall in all the subgroup SQs and a statistically significant decline
in portability and accessibility in multiple versions.

We believe that our work introduces a new angle to the area
of software maintainability evaluation, encourages researchers to
utilize unstructured software artifacts, and promotes automated
solutions to incorporate standards and frameworks into software
development process.

Conflict of Interest The authors declare no conflict of interest.

Acknowledgment This material is based upon work supported
in part by the U.S. Department of Defense through the Systems
Engineering Research Center (SERC) under Contract HQ0034-13-
D-0004. SERC is a federally funded University Affiliated Research
Center managed by Stevens Institute of Technology.

References
[1] J. Koskinen, “Software maintenance fundamentals,” Encyclopedia of Software

Engineering, P. Laplante, Ed., Taylor & Francis Group, 2009.

www.astesj.com 171

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

(a) Version 3 (b) Version 4

(c) Version 5 (d) Version 6

(e) Version 7 (f) Version 8

Figure 7: Statistically significant number of issues per subgroup SQ concerns across years by version

www.astesj.com 172

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

Figure 8: Number of issues reported by year

[2] B. Boehm, C. Chen, K. Srisopha, L. Shi, “The key roles of maintainability
in an ontology for system qualities,” in INCOSE International Symposium,
26, 2026–2040, Wiley Online Library, 2016.

[3] M. Y. Shoga, C. Chen, B. Boehm, “Recent Trends in Software Quality Interre-
lationships: A Systematic Mapping Study,” in 2020 IEEE 20th International
Conference on Software Quality, Reliability and Security Companion (QRS-C),
264–271, 2020, doi:10.1109/QRS-C51114.2020.00052.

[4] S. R. Chidamber, D. P. Darcy, C. F. Kemerer, “Managerial use of metrics
for object-oriented software: An exploratory analysis,” IEEE Transactions on
software Engineering, 24(8), 629–639, 1998.

[5] R. Mo, Y. Cai, R. Kazman, L. Xiao, Q. Feng, “Decoupling level: a new
metric for architectural maintenance complexity,” in Proceedings of the 38th
International Conference on Software Engineering, 499–510, ACM, 2016.

[6] H. Wu, L. Shi, C. Chen, Q. Wang, B. Boehm, “Maintenance effort estimation
for open source software: A systematic literature review,” in Software Mainte-
nance and Evolution (ICSME), 2016 IEEE International Conference on, 32–43,
IEEE, 2016.

[7] L. Yu, A. Mishra, “An empirical study of Lehman’s law on software quality
evolution,” 2013.

[8] C. Chen, R. Alfayez, K. Srisopha, L. Shi, B. Boehm, “Evaluating Human-
Assessed Software Maintainability Metrics,” in Software Engineering and
Methodology for Emerging Domains, 120–132, Springer, 2016.

[9] B. W. Boehm, R. Madachy, B. Steece, et al., Software cost estimation with
Cocomo II with Cdrom, Prentice Hall PTR, 2000.

[10] M. Riaz, E. Mendes, E. Tempero, “A systematic review of software maintain-
ability prediction and metrics,” in Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, 367–377,
IEEE Computer Society, 2009.

[11] S. Scalabrino, G. Bavota, C. Vendome, M. Linaresvasquez, D. Poshyvanyk,
R. Oliveto, “Automatically assessing code understandability: How far are we?”
in Ieee/acm International Conference on Automated Software Engineering,
417–427, 2017.

[12] C. Chen, S. Lin, M. Shoga, Q. Wang, B. Boehm, “How do defects hurt quali-
ties? an empirical study on characterizing a software maintainability ontology
in open source software,” in 2018 IEEE International Conference on Software
Quality, Reliability and Security (QRS), 226–237, IEEE, 2018.

[13] P. Oman, J. Hagemeister, “Metrics for assessing a software system’s main-
tainability,” in Software Maintenance, 1992. Proceedings., Conference on,
337–344, IEEE, 1992.

[14] K. D. Welker, “The software maintainability index revisited,” CrossTalk, 14,
18–21, 2001.

[15] E. VanDoren, “Maintainability Index Technique for Measuring Program Main-
tainability. Software Engineering Institute,” 2002.

[16] D. I. Sjøberg, B. Anda, A. Mockus, “Questioning software maintenance met-
rics: a comparative case study,” in Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement, 107–110,
ACM, 2012.

[17] R. Baggen, J. P. Correia, K. Schill, J. Visser, “Standardized code quality bench-
marking for improving software maintainability,” Software Quality Journal,
20(2), 287–307, 2012.

[18] L. Kumar, S. K. Rath, A. Sureka, “Using Source Code Metrics and Multivariate
Adaptive Regression Splines to Predict Maintainability of Service Oriented
Software,” in 2017 IEEE 18th International Symposium on High Assurance
Systems Engineering (HASE), 88–95, 2017, doi:10.1109/HASE.2017.11.

[19] R. Malhotra, A. Chug, “Software maintainability prediction using machine
learning algorithms,” Software Engineering: An International Journal (SEIJ),
2(2), 2012.

[20] S. Jha, R. Kumar, L. Hoang Son, M. Abdel-Basset, I. Priyadarshini, R. Sharma,
H. Viet Long, “Deep Learning Approach for Software Maintainability Metrics
Prediction,” IEEE Access, 7, 61840–61855, 2019.

[21] M. Schnappinger, M. H. Osman, A. Pretschner, A. Fietzke, “Learning a Classi-
fier for Prediction of Maintainability Based on Static Analysis Tools,” in 2019
IEEE/ACM 27th International Conference on Program Comprehension (ICPC),
243–248, 2019, doi:10.1109/ICPC.2019.00043.

www.astesj.com 173

http://www.astesj.com

C. Chen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 161-174 (2021)

[22] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, C. Zhai, “Have things changed now?:an
empirical study of bug characteristics in modern open source software,” in
The Workshop on Architectural and System Support for Improving Software
Dependability, 25–33, 2006.

[23] Y. Zhou, Y. Tong, R. Gu, H. Gall, “Combining text mining and data mining for
bug report classification,” Journal of Software: Evolution and Process, 28(3),
150–176, 2016, doi:10.1002/smr.1770.

[24] “Detecting Missing Information in Bug Descriptions,” ESEC/FSE 2017, 396–
407, New York, NY, USA, 2017, doi:10.1145/3106237.3106285, event-place:
Paderborn, Germany.

[25] D. C. Das, M. R. Rahman, “Security and Performance Bug Reports Identifi-
cation with Class-Imbalance Sampling and Feature Selection,” in 2018 Joint
7th International Conference on Informatics, Electronics Vision (ICIEV) and
2018 2nd International Conference on Imaging, Vision Pattern Recognition
(icIVPR), 316–321, 2018.

[26] B. J. Guarraci, “Instrumenting software for enhanced diagnosability,” 2012, uS
Patent 8,141,052.

[27] D. Yuan, J. Zheng, S. Park, Y. Zhou, S. Savage, “Improving software diag-
nosability via log enhancement,” in Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Systems,
3–14, 2011.

[28] Y. Le Traon, F. Ouabdesselam, C. Robach, “Software diagnosability,” in Soft-
ware Reliability Engineering, 1998. Proceedings. The Ninth International
Symposium on, 257–266, IEEE, 1998.

[29] A. Kavcic, “Software Accessibility: Recommendations and Guidelines,” in
The International Conference on Computer As A Tool, 1024–1027, 2006.

[30] J. Manual, “Manual for the operation of the joint capabilities integration and
development system,” US Department of Defense. Washington. DC, 2012.

[31] C. Chen, M. Shoga, B. Li, B. Boehm, “Assessing Software Understandability in
Systems by Leveraging Fuzzy Method and Linguistic Analysis,” in 2019 Con-
ference on Systems Engineering Research (CSER) (2019 CSER), Washington,
USA, 2019.

[32] K. J. Sullivan, W. G. Griswold, Y. Cai, B. Hallen, “The structure and value
of modularity in software design,” in ACM SIGSOFT Software Engineering
Notes, 26, 99–108, ACM, 2001.

[33] R. Sanchez, J. T. Mahoney, “Modularity, flexibility, and knowledge
manage-ment in product and organization design,” Strategic Management
Journal, 17(S2), 63–76, 2015.

[34] C. U. Smith, L. G. Williams, Performance solutions: a practical guide to
creating responsive, scalable software, 1, Addison-Wesley Reading, 2002.

[35] L. Duboc, D. Rosenblum, T. Wicks, “A framework for characterization and
analysis of software system scalability,” in Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering, 375–384, ACM,
2007.

[36] J. D. Mooney, “Issues in the specification and measurement of software porta-
bility,” in 15th International Conference on Software Engineering, Baltimore,
1993.

[37] A. S. Tanenbaum, P. Klint, W. Bohm, “Guidelines for software portability,”
Software: Practice and Experience, 8(6), 681–698, 1978.

[38] C. Chen, M. Shoga, B. Boehm, “Characterizing software maintainability in
issue summaries using a fuzzy classifier,” in 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security (QRS), 131–138,
IEEE, 2019.

[39] R. Moazeni, D. Link, C. Chen, B. Boehm, “Software Domains in Incremen-
tal Development Productivity Decline,” in Proceedings of the 2014 Interna-
tional Conference on Software and System Process, ICSSP 2014, 75–83,
Association for Computing Machinery, New York, NY, USA, 2014, doi:
10.1145/2600821.2600830.

[40] Q. Wang, “Why Is My Bug Wontfix?” in 2020 IEEE 2nd International
Work-shop on Intelligent Bug Fixing (IBF), 45–54, 2020.

[41] T. Zimmermann, N. Nagappan, P. J. Guo, B. Murphy, “Characterizing and
predicting which bugs get reopened,” in 2012 34th International Conference
on Software Engineering (ICSE), 1074–1083, 2012.

www.astesj.com 174

http://www.astesj.com

	Introduction
	Related Work
	Software Maintainability Measurement
	Bug Characteristics Analysis with Natural Language Processing

	Empirical Study
	Background
	Software Maintainability Ontology Background
	Background Studies

	Research Questions
	Study Design
	Study Subjects
	Data Extraction and Analysis

	Results and Discussion
	RQ1
	Overall Proportions
	Relative Proportions

	RQ2
	RQ2a: Reopened, Won't-fix and Unresolved
	RQ2b: Severity

	RQ3
	Changes between major versions
	Changes within major version by year
	Changes by year overall

	Threats to Validity

	Conclusion

