
 

www.astesj.com     286 

 

 

 

 

 

Optimized Multi-Core Parallel Tracking for Big Data Streaming Applications 

Doaa Ahmed Sayed*, Sherine Rady, Mostafa Aref 

Ain Shams University, Faculty of Computer and Information Sciences, Cairo, 11865, Egypt  

A R T I C L E   I N F O  A B S T R A C T 
Article history: 
Received: 12 December, 2020 
Accepted: 19 March, 2021 
Online: 28 May, 2021 

 
 
 

Efficient real-time clustering is a relevant topic in big data streams. Data stream clustering 
needs necessarily a short time execution frame with bounded memory utilizing a one-scan 
process. Because of the massive volumes and dynamics of data streams, parallel clustering 
solutions are urgent. This paper presents a new approach for this trend, with advantages 
to overcome the main challenges of huge data streams, time, and memory resources. A 
framework is proposed reliant on a data clustering parallel implementation that divides 
most recent incoming data streams within a sliding window mechanism to distribute them 
across a multi-core structure for processing. Every core is responsible for the processing 
and generation of intermediate micro-clusters for one data partition. The resulting micro 
clusters are consolidated utilizing the additive property of the micro-cluster data structure 
to merge those parallel clusters and obtain the final clusters. The proposed approach has 
been tested on two sorts of datasets: KDD-CUP’99 and KDD-CUP’98. The results show 
that the proposed optimized parallel window-based clustering approach is efficient for 
online cluster generation for big data streaming with regard to the performance measures 
processing time and scheduling delay. The processing time is 1.5 times faster, and the 
scheduling delay is approximately between 1.3 to 1.7 times less than the sequential 
implementation. Most important is that the clustering quality is equal to that of the non-
parallel implementation. 
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1. Introduction  

Modern advances in ICT and its utilization in business and life 
sectors have prompted the quick development of huge volumes of 
data recognized as big data [1]. The basic attributes of huge data 
are its dynamics (speed), which indicates that data upon arrival 
needs prompt processing at varying speediness. While for certain 
applications, the appearance, and preparation of data can be 
achieved as offline batch processing, other applications need 
continuous analysis in real-time for the arriving data [2-4]. Data 
stream clustering is characterized as the data gathering, 
considering as often as possible the arrival of new data chunks, 
while seeking the understanding of examples that may modify after 
some time [5]. The amount of data coming at high and changeable 
velocities that assume ordinary clustering algorithms ineffective in 
terms of meeting real-time requirements, and hence considered 
incapable of dealing with the requests properly [6]. 

Data stream clustering includes several difficulties; to meet 
continuous necessities [7]. The clustering should be executed in a 
brief period of timeframe with bounded memory using a single-
scan process. So, following clusters in the sliding window is 
possibly an effective way to deal with the restrictions in time and 
memory [8]. 

Windowing is one famous handling strategy that is utilized 
with the data streams. Windowing applied to split data streams into 
windows, reliant on the time measurement. Exist different sorts of 
window models for the following changing data streams [7]: 1) 
Landmark, 2) Damped, and 3) Sliding. In a Landmark window, the 
window is controlled by a certain time point defined as a landmark 
and the present. It is utilizing for mining over the whole history of 
the data streams. Landmark is not fitting for applications where up-
to-date data is more significant than obsolete data. In the damping 
model, weights are determined to data, where higher weights are 
given to the latest data items and less weight is specified to the 
outdated data. This implies that the model expects the latest 
information as more critical than the older data. Sliding window 
models suppose that the new data is more valuable than outdated 
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data by utilizing a window. The latest occurrences falling inside 
the window of the data stream are preserved while dispensing with 
old data.  The reason to utilize the sliding window instead of 
models is regularly basically desired for keeping time and memory 
resources. 

Recently, distributed and parallel algorithms provide solutions 
for analyzing big data streams in actuality, which is apparent in the 
more current research works [9]. Parallel solutions and distributed 
offer various advantages, such as diminishing the time, expanded 
versatility of arrangements, and suitability for applications of the 
distributed kind. The currently available multi-core processor 
commodity computers at afforded costs assist the development of 
applications in a much easier and reliable way. A computer can 
contain up to 72 core processors giving high processing power. 
The inquiry then remains how these available processing onboard 
resources are utilized for providing optimized solutions for the 
different real-time in-demand applications. 

Most existing parallelism strategies for clustering algorithms 
cannot give the same clustering quality as the sequential algorithm 
[1]. The change in clustering quality is impacted influenced by the 
methods utilized for the data distribution partitioning and results 
consolidating techniques for the results. 

SCluStream [8] is a previously introduced efficient sliding 
window-based algorithm for clustering data streams considering 
pre-mentioned data stream difficulties. It works in three phases, 
wherein the online phase; the most recent data is continuously 
maintained.  The second phase is an expiring phase, where the old 
data is discarded such that less memory is squandered. The last 
phase is offline, where the clustering k-means++ algorithm is 
utilized. 

This paper proposes a parallel implementation of the 
SCluStream algorithm utilizing a multi-core parallel processing 
framework. The implementation makes the best utilize of the ready 
cores utilizing a stand-alone platform on a single machine. In the 
framework, the data set is split into several partitions. Every 
partition is processed in a separate core, with an equal workload 
assigned for every partition.  Sequential k-means++ is executed 
next to generate intermediate results (i.e. micro-clusters) for each 
partition. Eventually, final clusters are consolidated by applying 
the additive property on micro-clusters, which utilizes the concept 
of merging the two nearest micro clusters; reliant on the Euclidean 
distance between micro-clusters. 

The organization of this paper is as follows: Section 2 
summarizes the related works and existing gaps. Section 3 the 
spark streaming architecture is explained as the preliminary basis 
to our big data implementation. Section 4 explains the parallel 
clustering data streams reliant on the sliding-window and k-
means++ parallel algorithm. In section 5 the experimental study 
and assessments are discussed. In the final section conclusion and 
future work are clarified. 

2. Related work 

Clustering huge data volumes require long execution times, 
especially when talking about dynamic data streams. Many 
solutions are proposed to beat this issue. Some of them have been 
done as batch analysis [10-13], while others as streaming analysis 
[14-19].  Some research enhanced the processing of the algorithm 

itself by tuning its parameters or modifying the principal 
framework for the algorithm. Whereas other research opted for the 
utilization of the parallelism concept, which is often executed 
utilizing two major strategies. While the first strategy utilizes a 
network of linked machines, where the clustering algorithm is 
implemented on a group of computers [10-16]. The second 
strategy utilizes a single machine with a multi-core processor [11, 
18, 19]. In both strategies, the data is distributed among the 
computers or cores in the first step. Next, comes a consolidation 
step which should sum up for the correct execution of the 
clustering algorithm, and which should be roughly as exact as 
possible when compared to the algorithm executing on a single 
machine. In the distributed environments, these two 
aforementioned steps in respective order are commonly identified 
as the mapping and reducing operations that correspond to the 
mentioned two steps in respective order. MapReduce [20, 21] is 
the common framework for effectively writing applications, which 
process enormous amounts of data in a parallel way. 

A new parallel manner for partitioned clustering algorithms 
reliant on MapReduce is proposed [1]. The target of this 
optimization is to enhance data distribution on connected nodes 
and select the best centroids got from every reducer utilizing a GA 
(genetic algorithm) based results consolidating methodology. In 
the map phase, the data is distributed by utilizing the maximum 
distance among the data points of the various partitions. 
Consolidating the intermediate results acquired from the reducers 
on a single node utilizing the genetic algorithm to acquire final 
accurate results. 

A common approach for parallel version of DBSCAN is 
proposed for clustering massive amount of data [11, 13, 18]. A 
huge dataset is separated into numerous partitions’ dependent on 
the data dimensions and localized DBSCANs are applied to each 
partition in parallel through a map phase. The results of each 
partition are next consolidated in a final reduce phase, which has 
been performed differently in the three works. A single node tree 
is at first created for every data point in the dataset by utilizing the 
disjoint set information structure. Intermediate trees are merged 
according to the tree-based bottom-up approach after investigating 
the eps-neighborhood for haphazardly chosen points [11]. A 
division method named Cost Balanced Partition is utilized to 
produce partitions with equal capacities and cost-based 
partitioning (CBP), which determine the partition's data reliant on 
the estimated calculation cost [13]. For the merging phase, a graph-
based algorithm is used to generate global clusters form local 
clusters. Complex grid partitioning is used for dividing the data 
space into several partitions for each dimension to minimize the 
processing time of DBSCAN in parallel processing [12]. Local 
DBSCAN is applied on each partition to make local clusters. In the 
merging phase the overlapping clusters are extracted from spatial 
clusters in a grid and spatial clusters in grids adjacent to its grid. 
The taken overlapping spatial clusters are consolidated to create 
one spatial cluster. This parallel addition meets the prerequisites of 
scalable execution for managing huge data sets. However, this 
addition is not appropriate for clustering real-time data. It requires 
traversing the whole dataset for parallel clustering which infers 
that its execution time is as yet reliant on the dataset size. Thus, 
while has a great execution for batch-oriented mode, it isn't 
reasonable for high-speed datasets [12, 13].  
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A presented parallel implementation for clustering high-
dimensional data streams in streaming analysis is proposed [14, 15, 
17, 22]. pGrid splits the high-dimensional data space into grids that 
are clustered the grids rather than the raw data [14].  pGrid uses the 
MapReduce framework. In the mapping phase, the arriving data 
point is projected onto its matching grid to depend on its 
dimensions, and thereafter the grid density is varied. In the 
reducing phase, the grid cells are merged by each dimension and 
at the end combining overlapping grid cells are combined to 
generate the global clustering result. PPreDeConStream is 
proposed with its parallel implementation in that utilized the 
shared memory model and the online-offline framework [11, 22]. 
A new data partitioning technique, Fast Clustering (FC) 
partitioning is applied. The idea of FC is reliant on splitting two 2-
dimensional spaces into four sub-cells until a threshold is obtained 
(i.e. a threshold on the point's number in a cell) [15]. Then, the cells 
containing the number of points that are less than this threshold are 
deleted. The merging phase is based on an overlapping area 
between cells. Clustering multiple data streams concurrently has 
been done using a ClusTree algorithm [16,17]. Synopses of 
different concurrent streams are kept up in an index structure 
depend on R-tree. Keeping up summary statistics of each data 
object leads to a larger workload. When new data comes, the 
algorithm looks for the closest micro-cluster by navigating the tree 
of which leaf nodes have all the micro-clusters. The greatest 
hindrances of this algorithm are squandering more memory [17]. 
The addition of the conventional clustering algorithms Neural Gas 
(NG) and the Self-Organizing Map (SOM) for clustering data 
streams are proposed [19]. The extension is reliant on a simple 
patch decomposition of the data set and only requires a fixed 
memory space. 

For most of the existing clustering parallel implementations, 
the clustering quality is commonly less accurate than the sequential 
implementation [1]. This is because the clustering quality is 
affected by the methods utilized in the data partitioning and 
consolidating phase. A common problem as well is that algorithms 
can’t cope efficiently with fast-evolving data streams and consume 
large memory for tracking the clusters.  For most of the presented 
related works, the processing time has been regarded as the major 
performance measure to be tracked, with no additional measures, 
such as the clustering quality and the scheduling delay. 

3. Spark Streaming architecture 

The principle concept in spark streaming is a discretized 
stream (DStream) [22, 23] which is a consecutive sequence of 
distributed collections of elements describing a continuous stream 
of data, and which is called RDDs (Resilient Distributed Datasets). 
DStreams can be created in two ways; either from a source (e.g. 
data from a socket, Kafka, file stream, etc.) or by transforming 
current DStreams utilizing parallel operators (e.g. Map, Reduce, 
and Window). RDDs are usually, partitioned across multi-cores by 
Spark. In spark, all the data is represented as RDDs and all 
DStream operations as RDD operations [24,25, 26]. 

The number of RDDs partitions created can be specified. The 
stream processing model in spark is a micro-batch processing. 
Data received by Input DStreams are processed using DStream 
operations. 

The Spark cluster is responsible for scheduling and dividing 
the resource in the machine. The main target of the cluster manager 
is to divide the applications across resources to run the application 
in parallel mode. Apache Spark has three kinds of cluster managers, 
standalone, Hadoop YARN, and Apache Mesos. In this work, a 
standalone cluster manager is utilized. 

In the view of master-slave architecture, Apache Spark has 
one master process and enormous worker processes. These are the 
following: - the master process consists of a job tracker and a name 
node. The job tracker is responsible for scheduling jobs and 
assigning the jobs to the task tracker on the worker process, which 
is responsible for executing the map and reduce function. The 
name node is responsible for the storage and management of file 
metadata and file distribution across several data nodes on worker 
nodes, which contain the data contents of these files.  

Spark gives a graphical UI (user interface) to following the 
performance of applications. The two important metrics in web UI 
are 1) Scheduling Delay - the time a batch remains in a queue for 
the processing of prior batches to end. 2) Processing Time - the 
utilized time to process every batch of data. The stream processing 
model in spark is micro-batch processing, processing one batch at 
a time, so batches wait in the queue until the prior batches finish. 
The mechanism for minimizing the processing time of each batch 
and scheduling delay is to increase the parallelism [24, 25]. 

4. Parallel clustering approach for data streams  

Parallel processing provides an optimized solution for 
clustering huge data streams given that the accuracy of clustering 
is preserved. In this section, the proposed parallel design of the 
SCluStream algorithm is described. 

4.1. SCluStream 

SCluStream saves more time and memory by processing the 
most recent transactions that fall within window size and the old 
data are eliminated, so SCluStream overcomes the main obstacles 
in data streams: - time and memory resources. In the proposed 
approach, SClustream is implemented on parallel processing 
utilizing a multicore platform to increase the performance of 
handling the large volumes of data streams. Figure 1 shows the 
primary steps of SCluStream and the connections between these 
steps.  The representation of sequence steps and processes is 
described by the flowchart shown in figure 2. SCluStream consists 
of three phases. 

1) Online phase 

 Toward the start of the algorithm implementation, the q initial 
micro-clusters are generated from the incoming real-time 
data by applying k-means++ within the time window wt . 

 The window time wt  is kept up for following the latest 
instances falling during the window size of the data stream 
and dispensing the outdated data.  

 Keeping the statistical data instead of keeping all incoming 
data in micro-clusters. 

 A micro-cluster comprises of the following components {N, 
LS, SS, LST, SST} where, N the data points number, LS the 
linear sum of the N, and SS the squared sum of the N. The 
two last LST and SST are the sum and the sum of the squares 
of the timestamps of the N.  
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 When data point arrival, a single of the subsequent two 
possibilities take place: - 

i)  The data point is consumed by one of the current micro-
clusters. This assimilation is based on the nearness of the 
cluster to the data point; this is determined by applying a 
distance metric among the centroid of the micro-cluster and 
the data point. So, the data point is consumed to the closest 
micro cluster. 

ii)  The data point is put in its specific new micro-cluster, 
however with the restriction that the micro-clusters number 
stays fixed. Thus, the current clusters number should be 
decreased by one, which can be accomplished by merging the 
two nearest micro clusters jointly. 
 

2) Expiring phase  

The snapshots are used for storing micro-clusters at each time 
slot t within a time window 𝑤𝑤𝑡𝑡 . The establishment time for those 
expiring snapshots doesn’t lie among the current time and the 
window time subtracted from current time. Defining the expiring 
snapshots from tss< Ts-wt   where  tss is the establishment time of 
snapshot,  Tc is the current clusters number time, wt is the window 
time. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
 

 
Figure 1: The primary steps of SCluStream [8] 

 
 

3) Offline phase  

The offline phase is consolidating the micro-clusters to deduce 
the final clusters. The offline phase obtains the micro clusters from 
kept snapshots during the time window wt. The final macro 
clusters are defined by utilizing k-means++ rather than 
conventional k-means to get more accurate results. 

4.2. Parallel SCluStream processing 

Partitioning the input data streams into a number of partitions. 
Perform Parallel processing of k-means++ algorithm in online 
phase on each partition to create micro clusters. Expanding the 
number of parallel tasks that one executor can execute by 
expanding the number of available cores to execute per executor. 
The number of partitions input data streams and operations are 
reliant on the existing number of cores. Each core is responsible 
for processing one partition. The steps in figure 3 show the primary 
steps of parallel-SCluStream and the connections among these 
steps. 

The Steps of SCluStream algorithm involved in the parallel 
processing can be listed as follow: 

1. In the initialization phase, the data is split into p partitions.  

2. The online phase parallel processing can be described in the 
following steps. 

2.1 The distance calculation from every data point x to 
every centroid by utilizing Euclidean distance, the 
distance between every data point x and the c 
centroids.  

D (𝝌𝝌, ć) =�� (χ𝑖𝑖 − ć𝑖𝑖)
𝑛𝑛
𝑖𝑖=1       (1) 

2.2 This step can be parallelized due to the volume of time 
used for parallelizing this step brings, an advantage by 
reducing the total processing time required for 
finishing this step as multiple cores will process some 
chunks of the complete dataset simultaneously. 

2.3  Assign data point x to the nearest centroid reliant on 
distance calculation in the previous step, this process 
requires a number of comparisons (reliant on the 
number of the clusters required to be obtained) for 
choosing the cluster where the data point x should be 
included. The comparison process will execute in 
multiple threads, every thread will assign only part of 
the records of the entire dataset to a single cluster. 

2.4 Compute a set of new partial centroids for each of the 
processed partitions. The distance between the new 
centroids is calculated. 

2.5 Compute new centroids for the whole data set and 
match the values of the new centroids, with the values 
of the centroids at the aforementioned iteration. If the 
new centroids are different from the previous iteration 
go to setp2; else continue to generate final clusters.  

If the number of micro clusters is obtained then the final micro 
clusters is generated; else merging two nearest micro-clusters by 
using additive property of micro-cluster [7] data structure to 
generate the determined number of final clusters reliant on the 
distance calculated in step 3. The additive property means, the  
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Figure2: SCluStream flowchart 

nearest micro-clusters can be consolidated into a new micro-
cluster by merging their components [7, 8]. The additive property 
for merging two nearest micro-clusters is declared in the following 
equations: 

LS = LS1 + LS2                                        (2) 

SS=SS1 +  SS2                                           (3) 

N=N1 + N2                                              (4) 
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LST = LST1 + LST2                                 (5) 

SST = SST1 +  SST2                                (6) 

5. Experimental study 

5.1. Experimental setup 

All experiments have been implemented on a standalone 
implementation, where master process and worker processes all 
reside on a single machine. The machine used is a laptop with a 
processor core I5, 8G memory, and an Ubuntu 64-bit operating 
system. The cluster processing framework used is an apache spark 

using scale 2.10. The proposed approach has been tested on two 
datasets: one small and another large one. The results on both 
datasets show significant improvements in the efficiency of 
clustering in terms of processing time and scheduling delay 
without diminishing the clustering quality. The small and large 
datasets used for testing are respectively: 1) KDD-CUP’99, 
consisting of 494,021 rows and 43 attributes, and 2) KDD-CUP’98, 
consisting of 95,412 rows and 56 attributes. For the execution of 
the framework, configurations are set at first. The parameter 
settings identified in table 1 have been identified for 
experimentation. 
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Figure 3: The primary steps of Parallel-SCluStream 
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Table 1:  Parameter Settings Utilized in the Experimentation 

Parameters Value 
The date points number n 2000 
The micro clusters q number 50 
The dimensions number in KDD-CUP’99 data set d 31 
The dimensions number in KDD-CUP’98 data set d 56 
Window size wt 70s 
The cores' number 3 

In the settings, the cores' number is set to 3 cores because the 
laptop utilized in implementation consists of four cores, one core 
for the operating system and 3 cores for running the application. 
This setting is done in spark configuration to determine the 
maximum available cores for running applications on parallel 
processing. In the experimental study of the non-parallel 
SCluStream implementation, the clustering quality was tested with 
the different number of micro clusters and it was better when the 
number of the cluster was 50. Also, the clustering quality was 
tested at different window sizes of and it was better when the size 
of the window was equal to 70 [8]. Therefore, we used this number 
of micro clusters and the size of the window in the parameters 
setting for the parallel SCluStream implementation.  The number 
of initial points can change (up or down), provided that it does not 
exceed the size of the streamed files. 

For assessing the performance of the parallel architecture 
shown in figure 3, the following measures are recorded: 

1) Scheduling Delay TSD - the time a batch remains in a queue for 
the processing of prior batches to end. 

2) Processing Time TP - the utilized time to process no of the 
batches of data. 

3) Clustering Quality (SSQ) - SSQ is measured for sequential 
processing and parallel processing. The distance D among data 
point   𝑥𝑥𝑖𝑖  and the closest centroid    𝐶𝐶𝑥𝑥𝑖𝑖  is calculated 𝐷𝐷(𝑥𝑥𝑖𝑖 ,𝐶𝐶𝑥𝑥𝑖𝑖).  
The SSQ is calculated as the sum of 𝐷𝐷2 = (𝑥𝑥𝑖𝑖 ,𝐶𝐶𝑥𝑥𝑖𝑖) for the whole 
points in current window. The smaller the value of SSQ, the 
superior the clustering quality. 

SSQ = � Ð2(𝜒𝜒𝑖𝑖 ,
𝑛𝑛
𝑖𝑖=0 Ç𝑥𝑥𝑖𝑖)             (7) 

The dataset is divided into p partitions, where each partition 
has been processed in a separate core. The partitioning process is 
done in the initialization phase. In the map phase, every partition 
is processed in an isolated core to generate partial clusters. In the 
reduce phase merge partial clusters in one core to create final 
clusters. 

5.2. The experimental results 

1) Scheduling Delay 

Figure 4 shows the scheduling delay of SCluStream for 
sequential and parallel processing for the different file sizes in the 
two real datasets. The average scheduling delay decrease with 
increment the level of parallelism by increment the number of 
partitions for input data and operations. But when the number of 
the partitions is bigger than the available cores number, the 
scheduling delay increment. When the number of partitions is five 
so 3 partitions are processing in parallel and the 4th, 5th partition 

waits until one of three cores is workless. The results proved that 
the average scheduling delay decreases by increase the parallelism 
but with restriction to an available number of cores in the machine. 

 

(a) KDD-CUP’99 dataset 
 

 
(b) KDD-CUP’98 dataset  

Figure 4: Scheduling delay of SCluStream for sequential and parallel processing 
for different file size 

2) Processing time  

Figure 5 illustrates the processing time for sequential and 
parallel processing of SCluStream versus different files size in the 
two real datasets. In figure 5-(a) sequential processing of 7.1MB 
file size which consists of 100000 records by SCluStream takes 
13.2 seconds for KDD-CUP’99 data set. Processing 100000 points 
by parallel processing of SCluStream takes around 11 second when 
repartition the input data streams to 2 partitions, every partition 
being processed in a separate core simultaneously. Processing 
100000 points takes around 9.6 second when repartition the input 
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data streams to 3 partitions. The processing time decrease when 
the number of partitions is less than or equal to the total number of 
cores as illustrated in figure 5 when repartition the input data 
streams to 2 or 3 partitions.  

The 3 partition processes will execute in parallel reliant on 
available cores and the 4𝑡𝑡ℎ partition process will process when one 
of the 3 cores, is workless. The average processing time for 
processing different bathes of data when repartition the input data 
to 5 partitions is nearly equal to the average processing time for 
sequence processing. 

 

(a) KDD-CUP’99 dataset 

 
(b) KDD-CUP’99 dataset 

Figure 5: Processing time of SCluStream for sequential and parallel processing for 
different file size. 

In figure 5-(b) sequential processing 8.3MB file size which 
consists of 90000 records by SCluStream requires 15 seconds for 
KDD-CUP’98 data set. Processing 90000 points by parallel 
processing of SCluStream requires around 12.8 second when 
repartition the input data streams and to 2 partitions and takes 
around 11 second when repartition the input data streams and 
operations to 3 partitions. The processing time increase about 9.4 
seconds from 4 partitions to 3 partitions and 3.4 seconds from the 

4 partitions to 2 partitions because the 3 partition processes will 
run in parallel as there are three cores and the 4th partition process 
will process when one of the 3 cores, is workless.  When the 
number of partitions is set to 5 partitions, the average processing 
time is nearly less than the average processing time for Sequential 
processing for different bathes of data in figure 5-(b) by 0.4 second.   
The average processing time for processing different bathes of data 
when repartition the input data to 7 and 10 is bigger than the 
average processing time for sequence processing. Assuming the 
dataset is part in numerous parts, not all parts will be handled in a 
similar time since the number of cores that will execute on a 
machine is bigger than the maximum number of cores that can be 
processed by that machine, implying that some of the cores will 
stand by till they have access to the CPU. 

 
(a) KDD-CUP’99 dataset 

 
(b) KDD-CUP’98 dataset 

Figure 6: Clustering Quality (SSQ) of sequential and parallel SCluStream for 
different file size 

3) Clustering quality 

Figure 6 illustrates the comparison among the clustering 
quality (SSQ) for sequence and parallel processing of SCluStream 
versus different files size at the same parameters in experimental 
configuration (points number 2000, micro clusters number (q=50), 
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window time (70 s)) in the two real datasets. Figure 6-(a) obviously 
shows that the average SSQ of sequential-SCluStream is 
approximately close or equal to the average SSQ of parallel 
SCluStream at a different level of parallelism, especially from 
partition 2 to partition 3 but from partition 4 to partition 10 the 
average SSQ is slightly affected from the average SSQ of 
sequential-SCluStream. 

The average SSQ of parallel-SCluStream, especially from 
partition 2 to partition 4 is nearly close to the average SSQ of 
sequential-SCluStream in figure 6-(b) and the average SSQ of 
parallel-SCluStream from partition 5 to partition 10 is slightly 
affected from the average SSQ of sequential-SCluStream. 

5.3. Results Discussion 
The experimental results have presented that the parallel 

implementation for the SClustream managed to superiority the 
sequential SCluStream for the different parameter studied settings 
when testing on the two real datasets. Experiments for the 
processing time have shown that the parallel implementation for 
the SClustream is nearly 1.5 times quicker than the sequential 
SCluStream for both datasets. Experiments for the scheduling 
delay time have shown that the SClustream parallel 
implementation is approximately between 1.3 to 1.7 times less than 
the sequential SCluStream for both datasets. Scalability levels of 
the proposed approach were evaluated by varying the file sizes for 
the two datasets at the same number of cores, and results have 
shown the proposed approach succeeds to optimize the processing 
time and scheduling delay while remaining the clustering quality 
near or identical to the sequential SCluStream.  

In the experimental setting, the number of cores is set to 3 
cores according to the capability of the available computer. The 
data set has been divided the data set to 3 partitions suitable to the 
number of cores, making every core is responsible for processing 
one data partition. In this case, the proposed approach succeeded 
in decreasing the processing time of the dataset and decreasing the 
scheduling delay for every batch waiting for the previous batch. In 
case the dataset is divided into bigger than 3 partitions for the 
current implementation setup, then not all partitions would have 
been processed simultaneously, because the number of partitions 
running on a machine is bigger than the maximum number of cores 
for our used implementation. Hence, some of the partitions will 
need to wait until one of the cores become workless. In such case, 
the processing time and scheduling delay will probably bigger than 
the processing time and scheduling delay of the sequential 
execution. Running a cluster implementation, instead of the 
standalone implementation, is expected to provide a promising 
solution in regard to maintaining the clustering quality obtained, 
and with much more speed factor than the obtained in the 
standalone implementation. The conclusive setting for the 
standalone implementation is that for ensuring the best running 
parallel mechanism, it is recommended to set the number of 
partitions equal to the cores's number in the node so that all the 
partitions will process in parallel and the available resources will 
be utilized optimally. 

6. Conclusion and future work 
Recently, data stream clustering is becoming vital research. 

This problem needs a process capable of clustering continuous data 
while considering the constraints of memory and time and 

generating clusters with high quality. In this paper, parallel 
clustering implementation on MapReduce and apache spark 
framework is for the clustering algorithm (SCluStream), which is 
an efficient algorithm for tracking clusters over sliding window 
mechanism, focusing on the latest transactions to speed up 
processing and execution. The implementation has been presented 
on a standalone cluster manager. The experimental study proved 
that the parallel standalone implementation with the multi-core 
processing is successful to take less processing time by 
approximately 1.5 times and between 1.3 to 1.7 times less 
scheduling delays than the non-parallel SCluStream 
implementation. Regarding the clustering quality, it is 
approximately equal to that of the non-parallel implementation. 
For obtaining much more clustering algorithm acceleration future 
work will consider the implementation in connected nodes by 
using a spark cluster, master nodes, and many worker nodes while 
making the best configuration and utilization of available 
executors and cores. Also, apply the best mechanisms for data 
partitioning and distribution. The automatic determination for all 
parameter settings will be applied in future work. In addition to 
comparing the parallel implementation of SCluStream with other 
data streaming parallel clustering algorithms such as pGrid with 
various real data sets to confirm the quality and performance for 
the parallel implementation of SCluStream compare to other 
algorithms. 
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