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 Genome-wide association studies, or GWAS, have reported associations between SNPs and 
specific diseases/traits. GWAS results contain variants located in different genomic regions, 
including variants in the 3’UTR. MicroRNAs, or miRNAs, are small noncoding RNAs that 
bind to the 3’UTRs of genes to regulate gene expression. However, variant(s) that are 
located in the 3’UTR could impact miRNA binding, thus affecting expression of its targeted 
gene(s). To specifically elucidate miRNA targeting pairs and binding site variants associated 
with a specific trait, well-designed downstream analysis along with careful experimental 
design are necessary. Currently, there is no available state-of-the-art methodology for 
identifying miRNA targeting pairs and associated variants that could contribute to 
phenotypes using GWAS. Moreover, it is unrealistic to conduct experiments for elucidating 
all possible miRNA targeting pairs and binding site variants across the entire genome. In 
this project, we developed a bioinformatic pipeline to computationally identify genes and 
their targeting miRNA pairs that are enriched over the miRNA-gene tissue expression 
network for the studied genetic traits and examined the binding site variants’ impact on Body 
Mass Index (BMI).   
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1. Introduction  

GWAS is a powerful approach to identify common variants 
associated with common diseases/traits in studied populations [1, 
2]. Traits may be activated due to genetics or changes in 
environment, or both.  

MicroRNAs (miRNAs), noncoding RNAs with a length 
between 17-22 nucleotides, exert their impact on gene regulation 
through targeting mRNAs. To achieve their function, miRNAs 
bind to the 3’ untranslated regions (3’UTRs) of target mRNAs 
which can often result in potential suppression of mRNA 
translation and/or gene expression.  

Single-nucleotide polymorphisms (or SNPs) are the most 
common mutations found in the human genome [3, 4]. SNPs 
located in the 3’UTRs can potentially disrupt miRNA regulation 
[5]. A DNA motif is a conserved DNA sequence segment with 
biological consequences. The identification of a motif located in 

the 3’UTR could suggest how miRNAs potentially target genes in 
that region. Analysis of GWAS data by identifying genes or 
miRNAs that harbor genetic variants could elucidate trait-
associated genetic variants [6].  

In our experiment, we analyzed multiple traits compiled from 
GWAS and found BMI to be the most significant trait in the 
context of the miRNA-gene tissue expression target network. We 
further investigated several genes located within the region(s) 
associated with BMI, FADS1 and FADS2 due to their significant 
relevance to obesity and related conditions [7]. The overarching 
goal of this study is to identify how the interaction between genes 
and their targeting miRNAs change due to genetic variations and 
reveal any underlying biological mechanisms that contribute to the 
development of complex traits for humans.   

2. Experimental Methods 

To perform our experiment, we proposed the following 
approach:  
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2.1. GWAS Traits Selection 

We downloaded the annotation data of GWAS results from 
18 traits, all of which had at least 100 associated genes as 
compiled by PheGenI [6]. All traits were previously described [8]. 
These traits ranged from autoimmune disorders such as 
Rheumatoid Arthritis and Asthma to behavior traits such as 
smoking.   

2.2. Trait Relevant miRNA-gene Pairs Identification 
We employed MIGWAS software [9, 10] using default 

running parameters (2018 Github version: 
https://github.com/saorisakaue/MIGWAS) to strengthen our 
analysis regarding all 18 traits and identify significant traits and 
miRNA-gene pair candidates over the gene tissue expression 
network. In order to run MIGWAS, we converted the variant 
genomic coordinate annotations (hg38) provided by PheGenI to 
the hg19 version. Figure 2 shows the Python pipeline of running 
MIGWAS. 

2.3. Protein-Protein Interaction Examination and Domain 
Elucidation 

We ran STRING database to look for evidence of interaction 
between the ten candidate genes associated with BMI at the 

protein level [11]. We also used Pfam to identify if there were any 
possible domains associated with BMI [12].    

2.4. Motif Discovery for miRNA-targeted Genes Relevant to BMI 
Trait 

We applied MEME software (version 5.3) to identify 
enriched motifs for the 3’UTR sequences retrieved from Ensembl 
Biomart Database [13, 14]. To run MEME, we stipulated the 
software parameter for the searched motif width to be between six 
and twenty base pairs. Also, the number of searched motifs was 
restricted to report the top six motifs. All other running parameters 
were kept as default.  

2.5. Variant Identification for Selected Genes Associated with 
BMI 

We checked the dbMTS database for reported candidate 
genes associated with BMI through MIGWAS and pinpointed 
SNPs located inside each gene’s respective 3’UTRs [5]. 

3. Results 
3.1. Selection of GWAS Results 

We acquired the GWAS results of 18 traits with more than 
100 associated genes that were reported in our recent study [8]. 
All selected traits are displayed in Table 1 below.  

 

3.2. MIGWAS Analysis 

We identified in particular that one out of the 18 traits, BMI, 
has a significant association with all tissues (p-value of .0313). 
There are only three traits which have a p-value reported for trait 

Figure 1: Workflow of variant identification for complex trait BMI 

Step 1:  

python3 minimgnt.py hg19_BMI.txt --out 
hg19_BMI_sumstats_trans --cpus 10 --not-remove-
HLA --remove-NA --no-rsid 

Step 2: 

python3 migwas.py --phenotype 
hg19_BMI_sumstats_trans --out 
miRA_hg19_BMI_sumstats_trans --cpus 10 --
iterations 500 --output-candidate 

Figure 2: Python code of running MIGWAS 

Table 1: Selected 18 traits as reported by PheGeni. All traits 
listed were associated with at least 100 genes. 
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and tissue association, including BMI, Crohn’s, and Type 1 
Diabetes (T1D) (Figure 3). 

We have identified ten genes that are targeted by five 
miRNAs as candidate biomarkers in the BMI trait. For Crohn’s, 
there was only one pair while T1D had two pairs (Table 2).  

 

3.3. String Database Results 

Out of the ten genes researched, there are three genes—FADS2, 
FADS1, and AMH—that interact with each other as reported by the 
STRING database, as shown in Figure 4. These three genes are 
also targeted by the same miRNA: hsa-mir-615. The STRING 
database also reported BMI’s significant associations (FDR < .01) 
with fatty acid metabolism (hsa01212) and biosynthesis of 
unsaturated fatty acids (hsa01040) under KEGG pathways. 
Likewise, the BMI-related GO terms—linoleic acid metabolic 
process (GO:0043651), alpha-linolenic acid metabolic process 
(GO:0036109), and unsaturated fatty acid biosynthetic process 
(GO:0006636)—are also reported by the STRING database. 

 

3.4. Pfam Database Results 

The Pfam database reported two domains associated with 
BMI: Fatty Acid Desaturase (PF00487) and Cytochrome b5-like 
heme/steroid binding domain (PF00173), as shown in Figure 5.  

These results were consistent with the ones reported by the 
INTERPRO database. 

 

 

 
 
 

3.5. Motif Identification 

Using MEME, we ran all ten of the genes associated with 
BMI. A motif was discovered containing nine out of these ten 
genes (ADAMTS9, CELSR2, DNM3, FADS1, FADS2, HOXC5, 
MED17, NEGR1, OTUD7B), with an e-value of .047 (Figure 6).  

 

0 0.5 1 1.5 2

TID

Crohn's

BMI

Figure 3: MIGWAS reported p-values (-log base 10 scale) for BMI, Crohn’s 
disease, and Type 1 Diabetes. 

 
Table 2: MIGWAS results for candidate genes/miRNAs 

identified for three traits 

 

Figure 4: Protein-protein interaction results for all ten genes associated with BMI. Only 
three genes were found to have interactions with each other (FADS1, FADS2, AMH). 

Figure 5: Protein structures of two BMI-associated domains. (a) 
displays the Fatty Acid Desaturase Domain. (b) displays the 

Cytochrome b5-like heme/steroid binding domain. 

Figure 6: Motif conservation across nine (out of ten) genes associated 
with BMI 
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3.6. Variant Identification Results 

To report known common variants contained in miRNA-
targeted genes associated with BMI, we checked the UCSC 
Genome Browser [15]. This region contains multiple known 
variants (dbSNP 153 Track) that are located inside both FADS1 
and FADS2 (see Figure 7 below). Interestingly, FADS1, FADS2, 
and FEN1 (a neighboring gene) are highly expressed in the 
adrenal gland. As indicated by GTEx data, CELSR2, FADS1, and 
FADS2 all are expressed with low amounts in both types of 
adipose tissue. Since all three genes are targeted by the same 
miRNA, hsa-miR-615, low expression of these genes in adipose 
tissues could be due to the repression effect of this miRNA. 

3.7. dbMTS Results 

To identify miRNA binding-site variants, we checked 
the dbMTS database [5]. Table 3 shows that multiple variants, 
which could alter the binding relationship of miRNAs and their 
targets, are often present in the 3’UTRs of miRNA-targeted genes 
associated with BMI. 

4. Discussion and Interpretation 

In this study, we applied cutting-edge bioinformatics tools 
and databases to select candidate genes/miRNAs associated with 
complex genetic trait(s), such as BMI.  

Using MIGWAS, we analyzed three traits: BMI, Crohn’s, 
and T1D. While both BMI and Crohn’s had significant p-values 
in the gene expression network, Crohn’s yielded only one 
gene/miRNA pair. On the contrary, T1D had a non-significant p-
value but yielded 2 gene/miRNA pairs (see Figure 3 and Table 2). 
We concluded that a significant p-value does not necessarily 
indicate the existence of more miRNA-gene targeting pairs for 
specific traits. As a result of this MIGWAS analysis, we focused 
on investigating BMI as it had many gene/miRNA pairs in 
comparison to the other two traits mentioned. When performing  

 
this study, we noticed that different tools/databases can analyze 
data with complementary results from different aspects. 

For example, MIGWAS identified CELSR2 containing 
3’UTR variants also reported by the PheGenI database. MIGWAS 
identified two genes (out of nine)—DNM3 and FADS1—that 
don’t contain 3’UTR variants in the data provided by PheGenI. 
The other seven genes were not reported by PheGenI [6, 9].  

After comparison, dbMTS reported results on nine genes total. 
Six genes (OTUD7B, DNM3, ADAMTS9, MED17, FADS1, and 
FADS2) contain 3’UTR variants also reported by MIGWAS. The 
remaining three genes (CELSR2, HOXC5, and AMH) do not 
contain 3’UTR variants as dbMTS states. 

    

Figure 7: UCSC Genome Browser view for variants located in the genomic regions of 
FADS1/FADS2. The orange vertical bars placed within the view pinpoint the general 

motif coordinates defined by MEME. The left bar represents the identified motif region 
for FADS1 while the right bar represents FADS2’s identified motif region. 

Table 3: Variant results reported in dbMTS 
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Using DIANA Tools, we identified two genes (CELSR2 and 
ADAMTS9) that are targeted by hsa-miR-615 [16]. Although 
MIGWAS stated that ADAMTS9 was targeted by hsa-miR-330, 
this is likely due to this gene being targeted by multiple miRNAs. 
However, wet-lab experiments are needed to validate this 
conclusion. In addition, the targeting outcome of multiple genes 
associated with BMI by hsa-miR-615 is significant. Studies show 
that increased levels of hsa-miR-615 may help inhibit palmitate-
induced hepatocyte apoptosis [17]. If saturation levels of 
palmitate, a type of fatty acid, are increased, this increases the 
likelihood of developing diseases such as non-alcoholic fatty liver 
disease, which is correlated with obesity (or a high BMI) [18]. 
Indeed, CELSR2 was recently discovered to have significant high 
expression in cancerous tissue than normal tissue. Specifically, 
hepatocellular carcinoma, a primary liver cancer whose major risk 
factors include non-alcoholic fatty liver disease [19].  

Current literature evidence supports that FADS2 has been 
discovered to be a drug target gene as well as an miRNA-target 
gene for rheumatoid arthritis (RA) [10]. However, such evidence 
reports hsa-miR-4728 as FADS2’s target miRNA instead of hsa-
miR-615. This suggests the involvement of both miRNAs in the 
development of BMI-related illnesses. In addition, multi-omics 
analysis proves FADS2 is a potential biomarker for BMI. This is 
consistent with the conclusion that a high BMI leads to increased 
risk of developing RA, even though the biological mechanism 
responsible has yet to be identified [20, 21]. In addition, a recent 
study confirms that the FADS1/2 cluster are significantly 
associated with fatty acid levels (see Figure 4). This study also 
reported FADS1 alongside rs174546, matching our corresponding 
row in Table 3. Unlike our experiment, however, the mentioned 
study did not employ dbMTS to generate this match [22]. The 
conservation of both FADS1 and FADS2 in the identified motif 
(see Figures 6 and 7) further emphasizes the potential importance 
of these two genes in the association with BMI/development of 
obesity. 

In a recent study, Kuryłowicz and colleagues report that two 
miRNAs—hsa-miR-615 and hsa-miR-330—and their target genes 
(of which none are listed in Table 2) are involved in the 
oncogenesis pathway, otherwise known as the process where 
healthy cells become cancerous [23]. Shared target miRNAs 
between a genetic trait (BMI) and cancer suggests that the 
development of illness as a result of either share similar 
causal/biological factors. In addition, hsa-miR-615 was found to 
be highly expressed in the subcutaneous adipose tissue (SAT) of 
obese patients after surgery-induced weight loss than the SAT of 
patients with a normal weight, suggesting that there is a difference 
in molecular pathways/miRNA expression between losing weight 
and consistently maintaining a healthy weight [23]. This is 
consistent with the finding that hsa-miR-615 facilitates palmitate 
production which is correlated with a higher likelihood of 
developing obesity. 

In our previous study, we found a statistically significant 
association between BMI and the PCDHA10 pathway [8]. 
PCDHA10 is a gene which codes for different protocadherins 
(Pcdhs), which play an important role in neural generation [24]. 
As neuronal development and brain structure have been linked to 
BMI through existing literature, this could be a reason why the 

PCDHA10 pathway is associated so strongly with BMI [25]. 
Although obesity is not identified by MIGWAS as a significant 
trait in our study, it has been reported to have been strongly 
associated with BMI and has some significant associations with 
body temperature [4, 26].  For future research, we would like to 
examine the popularity of variants located in the binding sites of 
3’UTR for the miRNA-gene pairs of additional traits to further 
investigate the underlying biological mechanisms and causal 
factors of other genetic diseases, traits, and even cancers. 
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