
 

www.astesj.com     464 

 

 

 

 

Design Approach of an Electric Single-Seat Vehicle with ABS and TCS for Autonomous Driving Based on 
Q-Learning Algorithm 

Jason Valera1, *, Sebastian Herrera2 

1Mechanical Engineering Section, Engineering Department, Pontifical Catholic University of Peru, 15088, Peru 

2Electronic Engineering Section, Engineering Department, Pontifical Catholic University of Peru, 15088, Peru 

A R T I C L E   I N F O  A B S T R A C T 
Article history: 
Received: 24 December, 2020 
Accepted: 26 February, 2021 
Online: 17 March, 2021 

 Compared to other types of autonomous vehicles, the single-seat is the simplest when 
designing, since its compact design makes it an option that can simplify different mechanical 
aspects and enhance those of greater importance such as the steering and the braking 
system. Likewise, the electronic and electrical design may be a great improvement on the 
vehicle. It enhances the safety on road by interacting with the mechanical parts of the vehicle 
and increasing the driver’s perspective or reaction in a larger range of scenarios. For an 
electric vehicle is also important to clarify that, as an internal combustion engine vehicle, it 
needs to be regulated and have all the necessary equipment to circulate on the streets. Other 
interesting information is that an electric vehicle can be recharged with electricity and it can 
come from renewable energy, diminishing its already lower carbon footprint. Therefore, to 
achieve autonomy over the detection and evasion of objects, the application of intelligent 
algorithms is dispensable. To achieve the obtained result, a Q-Learning algorithm was 
applied on the complete 3D model of the vehicle in a simulation environment, which allows 
finding the best parameters of forward and turning speed. In this way, by reaching a design 
that meets the requirements and applying the results obtained in the aforementioned 
algorithm, it allows their interaction in a real environment to be satisfactory. 
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1. Introduction   

This work is an extension based originally on the groundwork 
presented in the 4th IEEE Sciences and Humanities International 
Research Conference (SHIRCON-2019) [1]. This paper will focus 
on the improvements of the mechanical, electronic and electrical 
design, as well as the implementation of the Q-Learning algorithm 
while Ref. [1] focuses on the preliminary design of the vehicle, the 
development of the vision algorithms to be used and the 
development structure in the simulation environment. 

Obstacle detection and avoidance in autonomous vehicles is 
mandatory for these smart systems to work fully. To the present, 
there are multiple algorithms of imminent detection and evasion 
developed by the automotive industry with a really appreciable rate 
of precision. Thus, in order to get closer to achieving these results, 
it is essential that the mechanical, electronic and electrical design 
of the vehicle has specific criteria in the most important 
considerations that are related to the objective of detection and 
evasion. That is why, for example, the design of the steering 

system must provide the closest modeling to reality, in order to 
obtain the best parameters to include in the simulation 
environment. On the other hand, for the overall vehicle design to 
respond according to the results obtained in the simulation, the 
electronic and electrical design must take into account the 
appropriate selection of components, as well as their interaction. 

Consequently, Figure 1 shows the final design of the vehicle. 
Despite the changes made, the safety factor has maintained its 
value of 1.8, this is because when considering the improvements, 
the distribution of mass which allowed the most critical areas to be 
subjected to less stress. 

For the additional calculus in the present paper, the 
approximate value of power of the vehicle is 1911 watts. The 
mechanical efficiency is 96%, effective power of approximately 
2000 watts is required. According to the previously obtained value 
of power, a 2.5 HP PCM motor was selected for the impulse of the 
vehicle, this motor has a maximum speed of 2800 RPM. 
Additionally, another motor appointed to control the car’s steering 
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system was required. For this case, a 350 watts DC motor was 
selected.  

 
Figure 1: Isometric view of the 3D model of the chassis and components. 

With the details described above, they allowed the previous 
research to obtain a preliminary mechanical, electronic and 
electrical design based on the considerations of making a low-cost 
prototype. Likewise, the baselines for the recognition of the 
environment that will allow the artificial intelligence algorithm to 
be trained. However, the design in general had not been developed 
in depth and in detail on the most relevant considerations for the 
intelligent algorithm, such as the vehicle's turning design and the 
brake system, as well as its integration into the electronic and 
electrical design. 

This research has the following outline: Section 2 will 
introduce the improved vehicle’s mechanical design. Next, the 
improved vehicle’s electronic and electrical design is presented in 
Section 3. Then, Section 4 will present the Q-Learning algorithm 
results. Finally, Section 5 will discuss the conclusion of the 
findings. 

 
Figure 2: Ackerman Principle [2] 

2. Mechanical Design Enhancement 

2.1. Steering System 

The direction of a vehicle is responsible for orienting some or 
all of its wheels so that it takes the desired path. It was found that 

for a better turning behavior, in the case of a four-wheel vehicle 
with its steering system on the front axle, it is necessary for the 
inner wheel to turn a greater angle than the outer one, because the 
inner wheel follows a smaller turning radius than the outer wheel. 
It was also found that to experience even better turning behavior, 
the projections of the axes perpendicular to the steering axle of the 
wheels must intersect at the same point. This behavior is called the 
Ackerman principle, after Rudolph Ackerman patented it in 1817 
for use in horse carts [2]. The Ackerman Principle is shown in the 
following figure. 

To guarantee a close point of rotation of both wheels, which 
ensures almost zero skid angles at low speeds when the vehicle 
goes around a curve, the Ackerman configuration shown in by the 
following expression. 

 cot(𝛿𝛿𝛿𝛿) − cot(𝛿𝛿𝛿𝛿) = 𝑤𝑤/𝑙𝑙 (1) 

Where 𝛿𝛿𝛿𝛿 is the steering angle of the outer wheel, 𝛿𝛿𝛿𝛿 is the 
steering angle of the inner wheel, 𝑤𝑤 is the distance between the 
axes of the wheels, called Track, and 𝑙𝑙 is the distance between the 
front and rear axles of the vehicle, called Wheelbase, as shown in 
the figure [2]. 

In the same way, an expression can be obtained that describes 
the radius of gyration of the center of mass of the vehicle in steady 
state. This is calculated by the following expression. 

 R2 = 𝑎𝑎22 + 𝑙𝑙2cot2(𝛿𝛿) (2) 

Where 𝑎𝑎2 is the distance on the vehicle's axis of travel between 
the rear axle and the center of mass and 𝛿𝛿 is the cotangent average 
of the internal and external angles of the wheels. 

Therefore, to determine the closeness of a mechanism to the 
behavior of the Ackerman configuration, an error function must be 
determined, in this manner by minimizing its value, get the closest 
expected result according to the configuration that was found. This 
function can be expressed as a mean square error (RMS) value. In 
this case, the error function cannot be explicitly defined and must 
be evaluated for 𝑛𝑛 values of the mentioned angles. The expression 
that determines the mean square error value of a set of discrete 
values of 𝑒𝑒r is defined by the following equation [3]. 

 er2 = ∫ (𝛿𝛿𝛿𝛿𝛿𝛿 –  𝛿𝛿𝛿𝛿𝛿𝛿)2 𝑑𝑑𝛿𝛿𝛿𝛿𝛿𝛿2
𝛿𝛿1  (3) 

Where 𝛿𝛿𝛿𝛿𝛿𝛿 is the angle of the external wheel of the developed 
mechanism and 𝛿𝛿𝛿𝛿𝛿𝛿 is the angle of the external wheel of the 
Ackerman configuration according to the characteristics of the 
vehicle for a range of internal wheel angles 𝛿𝛿𝛿𝛿 determined. 

The drawback in this case is to be able to determine the external 
wheel angle 𝛿𝛿𝛿𝛿 for an internal wheel angle value 𝛿𝛿𝛿𝛿 in a given 
mechanism. Showers and Lee present in their document "Design 
of the Steering System of an SELU Mini Baja Car" a methodology 
to determine internal and external wheel angles for a steering 
mechanism used corresponding to that of a Daewoo Damas model 
car [4]. 

Finally, according to the proposed mechanical design, there is 
a value of 𝑤𝑤 equal to 0.994 meters and a value of 𝑙𝑙 equal to 1.960 
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meters, as well as a value of 𝑎𝑎2 approximately 0.784 meters, for 
which when performing the iterations in MATLAB, it was 
obtained that the radius of gyration R corresponds to a value of 
0.803 meters, which is within the established limits. 

2.2. Braking System 

The principle of a braking system is the reduction of kinetic 
and potential energy that a vehicle presents when it is in motion. 
This energy is transformed into heat energy and is dissipated in the 
brake discs, produced by the friction of the brake pads. Therefore, 
to select a component that meets the vehicle's requirements, it is 
necessary to find the maximum torque provided [5]. A figure 
illustrating this is shown below. 

 
Figure 3: Brake Disc Diagram [5] 

where Fc is the clamping force of the brake mechanism and re is 
the effective radius. The braking torque is calculated by the 
following expression. 

 T = 2(Fc)(re)(u) (4) 

According to the selected braking system, there is a value of Fc 
equal to 1000 Newton and a value of re equal to 0.09 meters, as 
well as a value of u, coefficient of friction, approximately 0.2, with 
these values it was obtained that the braking torque T corresponds 
to a value of 36 Newton-meters. On the other hand, the maximum 
torque generated by the vehicle's engine is equivalent to a value of 
around 32 Newton-meters. This value is the result of the chain 
drive reduction used; the ratio of 15 teeth on the pinion and 72 teeth 
on the spur gear, delivers 1:4.8, which equates to a maximum speed 
of approximately 583 RPM. Therefore, this torque value is less 
than the brake system torque. 

3. Electronic and Electrical Design Enhancement 

The electronic and electrical enhancement of this electric 
vehicle (EV) is focused in two main critical points. First, safety 
features like anti-lock brake system (ABS) and traction control 
system (TCS) were added. Second, mandatory equipment like 
head lights, direction indicator lights and others were considered 
in the design. In addition, electronic controls and better 
understanding of the connections are reviewed. 

3.1. Anti-lock Brake System and Traction Control System 

The simplest anti-lock brake and traction control systems are 
based on the information acquired through speed sensors that are 

placed in each wheel. Both of them may use this information to 
control and stabilize the vehicle by assuring that the wheels are 
spinning as intended. 

The ABS prevents the brakes from locking up the wheels. It 
maintains the steerability and controllability of the vehicle under 
braking circumstances [6]. The electronic control unit (ECU) 
receives the information of the speed sensors and performs control 
techniques in order to regulate the brake pressure applied on the 
pedal. Figure 4 shows a common ABS control loop of an internal 
combustion engine (ICE) vehicle. 

The TCS prevents the wheels from overspinning. It maintains 
the stability and traction when accelerating [7]. In this case, the 
ECU receives the same information as the ABS, but, depending on 
the design, TCS may have two variants. On one hand, the TCS 
with brake intervention activates the brakes of the overspinning 
wheels until they match the speed of the other ones. On the other 
hand, the TCS with engine intervention reduces the amount of 
power the overspinning wheels are receiving until they match the 
speed of the other ones. A comparison is shown in Figure 5. 

 
Figure 4: ABS control loop [7] 

 
Figure 5: TCS variants comparisons [8] 

These systems are tested in different types of environments and 
scenarios. For example, a vehicle equipped with ABS and TCS 
must not lose control on certain types of surfaces (e.g. wet surface), 
must be stable during acceleration or braking and must deal with 
curves without losing traction. Apart from that, it is important to 
know that these systems should be calibrated according to the 
vehicle itself because parameters like the torque of the motor or 
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the size of the wheels may change its dynamics, thus the control 
algorithm for these systems. 

For this work, ABS and TCS with engine intervention are 
included in the vehicle’s design as safety features. They are meant 
to be simple, effective and complementary. The objective is to 
increase the variety of environments and scenarios the vehicle is 
capable to deal with.  

The connection diagram of the EV is presented to have a better 
understanding of the vehicle’s internal distribution (see Figure 6). 
The main components are the 2000 watts’ permanent magnet 
synchronous motor (PMSM), the motor controller, the 72 V lead-
acid battery pack, the gear shift lever, the ignition key, the brake 
and the throttle. These components are enough to make the EV 
move forward or backward. In addition, two DC-DC converters 
are necessary. On one hand, a 72 V to 12 V converter is used to 
power other components that run on 12 V and later on 5 V for the 
microcontroller or sensors. On the other hand, a 72 V to 24 V 
converter is used to power the steering motor. 

 
Figure 6: EV connection diagram 

The throttle and the brake are different from each other. On one 
hand, the throttle uses hall sensors to measure its position. It is 
powered with 5V and delivers a signal from 1 V to 4.8 V into the 
throttle pin of the motor controller when manipulated. On the other 
hand, the brake is a simple switch that connects 12 V to the brake 
pin of the motor controller (electric brake). The ABS and TCS 
concept for this design relies on activating or deactivating the 
throttle and the brake when necessary. For this purpose, a window 
comparator circuit is implemented in Arduino and simulated in 
Proteus (see Figure 7). 

The main components used for the simulation are the Arduino 
MEGA with ATmega 2560 microcontroller, the IRF9530 
MOSFET transistor and the 2N3904 BJT transistor. The input 
signals are attached to the interrupt pins (18, 19 and 20) of the 
microcontroller so it doesn’t miss any data while sensing. These 
signals simulate the speed sensors (Hall effect sensors). LED D1 
and LED D2 represent the throttle and the brake (ON state means 
enabled and OFF state means disabled). It is important to notice 
that the ABS and TCS can be activated or deactivated depending 
on the user’s decision. The user only needs to close the switch to 
bypass any of those systems.   

 
Figure 7: ABS and TCS simulation 

The speed sensor used for the design is the A1104 Hall effect 
sensor (see Figure 8). Two are placed in the front wheels and one 
is placed on the rear axle. This sensor will commute when 
detecting the south pole of the magnetic ring (48 north poles and 
48 south poles) attached to the rotary axles of each wheel. The time 
is measured between each pulse and compared with each sensor to 
determine if the wheels are locked up or overspinning. First, if the 
wheels lock up while braking, the microcontroller deactivates the 
brake (ABS) but keeps the throttle activated. Second, if the wheels 
start overspinning, the throttle is deactivated (TCS) but keeps the 
brake activated. Third, if the speed of each wheel is almost equal, 
no control is applied and both remain activated. A difference 
threshold is considered for the simulation in case the sensors do 
not match properly. For TCS a threshold of 5 RPM to 10 RPM was 
estimated and for ABS a threshold of 30 RPM or higher was 
considered. These values may vary depending on the road 
conditions and the level of the systems’ effectiveness. They must 
be calibrated based on that information. 

 
Figure 8: Schematic of the A1104 sensor [9] 

The following calculations were made to assure a correct 
behavior of the device. The A1104 sensor has a slew rate of 2.5 
V/us and it works on 5 V. This gives a 2 us rise and fall time for 
this voltage. It means that the signal could have a period four times 
the rise time, in other words, a frequency of 125 kHz before it gets 
distorted. The maximum speed of the motor reaches 5000 RPM 
(84 Hz) without load and with flux weakening. As mentioned 
before, there are 48 south poles that will trigger the sensor and 
gives a maximum frequency of 4032 Hz. This frequency is far 
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below the 125 kHz and determines that will work properly. The 
complete connection diagram is showed in Figure 9. 

 
Figure 9: ABS and TCS connection diagram 

 
Figure 10: Normal state 

The results can be seen in Figure 10, Figure 11 and Figure 12 
(Proteus’ oscilloscope). The yellow signal represents the left front 
wheel sensor (only using one as a reference), the blue signal 
represents the rear axle sensor, the red signal controls the 
activation of the break and the green signal controls the activation 
of the throttle. First, Figure 10 shows a normal state in which both 
sensors match the same frequency. This means that the wheels are 
spinning at the same speed and no control is applied. The break 
and the throttle are activated (4.90 V and 4.90 V respectively). 
Second, Figure 11 shows an overspinning situation in which the 
rear axle sensor is measuring a higher frequency than the front 
wheel sensor. This means that the rear wheels are spinning faster 
than the front wheels. The brake remains activated and the throttle 
is deactivated (4.90 V and 0 V respectively). Third, Figure 12 
shows a lock up situation in which the rear axle sensor is measuring 
a lower frequency than the front wheel sensor. This means that the 
rear wheels are spinning slower than the front wheels. The brake 

is deactivated and the throttle remains activated (0 V and 4.90 V 
respectively). 

 

Figure 11: Overspinning situation 

 

Figure 12: Lock up situation 

3.2. Equipment 

All vehicles are enforced to follow certain specifications in 
their design to be admitted to circulate on the streets. Minimum 
requirements include head, reverse, indicator and brake lights. 
These lights were included in the design and are graded to be used 
on almost any vehicle (see Figure 13). White reverse lights are 
activated with the gear shift lever, red brake lights are activated if 
the head lights switch is closed or the brake is applied, and amber 
indicator lights, head lights and the cabin light are activated with a 
switch. 

This vehicle is powered by six 12 V lead-acid batteries 
connected in series (total of 72 V) and a 12 V lead-acid battery for 
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the electronics, accessories and other equipment. Each battery has 
55 Ah of capacity and the total energy of the vehicle is estimated 
to be 330 Ah or 4 kWh (including the six pack only). Eventually, 
the batteries will lose energy when being used and will need to be 
recharged. In this case, a commercial 72 V charger and a solar 
charging system is being included in the design (see Figure 14). 

 
Figure 13: Lights connection diagram 

The charger itself is capable of delivering 12 A, so it will take 
approximately 30 hours to completely charge the vehicle. It is 
recommended not to discharge these batteries below 40% of their 
capacity because they could be damaged and decrease their 
performance. 

 
Figure 14: Charging infrastructure 

The solar charging system is calculated based on a full charge 
for the EV assuming that it won’t be discharged below 40% (4 
kWh*0.6 = 2.4 kWh). All the parameters for this system are 
obtained with the software Stringsizer from ABB and it will be 
considered On the grid (Lima, Peru). The peak sun hour (PSH) is 
determined considering the mean during a year in Lima and is 
equal to 5.71 kWh/m2. The performance ratio (PR) is a constant 
value applied to give a margin in case more energy is required and 
is equal to 0.8. The kilo Watt-hour (kWh per day) is the amount of 

energy needed, for this design, it is considered to be 2.4 kWh that 
was calculated previously. The following expression is used to 
establish the power needed for the solar panels. 

 kWh = (kWp)(HSP)(K) (5) 

After making the calculations, the results determine that a 0.52 
kWp (kilo Watt peak) solar charging system is required. 
Considering a 2 m2 and 200 Wp solar panel, the system requires a 
minimum of 3 solar panels. To increase the efficiency due to 
inverters, a group of 5 panels with a total of 1.2 kWp and a 1.2 kW 
power inverter are chosen. A battery bank with the same vehicle’s 
capacity is recommended but not essential. 

4. Applied Intelligence 

Reinforcement learning (RL) is defined as a sequential 
decision-making problem of an agent that has to learn how to 
perform a task through trial and error interactions with an unknown 
environment which provides feedback in terms of numerical 
reward [10,11]. 

The Markov process is the theoretical basis of reinforcement 
learning, which can be expressed by the Q-learning algorithm, 
which is the most classical and commonly used algorithm to solve 
the MDP problem. It can only be used to solve MDP problems with 
actions and state spaces both discrete and finite. With an initial Q-
table and a predefined policy, in each step, the agent selects an 
action based on the current state, which according to the reward is 
fed back and the observation of the next state, the Q table is 
updated using the algorithm described in the section 4.1, to finally 
repeat the steps until the Q function converges to an acceptable 
level [12]. 

With the Q Learning algorithm, we can allow intelligent agents 
to operate in environments with discrete action spaces. The 
discrete action space refers to actions that are well defined, such as 
movement from left to right, up or down.  

For example, in the context of autonomous driving, while the 
dynamics of the autonomous vehicle is clearly a Markov decision 
process, the next state depends on the behavior of other elements 
such as vehicles, pedestrians or cyclists, which are not necessarily 
an MDP [13].  

Therefore, in the case of the design proposed as a starting point 
for local research in our region, it is convenient to dispense with 
those elements that are not MDP. Thus, in the context of 
autonomous driving, given the unpredictable behavior of vehicles 
or pedestrians, these elements will not be considered for the 
reinforcement learning algorithm. 

4.1. Algorithm 

We start by defining the appropriate set of desires for driving 
based on the desired speed of the vehicle and the angle of rotation 
that the turn allows. On the other hand, a cost function is needed 
on the conduction paths that corresponds to its location by means 
of coordinates in a plane. The cost that is assigned to a trajectory 
corresponds to the weighted sum of the individual cost assigned to 
the speed and position. Additionally, weights are assigned to each 
of the costs described above to obtain a single objective function 
to control the trajectory. Therefore, the policy consists of a 
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mapping of the state of desires and a mapping of the requested 
trajectory. This last mapping is implemented by solving an 
optimization problem whose cost depends on the set of desires 
[14]. 

Algorithm 1: Q-Learning 
function: Q-Learning Agent (percept) returns an action 
Initialization; 
inputs: percept, indicating the current state s’ and reward r’ 
persistent:  
Q, a table of action values indexed by state and action, 
initially zero 
Nsa, a table of frequencies for state-actions pairs, initially 
zero 
s, a, r, the previous state, action and reward, initially null 
if Terminal?  (s) then Q[s, none] ← r’ 
   if s is not null then   
  Increment Nsa[s, a] 

Q[s, a] ← Q[s, a] + alpha(Nsa[s, a])(r + y Q[s’, a’]- 
Q[s, a]) 
s, a, r  ← s’, argmax((Q[s’, a’]- Q[s, a]),Nsa[s’, a’]), r’ 

return a    
 

The Q values correspond to the utility of executing each action 
a in state s, that is, the action of advancing or stopping in a state of 
object detection, as well as the action of evading by turning in a 
state mentioned above. Also, alpha and y are the hyper parameters 
for tuning the algorithm. 

4.2. Results 

During the development of the algorithm in the GAZEBO 
simulation environment, it was important that the algorithm be 
able to calculate the "road parameters", these correspond mainly to 
the speed of the vehicle, which includes acceleration or 
deceleration, and the steering angle.  

After having tried different rates of learning, no great progress 
has been made. This is because the optimal local solution could be 
due to the magnitude gap between the reward value and the 
punishment, leading to a large number of training epochs. on the 
way. Finally, the learning procedure converges after 
approximately 250 episodes. The vehicle can evade fixed obstacles 
by avoiding sudden changes in acceleration by means of a speed 
and angle of turn. 

 
Figure 15: The evaluation of the algorithm 

The figures below show the implementation of the model in the 
simulation environment together with objects that can be detected 
by the LIDAR sensor and the camera. Figure 16 shows how the 
vehicle with the sensor region and camera field of view, Figure 17 
shows its interaction with the environment and Figure 18 and 19 
shows the decision and evasion sequence to avoid colliding with 
an object. 

 
Figure 16: Implementation of the 3D model in the simulated environment 

 

Figure 17: Interaction of vehicle with the environment 

 

Figure 18: Actions of the vehicle with the environment 
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Figure 19: Actions of the vehicle with the environment 

5. Conclusions 

It was achieved that the mechanical design, taking into account 
the manufacturing and budget limitations, is based on the 
methodologies for the correct operation of the system in general 
such as the steering system. On the other hand, design 
improvements will be analyzed and developed according to the 
completion of manufacturing. It is appropriate to mention that, as 
a consequence of the pandemic that has been affecting the world 
population, the implementation and manufacture of the vehicle has 
been stopped to safeguard the health of the members. 

The electronic and electrical design enhancement has proved 
its benefits. First, safety on road has increased due to the addition 
of the anti-lock brake and traction control systems. The 
simulations determined the effectiveness of the control algorithm 
design for this vehicle. This algorithm was aimed to work better 
on wet surfaces, but it was not simulated for other kinds of terrain, 
like mud or gravel. It enhanced the driver response and the stability 
of the vehicle. Second, mandatory equipment has been added to 
allow the circulation of this vehicle on the streets. This also 
increased safety while driving among other vehicles. A future 
insertion to the cities automotive fleet is closer. Finally, an EV has 
a low carbon footprint in comparisons to the ICE vehicles. To keep 
this track, a solar charging system demonstrated that it is not 
necessary to utilize the city power, mostly if this energy is 
generated by hydrocarbons. 

Finally, the classical Q-learning algorithm is unfeasible for 
more complex control problems, since each additional dimension 
contributes exponentially to the size of the state space, with it a 
significant high-dimensional preprocessing. Thus, there are other 
techniques such as DDPG, which combines the DQN algorithm, 
Deterministic Policy Gradient (DPG) and Actor-Critic [15]. The 
basic idea consists of the repetition of experiences to eliminate 
relevance, since at the moment of storing the experiences of an 
agent and then randomly extracting batches to train a neural 
network, a more solid learning for the specific tasks can be 
guaranteed. For example, the results obtained by Chen, Seff, 
Kornhauser and Xiao use the algorithm described above as a 
baseline, and show the penalties it gets and the large amount of 
processing required to reach an optimal policy (around 80,000 
iterations) [16]. However, the proposal of this paper includes 
simplifications in the mechanical and electrical design that allow 

reducing the dimensionality of the Q-learning algorithm, which 
results in a much faster dimensional processing and penalties close 
to 0 compared to the DDPG algorithm. Therefore, the best driving 
parameters according to the proposed vehicle design are obtained 
by the Q-learning algorithm. The subsequent optimization will be 
the training with controlled situations implemented in the 
simulation environment, such as street generation and route 
indication. In this way, once the prototype has finished its 
manufacture, perform the integration with ROS so that the 
simulation environment allows the agent to obtain the actions 
closest to a real situation.  
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