

www.astesj.com 286

Optimized Multi-Core Parallel Tracking for Big Data Streaming Applications

Doaa Ahmed Sayed*, Sherine Rady, Mostafa Aref

Ain Shams University, Faculty of Computer and Information Sciences, Cairo, 11865, Egypt

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 12 December, 2020
Accepted: 19 March, 2021
Online: 28 May, 2021

Efficient real-time clustering is a relevant topic in big data streams. Data stream clustering
needs necessarily a short time execution frame with bounded memory utilizing a one-scan
process. Because of the massive volumes and dynamics of data streams, parallel clustering
solutions are urgent. This paper presents a new approach for this trend, with advantages
to overcome the main challenges of huge data streams, time, and memory resources. A
framework is proposed reliant on a data clustering parallel implementation that divides
most recent incoming data streams within a sliding window mechanism to distribute them
across a multi-core structure for processing. Every core is responsible for the processing
and generation of intermediate micro-clusters for one data partition. The resulting micro
clusters are consolidated utilizing the additive property of the micro-cluster data structure
to merge those parallel clusters and obtain the final clusters. The proposed approach has
been tested on two sorts of datasets: KDD-CUP’99 and KDD-CUP’98. The results show
that the proposed optimized parallel window-based clustering approach is efficient for
online cluster generation for big data streaming with regard to the performance measures
processing time and scheduling delay. The processing time is 1.5 times faster, and the
scheduling delay is approximately between 1.3 to 1.7 times less than the sequential
implementation. Most important is that the clustering quality is equal to that of the non-
parallel implementation.

Keywords:
Data streams
Spark
Sliding window
K-means++ clustering
Parallel processing
Map-reduce framework

1. Introduction

Modern advances in ICT and its utilization in business and life
sectors have prompted the quick development of huge volumes of
data recognized as big data [1]. The basic attributes of huge data
are its dynamics (speed), which indicates that data upon arrival
needs prompt processing at varying speediness. While for certain
applications, the appearance, and preparation of data can be
achieved as offline batch processing, other applications need
continuous analysis in real-time for the arriving data [2-4]. Data
stream clustering is characterized as the data gathering,
considering as often as possible the arrival of new data chunks,
while seeking the understanding of examples that may modify after
some time [5]. The amount of data coming at high and changeable
velocities that assume ordinary clustering algorithms ineffective in
terms of meeting real-time requirements, and hence considered
incapable of dealing with the requests properly [6].

Data stream clustering includes several difficulties; to meet
continuous necessities [7]. The clustering should be executed in a
brief period of timeframe with bounded memory using a single-
scan process. So, following clusters in the sliding window is
possibly an effective way to deal with the restrictions in time and
memory [8].

Windowing is one famous handling strategy that is utilized
with the data streams. Windowing applied to split data streams into
windows, reliant on the time measurement. Exist different sorts of
window models for the following changing data streams [7]: 1)
Landmark, 2) Damped, and 3) Sliding. In a Landmark window, the
window is controlled by a certain time point defined as a landmark
and the present. It is utilizing for mining over the whole history of
the data streams. Landmark is not fitting for applications where up-
to-date data is more significant than obsolete data. In the damping
model, weights are determined to data, where higher weights are
given to the latest data items and less weight is specified to the
outdated data. This implies that the model expects the latest
information as more critical than the older data. Sliding window
models suppose that the new data is more valuable than outdated

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Doaa Ahmed Sayed, doaa.ahmed74@yahoo.com

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com

https://dx.doi.org/10.25046/aj060332

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060332

D.A. Sayed et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com 287

data by utilizing a window. The latest occurrences falling inside
the window of the data stream are preserved while dispensing with
old data. The reason to utilize the sliding window instead of
models is regularly basically desired for keeping time and memory
resources.

Recently, distributed and parallel algorithms provide solutions
for analyzing big data streams in actuality, which is apparent in the
more current research works [9]. Parallel solutions and distributed
offer various advantages, such as diminishing the time, expanded
versatility of arrangements, and suitability for applications of the
distributed kind. The currently available multi-core processor
commodity computers at afforded costs assist the development of
applications in a much easier and reliable way. A computer can
contain up to 72 core processors giving high processing power.
The inquiry then remains how these available processing onboard
resources are utilized for providing optimized solutions for the
different real-time in-demand applications.

Most existing parallelism strategies for clustering algorithms
cannot give the same clustering quality as the sequential algorithm
[1]. The change in clustering quality is impacted influenced by the
methods utilized for the data distribution partitioning and results
consolidating techniques for the results.

SCluStream [8] is a previously introduced efficient sliding
window-based algorithm for clustering data streams considering
pre-mentioned data stream difficulties. It works in three phases,
wherein the online phase; the most recent data is continuously
maintained. The second phase is an expiring phase, where the old
data is discarded such that less memory is squandered. The last
phase is offline, where the clustering k-means++ algorithm is
utilized.

This paper proposes a parallel implementation of the
SCluStream algorithm utilizing a multi-core parallel processing
framework. The implementation makes the best utilize of the ready
cores utilizing a stand-alone platform on a single machine. In the
framework, the data set is split into several partitions. Every
partition is processed in a separate core, with an equal workload
assigned for every partition. Sequential k-means++ is executed
next to generate intermediate results (i.e. micro-clusters) for each
partition. Eventually, final clusters are consolidated by applying
the additive property on micro-clusters, which utilizes the concept
of merging the two nearest micro clusters; reliant on the Euclidean
distance between micro-clusters.

The organization of this paper is as follows: Section 2
summarizes the related works and existing gaps. Section 3 the
spark streaming architecture is explained as the preliminary basis
to our big data implementation. Section 4 explains the parallel
clustering data streams reliant on the sliding-window and k-
means++ parallel algorithm. In section 5 the experimental study
and assessments are discussed. In the final section conclusion and
future work are clarified.

2. Related work

Clustering huge data volumes require long execution times,
especially when talking about dynamic data streams. Many
solutions are proposed to beat this issue. Some of them have been
done as batch analysis [10-13], while others as streaming analysis
[14-19]. Some research enhanced the processing of the algorithm

itself by tuning its parameters or modifying the principal
framework for the algorithm. Whereas other research opted for the
utilization of the parallelism concept, which is often executed
utilizing two major strategies. While the first strategy utilizes a
network of linked machines, where the clustering algorithm is
implemented on a group of computers [10-16]. The second
strategy utilizes a single machine with a multi-core processor [11,
18, 19]. In both strategies, the data is distributed among the
computers or cores in the first step. Next, comes a consolidation
step which should sum up for the correct execution of the
clustering algorithm, and which should be roughly as exact as
possible when compared to the algorithm executing on a single
machine. In the distributed environments, these two
aforementioned steps in respective order are commonly identified
as the mapping and reducing operations that correspond to the
mentioned two steps in respective order. MapReduce [20, 21] is
the common framework for effectively writing applications, which
process enormous amounts of data in a parallel way.

A new parallel manner for partitioned clustering algorithms
reliant on MapReduce is proposed [1]. The target of this
optimization is to enhance data distribution on connected nodes
and select the best centroids got from every reducer utilizing a GA
(genetic algorithm) based results consolidating methodology. In
the map phase, the data is distributed by utilizing the maximum
distance among the data points of the various partitions.
Consolidating the intermediate results acquired from the reducers
on a single node utilizing the genetic algorithm to acquire final
accurate results.

A common approach for parallel version of DBSCAN is
proposed for clustering massive amount of data [11, 13, 18]. A
huge dataset is separated into numerous partitions’ dependent on
the data dimensions and localized DBSCANs are applied to each
partition in parallel through a map phase. The results of each
partition are next consolidated in a final reduce phase, which has
been performed differently in the three works. A single node tree
is at first created for every data point in the dataset by utilizing the
disjoint set information structure. Intermediate trees are merged
according to the tree-based bottom-up approach after investigating
the eps-neighborhood for haphazardly chosen points [11]. A
division method named Cost Balanced Partition is utilized to
produce partitions with equal capacities and cost-based
partitioning (CBP), which determine the partition's data reliant on
the estimated calculation cost [13]. For the merging phase, a graph-
based algorithm is used to generate global clusters form local
clusters. Complex grid partitioning is used for dividing the data
space into several partitions for each dimension to minimize the
processing time of DBSCAN in parallel processing [12]. Local
DBSCAN is applied on each partition to make local clusters. In the
merging phase the overlapping clusters are extracted from spatial
clusters in a grid and spatial clusters in grids adjacent to its grid.
The taken overlapping spatial clusters are consolidated to create
one spatial cluster. This parallel addition meets the prerequisites of
scalable execution for managing huge data sets. However, this
addition is not appropriate for clustering real-time data. It requires
traversing the whole dataset for parallel clustering which infers
that its execution time is as yet reliant on the dataset size. Thus,
while has a great execution for batch-oriented mode, it isn't
reasonable for high-speed datasets [12, 13].

http://www.astesj.com/

D.A. Sayed et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com 288

A presented parallel implementation for clustering high-
dimensional data streams in streaming analysis is proposed [14, 15,
17, 22]. pGrid splits the high-dimensional data space into grids that
are clustered the grids rather than the raw data [14]. pGrid uses the
MapReduce framework. In the mapping phase, the arriving data
point is projected onto its matching grid to depend on its
dimensions, and thereafter the grid density is varied. In the
reducing phase, the grid cells are merged by each dimension and
at the end combining overlapping grid cells are combined to
generate the global clustering result. PPreDeConStream is
proposed with its parallel implementation in that utilized the
shared memory model and the online-offline framework [11, 22].
A new data partitioning technique, Fast Clustering (FC)
partitioning is applied. The idea of FC is reliant on splitting two 2-
dimensional spaces into four sub-cells until a threshold is obtained
(i.e. a threshold on the point's number in a cell) [15]. Then, the cells
containing the number of points that are less than this threshold are
deleted. The merging phase is based on an overlapping area
between cells. Clustering multiple data streams concurrently has
been done using a ClusTree algorithm [16,17]. Synopses of
different concurrent streams are kept up in an index structure
depend on R-tree. Keeping up summary statistics of each data
object leads to a larger workload. When new data comes, the
algorithm looks for the closest micro-cluster by navigating the tree
of which leaf nodes have all the micro-clusters. The greatest
hindrances of this algorithm are squandering more memory [17].
The addition of the conventional clustering algorithms Neural Gas
(NG) and the Self-Organizing Map (SOM) for clustering data
streams are proposed [19]. The extension is reliant on a simple
patch decomposition of the data set and only requires a fixed
memory space.

For most of the existing clustering parallel implementations,
the clustering quality is commonly less accurate than the sequential
implementation [1]. This is because the clustering quality is
affected by the methods utilized in the data partitioning and
consolidating phase. A common problem as well is that algorithms
can’t cope efficiently with fast-evolving data streams and consume
large memory for tracking the clusters. For most of the presented
related works, the processing time has been regarded as the major
performance measure to be tracked, with no additional measures,
such as the clustering quality and the scheduling delay.

3. Spark Streaming architecture

The principle concept in spark streaming is a discretized
stream (DStream) [22, 23] which is a consecutive sequence of
distributed collections of elements describing a continuous stream
of data, and which is called RDDs (Resilient Distributed Datasets).
DStreams can be created in two ways; either from a source (e.g.
data from a socket, Kafka, file stream, etc.) or by transforming
current DStreams utilizing parallel operators (e.g. Map, Reduce,
and Window). RDDs are usually, partitioned across multi-cores by
Spark. In spark, all the data is represented as RDDs and all
DStream operations as RDD operations [24,25, 26].

The number of RDDs partitions created can be specified. The
stream processing model in spark is a micro-batch processing.
Data received by Input DStreams are processed using DStream
operations.

The Spark cluster is responsible for scheduling and dividing
the resource in the machine. The main target of the cluster manager
is to divide the applications across resources to run the application
in parallel mode. Apache Spark has three kinds of cluster managers,
standalone, Hadoop YARN, and Apache Mesos. In this work, a
standalone cluster manager is utilized.

In the view of master-slave architecture, Apache Spark has
one master process and enormous worker processes. These are the
following: - the master process consists of a job tracker and a name
node. The job tracker is responsible for scheduling jobs and
assigning the jobs to the task tracker on the worker process, which
is responsible for executing the map and reduce function. The
name node is responsible for the storage and management of file
metadata and file distribution across several data nodes on worker
nodes, which contain the data contents of these files.

Spark gives a graphical UI (user interface) to following the
performance of applications. The two important metrics in web UI
are 1) Scheduling Delay - the time a batch remains in a queue for
the processing of prior batches to end. 2) Processing Time - the
utilized time to process every batch of data. The stream processing
model in spark is micro-batch processing, processing one batch at
a time, so batches wait in the queue until the prior batches finish.
The mechanism for minimizing the processing time of each batch
and scheduling delay is to increase the parallelism [24, 25].

4. Parallel clustering approach for data streams

Parallel processing provides an optimized solution for
clustering huge data streams given that the accuracy of clustering
is preserved. In this section, the proposed parallel design of the
SCluStream algorithm is described.

4.1. SCluStream

SCluStream saves more time and memory by processing the
most recent transactions that fall within window size and the old
data are eliminated, so SCluStream overcomes the main obstacles
in data streams: - time and memory resources. In the proposed
approach, SClustream is implemented on parallel processing
utilizing a multicore platform to increase the performance of
handling the large volumes of data streams. Figure 1 shows the
primary steps of SCluStream and the connections between these
steps. The representation of sequence steps and processes is
described by the flowchart shown in figure 2. SCluStream consists
of three phases.

1) Online phase

 Toward the start of the algorithm implementation, the q initial
micro-clusters are generated from the incoming real-time
data by applying k-means++ within the time window wt .

 The window time wt is kept up for following the latest
instances falling during the window size of the data stream
and dispensing the outdated data.

 Keeping the statistical data instead of keeping all incoming
data in micro-clusters.

 A micro-cluster comprises of the following components {N,
LS, SS, LST, SST} where, N the data points number, LS the
linear sum of the N, and SS the squared sum of the N. The
two last LST and SST are the sum and the sum of the squares
of the timestamps of the N.

http://www.astesj.com/

D.A. Sayed et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com 289

 When data point arrival, a single of the subsequent two
possibilities take place: -

i) The data point is consumed by one of the current micro-
clusters. This assimilation is based on the nearness of the
cluster to the data point; this is determined by applying a
distance metric among the centroid of the micro-cluster and
the data point. So, the data point is consumed to the closest
micro cluster.

ii) The data point is put in its specific new micro-cluster,
however with the restriction that the micro-clusters number
stays fixed. Thus, the current clusters number should be
decreased by one, which can be accomplished by merging the
two nearest micro clusters jointly.

2) Expiring phase

The snapshots are used for storing micro-clusters at each time
slot t within a time window 𝑤𝑤𝑡𝑡 . The establishment time for those
expiring snapshots doesn’t lie among the current time and the
window time subtracted from current time. Defining the expiring
snapshots from tss< Ts-wt where tss is the establishment time of
snapshot, Tc is the current clusters number time, wt is the window
time.

Figure 1: The primary steps of SCluStream [8]

3) Offline phase

The offline phase is consolidating the micro-clusters to deduce
the final clusters. The offline phase obtains the micro clusters from
kept snapshots during the time window wt. The final macro
clusters are defined by utilizing k-means++ rather than
conventional k-means to get more accurate results.

4.2. Parallel SCluStream processing

Partitioning the input data streams into a number of partitions.
Perform Parallel processing of k-means++ algorithm in online
phase on each partition to create micro clusters. Expanding the
number of parallel tasks that one executor can execute by
expanding the number of available cores to execute per executor.
The number of partitions input data streams and operations are
reliant on the existing number of cores. Each core is responsible
for processing one partition. The steps in figure 3 show the primary
steps of parallel-SCluStream and the connections among these
steps.

The Steps of SCluStream algorithm involved in the parallel
processing can be listed as follow:

1. In the initialization phase, the data is split into p partitions.

2. The online phase parallel processing can be described in the
following steps.

2.1 The distance calculation from every data point x to
every centroid by utilizing Euclidean distance, the
distance between every data point x and the c
centroids.

D (𝝌𝝌, ć) =�� (χ𝑖𝑖 − ć𝑖𝑖)
𝑛𝑛
𝑖𝑖=1 (1)

2.2 This step can be parallelized due to the volume of time
used for parallelizing this step brings, an advantage by
reducing the total processing time required for
finishing this step as multiple cores will process some
chunks of the complete dataset simultaneously.

2.3 Assign data point x to the nearest centroid reliant on
distance calculation in the previous step, this process
requires a number of comparisons (reliant on the
number of the clusters required to be obtained) for
choosing the cluster where the data point x should be
included. The comparison process will execute in
multiple threads, every thread will assign only part of
the records of the entire dataset to a single cluster.

2.4 Compute a set of new partial centroids for each of the
processed partitions. The distance between the new
centroids is calculated.

2.5 Compute new centroids for the whole data set and
match the values of the new centroids, with the values
of the centroids at the aforementioned iteration. If the
new centroids are different from the previous iteration
go to setp2; else continue to generate final clusters.

If the number of micro clusters is obtained then the final micro
clusters is generated; else merging two nearest micro-clusters by
using additive property of micro-cluster [7] data structure to
generate the determined number of final clusters reliant on the
distance calculated in step 3. The additive property means, the

Data

K-means++

Micro-Clusters
initialization/ (Update)

Saving
micro-

clusters in
snapshots

K-means++

Final Clusters

Online
Phase

Offline
Phase

http://www.astesj.com/

D.A. Sayed et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com 290

Yesy yes

No

 No No

Yes

Yes Yes

No

Figure2: SCluStream flowchart

nearest micro-clusters can be consolidated into a new micro-
cluster by merging their components [7, 8]. The additive property
for merging two nearest micro-clusters is declared in the following
equations:

LS = LS1 + LS2 (2)

SS=SS1 + SS2 (3)

N=N1 + N2 (4)

First file? Use k-means++

Initialize no of micro
clusters

 Check data belong
to existing micro

clusters.

Create new micro cluster

Data point is absorbed by existing micro
clusters.

Store micro clusters in snapshots.

Snapshots
expired?

Remove Expire
snapshots

Get micro clusters from snapshots in
specific time.

Generate final clusters using
 K-means++

Stream files arrive within wt

http://www.astesj.com/

D.A. Sayed et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com 291

LST = LST1 + LST2 (5)

SST = SST1 + SST2 (6)

5. Experimental study

5.1. Experimental setup

All experiments have been implemented on a standalone
implementation, where master process and worker processes all
reside on a single machine. The machine used is a laptop with a
processor core I5, 8G memory, and an Ubuntu 64-bit operating
system. The cluster processing framework used is an apache spark

using scale 2.10. The proposed approach has been tested on two
datasets: one small and another large one. The results on both
datasets show significant improvements in the efficiency of
clustering in terms of processing time and scheduling delay
without diminishing the clustering quality. The small and large
datasets used for testing are respectively: 1) KDD-CUP’99,
consisting of 494,021 rows and 43 attributes, and 2) KDD-CUP’98,
consisting of 95,412 rows and 56 attributes. For the execution of
the framework, configurations are set at first. The parameter
settings identified in table 1 have been identified for
experimentation.

 Worker Worker
 Task Task

Figure 3: The primary steps of Parallel-SCluStream

Reduce

Map

Dataset

Split dataset into n partitions

Computing k
centroids for P1

Computing k
centroids for P2

Computing k
centroids for Pn

Merging centroids for P1, P2, Pn to create global centroids

Micro-Clusters
Initialization/ (Update)

Partition P1 Partition P2 Partition Pn

K-means++

Saving micro-clusters in snapshots

Offline phase

Online phase

Final Clusters

http://www.astesj.com/

D.A. Sayed et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com 292

Table 1: Parameter Settings Utilized in the Experimentation

Parameters Value
The date points number n 2000
The micro clusters q number 50
The dimensions number in KDD-CUP’99 data set d 31
The dimensions number in KDD-CUP’98 data set d 56
Window size wt 70s
The cores' number 3

In the settings, the cores' number is set to 3 cores because the
laptop utilized in implementation consists of four cores, one core
for the operating system and 3 cores for running the application.
This setting is done in spark configuration to determine the
maximum available cores for running applications on parallel
processing. In the experimental study of the non-parallel
SCluStream implementation, the clustering quality was tested with
the different number of micro clusters and it was better when the
number of the cluster was 50. Also, the clustering quality was
tested at different window sizes of and it was better when the size
of the window was equal to 70 [8]. Therefore, we used this number
of micro clusters and the size of the window in the parameters
setting for the parallel SCluStream implementation. The number
of initial points can change (up or down), provided that it does not
exceed the size of the streamed files.

For assessing the performance of the parallel architecture
shown in figure 3, the following measures are recorded:

1) Scheduling Delay TSD - the time a batch remains in a queue for
the processing of prior batches to end.

2) Processing Time TP - the utilized time to process no of the
batches of data.

3) Clustering Quality (SSQ) - SSQ is measured for sequential
processing and parallel processing. The distance D among data
point 𝑥𝑥𝑖𝑖 and the closest centroid 𝐶𝐶𝑥𝑥𝑖𝑖 is calculated 𝐷𝐷(𝑥𝑥𝑖𝑖 ,𝐶𝐶𝑥𝑥𝑖𝑖).
The SSQ is calculated as the sum of 𝐷𝐷2 = (𝑥𝑥𝑖𝑖 ,𝐶𝐶𝑥𝑥𝑖𝑖) for the whole
points in current window. The smaller the value of SSQ, the
superior the clustering quality.

SSQ = � Ð2(𝜒𝜒𝑖𝑖 ,
𝑛𝑛
𝑖𝑖=0 Ç𝑥𝑥𝑖𝑖) (7)

The dataset is divided into p partitions, where each partition
has been processed in a separate core. The partitioning process is
done in the initialization phase. In the map phase, every partition
is processed in an isolated core to generate partial clusters. In the
reduce phase merge partial clusters in one core to create final
clusters.

5.2. The experimental results

1) Scheduling Delay

Figure 4 shows the scheduling delay of SCluStream for
sequential and parallel processing for the different file sizes in the
two real datasets. The average scheduling delay decrease with
increment the level of parallelism by increment the number of
partitions for input data and operations. But when the number of
the partitions is bigger than the available cores number, the
scheduling delay increment. When the number of partitions is five
so 3 partitions are processing in parallel and the 4th, 5th partition

waits until one of three cores is workless. The results proved that
the average scheduling delay decreases by increase the parallelism
but with restriction to an available number of cores in the machine.

(a) KDD-CUP’99 dataset

(b) KDD-CUP’98 dataset

Figure 4: Scheduling delay of SCluStream for sequential and parallel processing
for different file size

2) Processing time

Figure 5 illustrates the processing time for sequential and
parallel processing of SCluStream versus different files size in the
two real datasets. In figure 5-(a) sequential processing of 7.1MB
file size which consists of 100000 records by SCluStream takes
13.2 seconds for KDD-CUP’99 data set. Processing 100000 points
by parallel processing of SCluStream takes around 11 second when
repartition the input data streams to 2 partitions, every partition
being processed in a separate core simultaneously. Processing
100000 points takes around 9.6 second when repartition the input

0

3

6

9

12

15

0.2 0.7 1.4 2.1 3.6 5.7 7.1

T S
D

(m
ill

se
co

nd
)

File Size (MB)

Scheduling Delay

Seq Par (p=2) Par(p=3)
Par(p=4) Par(p=5) Par(p=7)
Par (p=10)

0

3

6

9

12

15

0.2 0.7 1.4 2.1 3.6 5.7 7.1

T S
D

 (
m

ill
se

co
nd

)

File Size (MB)

Scheduling Delay

Seq Par (p=2) Par(p=3)
Par(p=4) Par(p=5) Par(p=7)
Par (p=10)

http://www.astesj.com/

D.A. Sayed et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com 293

data streams to 3 partitions. The processing time decrease when
the number of partitions is less than or equal to the total number of
cores as illustrated in figure 5 when repartition the input data
streams to 2 or 3 partitions.

The 3 partition processes will execute in parallel reliant on
available cores and the 4𝑡𝑡ℎ partition process will process when one
of the 3 cores, is workless. The average processing time for
processing different bathes of data when repartition the input data
to 5 partitions is nearly equal to the average processing time for
sequence processing.

(a) KDD-CUP’99 dataset

(b) KDD-CUP’99 dataset

Figure 5: Processing time of SCluStream for sequential and parallel processing for
different file size.

In figure 5-(b) sequential processing 8.3MB file size which
consists of 90000 records by SCluStream requires 15 seconds for
KDD-CUP’98 data set. Processing 90000 points by parallel
processing of SCluStream requires around 12.8 second when
repartition the input data streams and to 2 partitions and takes
around 11 second when repartition the input data streams and
operations to 3 partitions. The processing time increase about 9.4
seconds from 4 partitions to 3 partitions and 3.4 seconds from the

4 partitions to 2 partitions because the 3 partition processes will
run in parallel as there are three cores and the 4th partition process
will process when one of the 3 cores, is workless. When the
number of partitions is set to 5 partitions, the average processing
time is nearly less than the average processing time for Sequential
processing for different bathes of data in figure 5-(b) by 0.4 second.
The average processing time for processing different bathes of data
when repartition the input data to 7 and 10 is bigger than the
average processing time for sequence processing. Assuming the
dataset is part in numerous parts, not all parts will be handled in a
similar time since the number of cores that will execute on a
machine is bigger than the maximum number of cores that can be
processed by that machine, implying that some of the cores will
stand by till they have access to the CPU.

(a) KDD-CUP’99 dataset

(b) KDD-CUP’98 dataset

Figure 6: Clustering Quality (SSQ) of sequential and parallel SCluStream for
different file size

3) Clustering quality

Figure 6 illustrates the comparison among the clustering
quality (SSQ) for sequence and parallel processing of SCluStream
versus different files size at the same parameters in experimental
configuration (points number 2000, micro clusters number (q=50),

0

4

8

12

16

20

0.3 1.4 2.8 4.1 5.5 6.9 8.3

T P
(s

ec
on

ds
)

File Size (MB)

Processing Time

Seq Par (p=2) Par(p=3)
Par(p=4) Par(p=5) Par(p=7)
Par (p=10)

1.00E+00
3.20E+01
1.02E+03
3.28E+04
1.05E+06
3.36E+07
1.07E+09
3.44E+10

0.7 1.4 2.1 3.6 5.7 7.1

Av
er

ag
e

SS
Q

File Size (MB)

Clustering Quality

Seq Par(p=2) Par(p=3) Par(p=4)

Par(p=5) Par(p=7) Par(p=10)

1.00E+00

1.28E+02

1.64E+04

2.10E+06

2.68E+08

3.44E+10

1.4 2.8 4.1 5.5 6.9 8.3

Av
er

ag
e

SS
Q

File Size (MB)

Clustering Quality

Seq Par(p=2) Par(p=3) Par(p=4)
Par(p=5) Par(p=7) Par(p=10)

0

4

8

12

16

20

0.2 0.7 1.4 2.1 3.6 5.7 7.1

T P
(s

ec
on

ds
)

File Size(MB)

Processing Time

Seq Par (p=2) Par(p=3)

Par(p=4) Par(p=5) Par(p=7)

Par (p=10)

http://www.astesj.com/

D.A. Sayed et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com 294

window time (70 s)) in the two real datasets. Figure 6-(a) obviously
shows that the average SSQ of sequential-SCluStream is
approximately close or equal to the average SSQ of parallel
SCluStream at a different level of parallelism, especially from
partition 2 to partition 3 but from partition 4 to partition 10 the
average SSQ is slightly affected from the average SSQ of
sequential-SCluStream.

The average SSQ of parallel-SCluStream, especially from
partition 2 to partition 4 is nearly close to the average SSQ of
sequential-SCluStream in figure 6-(b) and the average SSQ of
parallel-SCluStream from partition 5 to partition 10 is slightly
affected from the average SSQ of sequential-SCluStream.

5.3. Results Discussion
The experimental results have presented that the parallel

implementation for the SClustream managed to superiority the
sequential SCluStream for the different parameter studied settings
when testing on the two real datasets. Experiments for the
processing time have shown that the parallel implementation for
the SClustream is nearly 1.5 times quicker than the sequential
SCluStream for both datasets. Experiments for the scheduling
delay time have shown that the SClustream parallel
implementation is approximately between 1.3 to 1.7 times less than
the sequential SCluStream for both datasets. Scalability levels of
the proposed approach were evaluated by varying the file sizes for
the two datasets at the same number of cores, and results have
shown the proposed approach succeeds to optimize the processing
time and scheduling delay while remaining the clustering quality
near or identical to the sequential SCluStream.

In the experimental setting, the number of cores is set to 3
cores according to the capability of the available computer. The
data set has been divided the data set to 3 partitions suitable to the
number of cores, making every core is responsible for processing
one data partition. In this case, the proposed approach succeeded
in decreasing the processing time of the dataset and decreasing the
scheduling delay for every batch waiting for the previous batch. In
case the dataset is divided into bigger than 3 partitions for the
current implementation setup, then not all partitions would have
been processed simultaneously, because the number of partitions
running on a machine is bigger than the maximum number of cores
for our used implementation. Hence, some of the partitions will
need to wait until one of the cores become workless. In such case,
the processing time and scheduling delay will probably bigger than
the processing time and scheduling delay of the sequential
execution. Running a cluster implementation, instead of the
standalone implementation, is expected to provide a promising
solution in regard to maintaining the clustering quality obtained,
and with much more speed factor than the obtained in the
standalone implementation. The conclusive setting for the
standalone implementation is that for ensuring the best running
parallel mechanism, it is recommended to set the number of
partitions equal to the cores's number in the node so that all the
partitions will process in parallel and the available resources will
be utilized optimally.

6. Conclusion and future work
Recently, data stream clustering is becoming vital research.

This problem needs a process capable of clustering continuous data
while considering the constraints of memory and time and

generating clusters with high quality. In this paper, parallel
clustering implementation on MapReduce and apache spark
framework is for the clustering algorithm (SCluStream), which is
an efficient algorithm for tracking clusters over sliding window
mechanism, focusing on the latest transactions to speed up
processing and execution. The implementation has been presented
on a standalone cluster manager. The experimental study proved
that the parallel standalone implementation with the multi-core
processing is successful to take less processing time by
approximately 1.5 times and between 1.3 to 1.7 times less
scheduling delays than the non-parallel SCluStream
implementation. Regarding the clustering quality, it is
approximately equal to that of the non-parallel implementation.
For obtaining much more clustering algorithm acceleration future
work will consider the implementation in connected nodes by
using a spark cluster, master nodes, and many worker nodes while
making the best configuration and utilization of available
executors and cores. Also, apply the best mechanisms for data
partitioning and distribution. The automatic determination for all
parameter settings will be applied in future work. In addition to
comparing the parallel implementation of SCluStream with other
data streaming parallel clustering algorithms such as pGrid with
various real data sets to confirm the quality and performance for
the parallel implementation of SCluStream compare to other
algorithms.

References

[1] C.Liu, R.Ranjan, X.Zhang, C.Yang, D.Georgakopoulos, and J.Chen. “Public
auditing for big data storage in cloud computing--a survey”. Proceedings -
16th IEEE International Conference on Computational Science and
Engineering, CSE 2013, 1128–1135. doi: 10.1109/CSE.2013.164.

[2] B.Val, Pablo, N.F.Garcia, L.S.Fernández, and J.A.Fisteus. “Patterns for
distributed real-time stream processing”. IEEE Transactions on Parallel and
Distributed Systems, 28(11), 3243–3257, 2017,
doi.org/10.1109/TPDS.2017.2716929.

[3] N.Kaur, and S.K.Sood. “Efficient resource management system based on 4vs
of big data streams”. Big data research, 9, 98-106, 2017,
doi.org/10.1016/j.bdr.2017.02.002.

[4] T.S.Sliwinski, and S.L.Kang. “Applying parallel computing techniques to
analyze terabyte atmospheric boundary layer model outputs”. Big Data
Research, 7, 31–41, 2017, doi: 10.1016/j.bdr.2017.01.001.

[5] I.I.Yusuf, I.E. Thomas, M.Spichkova, and H.W. Schmidt. “Chiminey:
Connecting scientists to hpc, cloud and big data”. Big Data Research, 8, 39–
49., 2017, doi: 10.1016/j.bdr.2017.01.001.

[6] Z.Lv, H.Song, P.B.Val, A.Steed, and M.Jo. “Next-generation big data
analytics: State of the art, challenges, and future research topics”. IEEE
Transactions on Industrial Informatics, 13(4), 1891–1899, 2017, doi:
10.1109/TII.2017.2650204.

[7] J.A.Silva, E.R.Faria, R.C. Barros, E.R. Hruschka, A.C.d.Carvalho, and
J.Gama. “Data stream clustering: A survey”. ACM Computing Surveys
(CSUR), 46(1), 1–31, 2013, doi: 10.1145/2522968.2522981.

[8] D.Sayed, S.Rady, and M. Aref. “SCluStream: an efficient algorithm for
tracking clusters over sliding window in big data streaming”. International
Journal of Intelligent Computing and Information Sciences, 19(2), 1–19.,
2019, doi:10.21608/IJICIS.2019.62592.

[9] C.C.Aggarwal. “Data streams: models and algorithms”. Springer Science &
Business Media, vol. 31, 2007, doi: 10.1007/978-0-387-47534-9.

[10] A. Bousbaci, and N.Kamel. “Efficient data distribution and results merging
for parallel data clustering in map reduce environment”. Applied
Intelligence, 48(8), 2408–2428.

[11] M.M.Patwary,A.D.Palsetia, A.Agrawal, W.k.Liao, F.Manne, and
A.Choudhary. “A new scalable parallel DBSCAN algorithm using the
disjoint-set data structure”. SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 1–11, 2012, doi: 10.1109/SC.2012.9.

http://www.astesj.com/
https://doi.org/10.1145/2522968.2522981
https://dx.doi.org/10.21608/ijicis.2019.62592
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FSC.2012.9

D.A. Sayed et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 286-295 (2021)

www.astesj.com 295

[12] T. Sakai, K.Tamura, K.Misaki, and H.Kitakami. “Parallel processing for
density-based spatial clustering algorithm using complex grid partitioning
and its performance evaluation”. Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), 337, 2016, doi:10.1109/TPDS.2019.2896143.

[13] Y. He, H.Tan, W.Luo, S.Feng, and J.Fan. “MR-DBSCAN: a scalable
MapReduce-based DBSCAN algorithm for heavily skewed data”. Frontiers
of Computer Science, 8(1), 83–99., 2014, doi: 10.1007/s11704-013-3158-3.

[14] X.Sun, and Y.C.Jiao. “pGrid: Parallel grid-based data stream clustering with
mapreduce”. Report. Oak Ridge National Laboratory. 2009.

[15] Y. Gong, R.O.Sinnott, and P.Rimba. “Rt-dbscan: Real-time parallel
clustering of spatio-temporal data using spark-streaming”. International
Conference on Computational Science, 524–539, 2018, doi: 10.1007/978-3-
319-93698-7.

[16] P.Kranen, I.Assent, C.Baldauf, and T.Seidl. “The ClusTree: indexing micro-
clusters for anytime stream mining”. Knowledge and Information Systems,
29(2), 249–272, 2011, doi: 10.1007/s10115-010-0342-8.

[17] Z.R.Hesabi, T.Sellis, and X.Zhang. “Anytime concurrent clustering of
multiple streams with an indexing tree”. Workshop on Big Data, Streams and
Heterogeneous Source Mining: Algorithms, Systems, Programming Models
and Applications, 19–32, 2015, doi: 10.1.1.1080.3236.

[18] R.Tashvighi and A.Bagheri. “PPreDeConStream: A Parallel Version of
PreDeConStream Algorithm”. International Journal of Computer
Applications, 975, 8887, 2016, doi: 10.5120/ijca2016912235.

[19] N,Alex, A.Hasenfuss, and B.Hammer. “Patch clustering for massive data
sets”. Neurocomputing, 72(7–9), 1455–1469, 2009, doi:
10.1016/j.neucom.2008.12.026.

[20] G.Mencagli, D.B.Heras, V.Cardellini, E.Casalicchio, E.Jeannot, F.Wolf,
A.Salis. “Euro-Par 2018: Parallel Processing Workshops: Euro-Par 2018
International Workshops”. In 24th International
Conference on Parallel and Distributed Computing, Euro-Par 2018 Turin,
Italy. Vol. 11339. Springer, 2018.

[21] I.D.Borlea, R.E.Precup, F.Dragan, A.B.Borlea. “Parallel Implementation of
K-Means Algorithm Using MapReduce Approach”. In IEEE 12th
International Symposium on Applied Computational Intelligence and
Informatics (SACI), 2018, doi: 10.1109/SACI.2018.8441018.

[22] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. “Spark:
Cluster computing with working sets”. HotCloud, 10(10–10), 95, 2010.

[23] Z.Yunquan, T.Cao, Shigang Li, Xinhui Tian, L.Yuan, H.Jia, and A.V.
Vasilakos. “Parallel processing systems for big data: a survey”. Proceedings
of the IEEE, 104(11), 2114–2136, 2016, doi:10.1109/JPROC.2016.2591592.

[24] K.Holden, A.Konwinski, P.Wendell, and M.Zaharia. “Learning spark:
lightning-fast big data analysis”. O’Reilly Media, Inc., 2015.

[25] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. “Spark:
Cluster computing with working sets”. HotCloud, 10(10–10), 95, 2010.

[26] V.Sanz. Marco, B.Taylor, B.Porter, and Z.Wang. “Improving spark
application throughput via memory aware task co-location: A mixture of
experts approach”. Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference, 95–108. 2017, doi: 10.1145/3135974.3135984.

http://www.astesj.com/
https://doi.org/10.1109/TPDS.2019.2896143
https://ieeexplore.ieee.org/author/37301187100
https://ieeexplore.ieee.org/author/37565365000
https://ieeexplore.ieee.org/author/37086441344
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FSACI.2018.8441018
https://doi.org/10.1145/3135974.3135984

	2. Related work
	3. Spark Streaming architecture
	4. Parallel clustering approach for data streams
	4.1. SCluStream
	1) Online phase
	2) Expiring phase
	3) Offline phase
	4.2. Parallel SCluStream processing

	5. Experimental study
	5.1. Experimental setup

	6. Conclusion and future work
	References

