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 Face explicitly provides the direct and quick way to evaluate human soft biometric 
information such as race, age and gender. Race is a group of human beings who differ from 
human beings of other races with respect to physical or social attributes. Race identification 
plays a significant role in applications such as criminal judgment and forensic art, human 
computer interface, and psychology science-based applications as it provides crucial 
information about the person. However, categorizing a person into respective race category 
is a challenging task because human faces comprise of complex and uncertain facial 
features. Several racial categorization methods are available in literature to identify race 
groups of humans. In this paper, we present a comprehensive and comparative review of 
these racial categorization methods. Our review covers survey of the important concepts, 
comparative analysis of single model as well as multi model racial categorization methods, 
applications, and challenges in racial categorization. Our review provides state-of-the-art 
technical information concerning racial categorization and hence, will be useful to the 
research community for development of efficient and robust racial categorization methods. 
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1. Introduction   
Human face expresses social information that is highly useful 

in automated systems. It provides soft biometric information of 
human such as race, gender, age, identity and emotions [1-7]. This 
information is significant in interdisciplinary research areas such 
as psychology science, computer vision science, neuroscience, 
anthropological science as well as in the social security and 
forensic art department. Amongst the various types of biometric 
information, race information is crucial and is required for a wide 
range of applications. Race is a group of human beings 
differentiated based on physical or social attributes.  Race conveys 
social and cultural traits of different communities. Facial features 
such as eyes, eyebrow, ear, nose, cheek, mouth, chin, forehead 
area and jaw differ from human to human and are highly 
dependent on racial category [8-14]. Figure 1 shows the difference 
in facial features of different racial groups.  

Race analysis is essential in contemporary applications such 
as criminal judgment and forensic art [15-20], aesthetic surgery 
[21], healthcare [22-26], medico  legal  [27-29],  video   security  
surveillance and public safety [30], human computer interface 
[31-33] and face recognition [34]. In such applications, race 
analysis is required for identification of individuals. Several racial 

categorization methods have been proposed in literature. They are 
either single model racial categorization methods or multi model 
racial categorization methods. Single model racial categorization 
method uses facial features to recognize race [35-45]. Conversely, 
multi model racial categorization method considers fusion of 
physical characteristics such as gait pattern and audio clues in 
addition to facial features [5, 7, 46-50]. The majority of the 
practical applications involve single model racial categorization 
because facial data is available in large quantities compared to gait 
pattern and audio clues. However, there are applications that 
consider gait pattern and audio cues in absence of facial image. 
The single model racial categorization methods mainly differ 
from each other with respect to classification approach such as 
Support Vector Machine (SVM) [51-54], Convolutional Neural 
Network (CNN) [38, 44, 55-59], Artificial Neural Network (ANN) 
[60], Local Binary Pattern (LBP) [61] and Local Circular Pattern 
(LCP) [62]. In literature, participants based racial categorization 
methods such as diffusion model [63] and implicit racial attitude 
[64] are also available. The multi model racial categorization 
methods involve classification approaches such as SVM [65-67], 
logistic regression [66], Adaboost [66], random forest [66], CNN 
[68] and Haar-LBP histogram [69].  
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Figure 1: Illustrative facial characteristic variance of human races. (Figure 

source: http://www.faceresearch.org/) 

In this paper, we present a thorough and extensive study of 
various racial categorization methods.  First, we present a 
taxonomy of available racial categorization methods. Then we 
describe several single model and multi model racial 
categorization methods. Based on our study, we identify several 
parameters to evaluate them. Subsequently, we present parametric 
evaluation of single model racial categorization methods and 
multi model racial categorization methods separately based on 
identified parameters. Next, we illustrate applications of racial 
categorization and future research direction in the field of racial 
categorization. Our comprehensive and comparative survey will 
serve as a catalogue to researchers in this area.  

The rest of the paper is structured as follows: In section 2, we 
describe the taxonomy of racial categorization methods and 
features considered by different racial categorization methods.  In 
section 3, we illustrate various single model racial categorization 
methods and their parametric evaluation. In section 4, we 
illustrate various multi model racial categorization methods and 
their parametric evaluation. Section 5 describes the major 
applications of racial categorization. In section 6, we list key 
challenges in the field of racial categorization. Finally, section 7 
specifies conclusion and feature scope in the field of racial 
categorization.  

2. Classification of Racial Categorization Methods 

Racial categorization methods are broadly categorized into 
two categories: single model and multi model. As shown in Figure 
2, the features used by single model and multi model methods to 
classify humans into features or local discriminative region based 
features or combination of both. Amongst the discriminative 
region based features, iris texture, periocular region or/and 
holistic face are used for racial categorization [70-77]. Multi 
model racial categorization takes into consideration face features, 
gait pattern and audio cues to classify humans into various race 
categories. Gait pattern is also useful to recognize the biometric 
information of humans [6, 78-80]. 

At this juncture, we clarify that at the top of all categorizations, 
a human is mainly divided into two categories, namely race and 
ethnicity, on the basis of his/her physical appearance and social 
appearance respectively. However, some researchers use words 
race and ethnicity interchangeably [24, 35, 81]. 

 

 
: Features considered for racial categorization
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2.1. Features Considered by Single Model Racial Categorization 

Figure 3 shows the facial features such as periocular region, 
anthropometry distance, silhouette, iris texture, skin tone and 
holistic face. 

 

Skin tone differs mainly due to geographical location of 
humans. African-American, South-Asian, East-Asian, Caucasian, 
Indian and Arabian have different skin tones. Skin tone plays a 
minor role in identification of racial groups because skin color 
may also differ due to varying lighting conditions during the 
image capturing process [56, 64]. 

Like fingerprints, iris texture is a significant biometric 
characteristic of humans because it is unique for every human 
being [82]. It is highly useful for racial categorization because 
different race groups such as American, Indian and so on have 
different iris texture [59, 74-76, 82-84]. The key limitation of this 
feature is that it cannot be considered if race is to be identified 
from video because video may be of low quality and hence, may 
not give precise iris texture information [85-86]. 

Periocular region is defined as the region surrounded by eye. 
It is a region that overlays eyebrows, eyelid, eyelash and canthus 
[52]. It gives rich texture and biometric information as compared 
to iris texture [30]. Some facial features get influenced due to 
different facial poses and expressions. However, the periocular 
region does not get affected due to facial poses and expressions. 
Hence, it is considered as the most reliable feature for racial 
categorization [52, 62, 77]. 

Holistic face provides the texture information of various facial 
features such as eyes, nose, mouth, cheek, chin, skin color and jaw 
line [43, 51, 63, 87-89]. Extra frontal face features such as hairline 
and hair color in combination with cropped aligned face features 
ease racial categorization process [54]. 

2.2. Features Considered by Multi Model Racial Categorization 

Multi model racial categorization improves accuracy of racial 
categorization via fusion of facial features with other human 
features such as gait pattern and audio cues [90] (Figure 4). Below 
we discuss the features considered by multi model racial 
categorization.  

Gait pattern, also known as the walking pattern, is a prominent 
biometric feature that varies from human to human and is used for 
identification of a person [91-92]. Advanced racial categorization 
methods use gait pattern fused with facial features for overall 

effective racial categorization [92-97]. For videos in which 
humans at near to moderate distance have been captured, facial 
features are sufficient to identify the race. However, for videos in 
which humans at far distance have been captured, gait pattern is 
highly useful to identify the race of human because facial features 
of humans at far distance are not clearly visible. Thus, fusion of 
gait pattern with facial features improves overall racial 
categorization accuracy [65]. 

 
Figure 4: Features considered by multi model racial categorization 

Audio pattern differs from race to race [98]. It is useful to 
identify race in case a video sequence or image of a person is not 
available. For instance, it is useful to identify race from phone 
calls. 

3. Single Model Racial Categorization Methods 

Race depends on physical and social characteristics of humans. 
As geographic distance increases, variation in facial features of 
inter-races become visible. As facial data is easily available 
compared to gait pattern, the majority of the racial categorization 
applications use a single model racial categorization method. 
Moreover, it has been revealed in literature that facial features are 
more prominent for race categorization [99-100]. Below we 
discuss various single model racial categorization methods 
available in literature. 

3.1. Multi Ethnical Categorization using Manifold Learning 

In [51], authors have proposed a method for intra-racial 
categorization based on facial landmarking. This method 
classifies eight intra-races residing in China based on facial 
landmarking concept. It includes Active Shape Model (ASM) to 
locate 77 facial landmarks. The landmarks are used to calculate 
three types of geometric facial features: distance, angle, and ratio. 
These features are provided to different classifiers such as 
Bayesian Net, Naive Bayesian, SMO, J4.8, RBF Network and 
LibSVM to identify the race category. The dimensionality 
reduction process carried out by manifold learning approach is 
useful to reduce the complexity. Though this method is efficient, 
it is not useful to identify race from a person’s profile face images. 

3.2. GWT and Ratina Sampling based Ethnicity Categorization 

Multiclass SVM based ethnicity categorization method is 
proposed in [52]. Figure 5 shows the key steps involved in this 
method.  

As shown in figure, first image is normalized via applying 
rotation operation and changing resolution. The resolution of the 
image is changed in such a manner that it maintains distance of 
28 pixels between two inner corners of eyes. Subsequently, eye 
and mouth facial features are extracted by fusion of Gabor 

Gait pattern Audio Cues
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Wavelet Transfer (GWT) and retina sampling for efficient 
categorization. GWT is used to extract accurate orientation and 
frequency of facial features. Retina sampling method is used to 
set facial feature points. The features are fed to multiclass SVM 
classifier for ethnicity identification. Typically eye is considered 
as a most prominent feature for racial categorization due to its 
pose invariant characteristic. On the other hand, uncertainty is 
introduced by mouth region due to its pose variant characteristic. 
The disadvantage of this method is that GWT provides erroneous 
features in case of hollow around the eyes. Moreover, Gabor 
features reflect error due to variation in frequency of eyelashes. 

 
Figure 5: Steps for ethnicity categorization using GWT and retina sampling 

3.3. Real Time Racial Categorization 

A new method for racial categorization by fusion of Principal 
Component Analysis (PCA) and Independent Component 
Analysis (ICA) is introduced in [53]. It consists of major two steps: 
feature extraction and classification. During the feature extraction 
step, facial features are extracted using PCA. Subsequently, ICA 
is used to map and generate new facial features from facial 
features generated by PCA. New facial features are more suitable 
for efficient racial categorization. During the classification step, 
SVM classifier is applied in conjunction with ‘321’ algorithm to 
classify races. ‘321’algorithm is inspired by the bootstrap 
approach for real time racial categorization from video streams. 
The categorization accuracy of this method can further be 
enhanced by including pre-processing step to diminish noise from 
the image and for face alignment. 

3.4. Binary Tree based SVM for Ethnicity Detection 

In this method, fusions of texture and shape facial features 
have been considered for better ethnicity categorization [54]. 
Figure 6 shows the functioning of this method. The first step pre-
processing involves the operations such as image resize, image 
enhancement and image conversion. Then texture features are 
extracted using Gabor filter and shape features are extracted using 
Histogram Oriented Gradient (HOG). Subsequently, texture 
features and shape features are fused together. The fused feature 
vector is large and it requires more computational time. Hence, 
Kernel Principle Component Analysis (KPCA) algorithm is 
applied to reduce dimensionality and complexity. Fused facial 
features are given as input to binary tree based SVM for ethnicity 
detection. 

 
Figure 6: Steps for ethnicity detection using binary tree based SVM [54] 

3.5. Racial Categorization using CNN 
In [55], a hybrid supervised deep learning based racial 

categorization method has been proposed. It uses VGG 16 
convolution neural network for facial feature extraction and 
categorization. 224 X 224 face image is given as an input to VGG-
16 network for race prediction. Any CNN requires millions of 
images for training from scratch, which is critical a situation for 
the medical domain. Hence, to overcome an issue of small dataset, 
authors have used hybrid approach via fusing VGG 16 with image 
ranking engine to improve race prediction. It has been shown that 
image ranking engines work efficiently with CNN based 
classifiers even for small dataset. The fused feature information 
extracted by CNN and image ranking engine is used by SVM to 
learn racial class labels. This hybrid method provides better 
categorization accuracy. 

 
Figure 7: Steps involved in racial categorization using ANN 

 

Output 

Categorization using SVM 

 

Dimensionality Reduction using 
KPCA 

Feature Fusion 

Feature Extraction 
using HOG 

Feature Extraction 
using Gabor Filter 

Pre-processing 

Input Image 

Begin 
1. Face detection using cascade classifier 
2. Mark different facial features like nose, eyes and 

mouth. 
3. Calculate distance and ratio between the marked 

facial features. 
4. Detect different geometric facial features. 
5. Detect skin color using YCbCrcolor model. 
6. Detect forehead area using Sobel edge detection. 
7. Normalize the forehead area considering coordinates 

of face and eyes and by applying following equation. 

 Normalized Forehead Area =
ForeheadArea

TotalFaceArea
    

8. Create normalized feature matrix. 
9. Train and validate neural network using feature 

matrix. 
10. Test neural network for racial categorization. 

End 
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3.6. Neural Network based Racial Categorization 

In [56], skin color, forehead area, sobel edge and geometric 
features are fused for efficient race estimation. Authors have 
proposed two methods: 1) using Artificial Neural Network (ANN) 
and 2) using convolution neural network. The steps involved in 
racial categorization using ANN are shown in Figure 7. 

CNN based racial categorization method uses pre-trained 
VGGNet for racial categorization. It has been observed by authors 
that CNN based method gives more accurate racial prediction for 
the given image as compared to ANN based method. 

3.7. Local Circular Pattern for Race Identification 

Local circular pattern for race identification method works on 
texture and shape features extracted from 2D face and 3D face 
respectively. A local circular pattern is an advanced version of a 
local binary pattern produced for feature extraction. LCP 
improves the widely utilized LBP and its variants by replacing 
binary quantization with clustering approach. As compared to 
LBP, LCP provides higher accuracy even for noisy data. 
Moreover, AdaBoost algorithm is used for selection of better 
features and thereby to improve the categorization accuracy. 
Experimental results have revealed that this method is time 
efficient and memory efficient. 

3.8. Biometric based Machine Learning Method 

In [62], authors have proposed a method that focuses on eye 
region features for racial categorization. The method comprises of 
five major steps shown in Figure 8. First facial coordinates are 
located using the DLib library. Subsequently, the region of 
interest (eye region) is extracted. Then features extracted by LBP 
and HOG are integrated for efficient racial categorization. LBP 
and HOG both are individually useful to extract features for 
categorization. However, fusion of LBP features with HOG 
features gives higher accuracy compared to other feature fusion 
approaches. The performance is tested utilizing different 
classifiers such as SVM, Multi-Layer Perceptron (MLP) and 
Quadratic Discriminant Analysis (QDA). 

 
Figure 8: Steps of biometric based machine learning method for racial 

categorization 
3.9. Diffusion Model and Implicit Racial Attitude for Racial 

Group Identification 

In [63-64, 101], manual racial categorization method is 
proposed. Race is identified by performing several tasks with 
participants. Diffusion model is used to identify response time 
boundaries of different participants. This method takes into 
consideration the visualization of participants for their own race  

and other races. Skin color is a less effective feature for automated 
racial categorization methods due to lightning conditions. 
However, it is a prominent feature for manual race prediction. 

3.10. Performance Evaluation of Single Model Racial 
Categorization Methods 

The above discussed race categorization methods are 
automated except the last one which is manual race categorization 
method. With increasing technology, manual race categorization 
is less effective and less useful as compared to automated racial 
categorization. Amongst the various automated racial 
categorization methods, CNN based methods produce more 
accurate results [55-56] as it considers deep facial features for 
racial categorization. We observed that the intra-race 
categorization is not much focused by the researchers in their 
study. 

Based on our study on aforementioned single model racial 
categorization methods, we have identified the following 
parameters to compare them: dataset used, racial/ethnic class 
considered, region of interest, feature extraction operator/s and 
classifiers used. Dataset refers to the source of data. It is either 
available online in the form of a standard dataset or it is self-
generated. HOIP Database, FERET (Facial Recognition 
Technology), FRGC v2.0 and BU-3DFE are examples of standard 
dataset. Self-generated dataset is created by researchers if their 
predefined requirements are not satisfied with a standard dataset. 
Racial/ethnic class represents the racial group targeted for study 
such as Indian, Chinese, Asian, European, African, African 
American, Caucasian, Bangladeshi, Mongolian, Caucasian, 
Negro, Hispanic and Pacific Islander. Region of interest specifies 
the area of face considered for racial categorization. Different face 
areas include eyes, eyebrow, ear, nose, cheek, mouth, chin, 
forehead area and jaw line. Some methods also consider skin color 
for race prediction. Feature extraction operator/s extracts the 
facial feature from the image. GWT, ICA, PCA, HOG, LBP, LCP 
are the features extraction operators used by different methods. 
Classifier specifies the classification algorithm used by the racial 
categorization method. Different classifiers such as SVM, CNN, 
ANN, kernel PCA, MLP, LDA, QDA and Kernel based Neural 
Network (KNN) have been used in different racial categorization 
methods. Table 1 presents the assessment of aforementioned 
single model racial categorization methods based these identified 
parameters. 

4. Multi Model Racial Categorization Methods 
Multi model racial categorization is highly useful when we do 

not have human’s facial image information. It has been shown in 
literature that gait pattern and audio cues are amongst the 
prominent features for biometric information identification. 
Hence, multi model racial categorization methods use gait pattern, 
audio cues or fusion of facial features with gait pattern/audio cures 
to identify race. However, a smaller number of multi model racial 
categorization methods are available in literature because race 
data that includes gait pattern or audio cues is not available easily. 

4.1. Multi-view Fused Gait based Ethnicity Classification 
In [102], authors have proposed a method that identifies 

ethnicity from seven gait patterns captured from seven different  

Begin 
1. Locate facial coordinates using DLib library. 
2. Extract Region of Interest (ROI) – eye region. 
3. Extract features of eye region using LBP and HOG. 
4. Fuse features extracted by LBP and HOG. 
5. Input fused features to classifier for racial 

categorization. 
End 
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Table 1: Parametric Evaluation of Single Model Racial Categorization Methods 

Method Dataset used Racial/ethnic class 
considered 

Region of 
interest 

Feature 
extraction 
Operator/s 

Classifier/s used 

Multi Ethnical 
Categorization using 
Manifold Learning [51] 

Self-Generated Chinese (8-Subgroups) Face  - Bayesian Net, Naive 
Bayesian, J4.8, RBF 
(Radial Basis 
Function) Network, 
LibSVM 

GWT and Ratina 
Sampling based Ethnicity 
Categorization [52] 

HOIP Database + 
Self- Generated 

Asian, European, 
African 

Eyes, Mouth GWT, Ratina 
Sampling
  

SVM 

Real Time Race 
Categorization [53] 

FERET Asian, Non-Asian Face ICA, PCA SVM 

Binary Tree based SVM 
for Ethnicity Detection 
[54] 

FERET Caucasian, African, 
Asian 

Face Gabor Filter, 
HOG 

SVM, Kernel PCA 

Racial Categorization 
using CNN [55] 

Self- Generated Bangladeshi, Chinese, 
Indian 

Face  - SVM 

Neural Network based 
Racial Categorization [56] 

FERET Mongolian, Caucasian, 
Negro 

Skin Colour, 
Forehead 
Area 

- ANN, CNN 

Local Circular Pattern for 
Race Identification [61] 

FRGC v2.0 and 
BU-3DFE 

Whites and East-
Asians 

Face LCP Adaboost 

Biometric based Machine 
Learning Method [62] 

FERET Asian, White, Black or 
African American, 
Hispanic, Pacific 
Islander, Native 
American 

Eyes, 
Eyebrows, 
Periocular 
Region 

LBP, HOG SVM, MLP, LDA, 
QDA 

Diffusion Model (Binary 
Classifier) [63] 

Race Morph 
Sequence 

Asian, Caucasian Face Manually Manually 

Implicit Racial Attitude 
[64] 

Facial stimuli used 
in current research 

African American, 
Caucasian 

Skin Colour, 
Facial 
Physiognomy 

Manually Manually 

 

angles. Figure 9 shows the key steps involved in the ethnicity 
identification process. First, all seven gait patterns are converted 
into corresponding Gait Energy Image (GEI). Next, seven GEIs 
are fused using three different fusion methods: score fusion, 
feature fusion and decision fusion. The goal of using three fusion 
methods is to accurately identify the ethnicity (race) of the person. 
Subsequently, features are extracted from the fused image using 
Multi-linear Principal Component Analysis (MPCA) and fed to 
classifier for ethnicity classification. 

4.2. Hierarchical Fusion for Ethnicity Identification 

In this method [65], gait pattern and facial features are fused 
for better ethnicity categorization. Figure 10 shows the two level 
processing involved in this method. First level involves gait 
pattern evolution. It takes gait video as an input. It includes the 
intermediate steps such as gait cycle estimation and GEI 

generation. First level also includes SVM for classification. 
Second level takes face video as an input. It comprises of three  

 
Figure 9: Steps involved in multi-view fused gait based ethnicity classification 

Begin 
1. Gait energy image generation of gait patterns 

captured from 7 different angles 
2.  Fusion of gait energy images 

2.1. Feature Level 
2.2. Score Level 
2.3. Decision Level 

3. Feature extraction from fused image using MPCA 
4. Ethnicity classification from extracted features 

End 
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Figure 10: Steps of ethnicity categorization using hierarchical fusion system [65] 

 
Figure 11: Block diagram of ethnicity classification system [67] 

major steps: frame extraction from video, face detection and 
feature extraction using Gabor filter. Features extracted in first 
and second level are fused together to get accurate classification. 
The fused features are given to SVM and then to Adaboost to 
identify ethnicity. 

4.3. Dialogue based Biometric Information Classification 

In [66], a method for biometric information classification and 
deception detection has been proposed. It identifies gender, 
personality and ethnicity from the audio (dialogue). Lexical and 
acoustic-prosodic features are extracted from the dialogue. 
Lexical features are extracted using Linguistic Inquiry and Word 
Count (LIWC). Acoustic-prosodic features are extracted using 
Praat. Both types of features are given to different machine 
learning classifiers such as SVM, logistic regression, Adaboost 
and random forest for classification. 

4.4. Cross-Model Biometric Matching 

A new method for cross biometric matching by fusion of voice 
and facial image is introduced in [68]. The cross model is used for 
inferring the two types of information: 1) voice from human face 
and 2) human face from voice. This method involves two key 
steps: feature extraction and classification. The features are 
extracted from image as well as voice. The extracted features are 
fused and given as input to CNN for biometric matching and 
classification. 

4.5. Gait and Face Fusion for Ethnicity Classification 

Ethnicity classification system is proposed in [67]. It considers 
fusion of facial features and gait pattern for better classification. 
As shown in Figure 11, inputs to this system are gait video and 
facial video. Both videos are processed in parallel. During gait 
video processing, first background is subtracted from the video 
and subsequently each gait cycle pattern is estimated. Next all gait 
cycle patterns are represented using spatio- temporal 
representation for gait pattern characterization. During face video 
processing, frames are extracted from the face video and 
subsequently the facial part is cropped from the face image. Facial 
features are extracted from each frame using LBP. Features 
extracted from gait and face videos are fused together using 
Canonical Correlation Analysis (CCA). Fused features are given 
as input to SVM for ethnicity identification. 

4.6. Performance Evaluation of Multi Model Racial 
Categorization Methods 

As illustrated in Table 2, we identified the same set of 
parameters for comparison of multi model racial categorization 
methods as we identified for single model racial categorization 
methods. As defined and discussed previously in section 3, they 
are dataset used, biometric information considered for 
classification, region of interest, feature extraction operator/s and 
classifiers used in the method. 

 
 

 

                            

                           Classification 
                                   

 
 

 

Adaboost   

estimation 

Face 
Video 

Fused 
features 

Background 
subtraction 

Decomposed to 
frame images 

Gait cycle 
estimation 

Crop facial part 

Spatio-temporal 
representation 

LBP features 

CCA SVM 

Gait 
Video 

Ethnicity  
classification 
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Table 2: Parametric Evaluation of Multi Model based Racial Categorization Methods 

Method Dataset used Biometric 
information 
considered 

Region of 
interest 

Feature 
extraction 
operator/s 

Classifier/s used 

Multi-view Fused Gait 
based Ethnicity 
Classification [102] 

Self- Generated Ethnicity (East-
Asian and South-
American) 

Gait Pattern Multi-linear 
Principal 
Component 
Analysis 

 - 

Hierarchical Fusion for 
Ethnicity Identification 
[65] 

Self- Generated Ethnicity (East-
Asian and South-
American) 

Gait Pattern 
and Face 

Gabor Filter SVM 

Dialogue based 
Classification [66] 

NEO-FFI Gender, Ethnicity 
and Personality 

Dialogue 
(Audio) 

LIWC and Praat SVM, Logistic 
Regression, AdaBoost 
and Random Forest 

Cross-Modal Biometric 
Matching [68] 

VGGFace (Face 
data) and VoxCeleb 
(Audio Data) 

Gender, Age, 
Ethnicity and 
Identity 

Audio and 
Face 

 - CNN 

Gait and Face Fusion for 
Ethnicity Classification 
[67] 

Self- Generated Ethnicity Gait Pattern 
and Face 

LBP SVM 

 

 
Figure 12: Application areas of racial categorization 

5. Application of Racial Categorization 

Racial categorization has a high impact on our social life. Race 
defines common physical characteristics of humans to represent 
his existence. Physical characteristics of humans of different races 
differ from each other. Racial categorization is significant for 
several applications. As shown in Figure 12, the major application 
areas are video security surveillance and public safety, criminal 
judgment and forensic art, medico legal, healthcare, aesthetic 
surgery, face recognition, and human computer interface. 

5.1. Video Security Surveillance and Public Safety 

Race identification from the subject’s face plays a crucial role 
in video security surveillance. Video security surveillance system 
assists in identifying criminals by comparing the detected 
subject’s image with the existing criminal database. Automated 

race identification system fused with video security surveillance 
system provides quick information about the subject [53]. Such a 
fused system is already in use at several airports and public places. 
Moreover, it has been proven useful for applications such as 
maritime, aviation, mass transformation, government office 
building, recreational centers, stadium and large retail malls. 

5.2. Criminal Judgment and Forensic Art 

Crime related investigation requires crucial information 
related to criminals including cross-country evidence (if any) 
[103-108]. Race/ethnicity of criminals provides such crucial 
information. Face is typically considered for criminal 
investigation because face conveys important information. 
Particularly, it conveys age, race and gender that are needed for 
criminal investigation. This information makes the investigation 
process easy for the government to find the right criminal [104, 
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109-111]. Moreover, such information is useful to prevent 
innocent people and provides justice to minority community 
groups. 

Normally the forensic department has the subject’s image 
captured using a public camera. However, it is difficult for the 
forensic department to manually extract the crucial information 
from the image. Conversely, racial categorization method can be 
used to identify the race from the image which assists in further 
investigation targeting a particular race community [106]. 

5.3. Medico Legal 

Medico legal case is defined as a case of suffering or injury in 
which examination by the police is essential to determine the 
cause of suffering or injury. Suffering or injury may be due to 
several unnatural conditions such as accidents, burning and death. 
Race provides patient’s information that is useful to law enforcing 
agency for further investigation [112]. By evaluating the race 
information of the medico legal case, law enforcing agency can 
obtain history of medico legal cases in that particular racial group 
[113-115]. Such information eases the investigation process and 
assists medico legal department in decision making. 

5.4. Healthcare 

Disease and healthcare issues are conflicting for different 
geographical areas due to their weather conditions, living sense 
and food. Healthcare treatment differs for different racial groups 
[116]. Thus, racial categorization is useful to solve the healthcare 
issues and to provide quick treatment [117-121]. Moreover, ethnic 
information is useful to provide appropriate services and special 
advantages to minority ethnic groups which are defined by the 
government for the minority and economically low conditions 
[122]. 

The center to Eliminate Health Disparities (CEHD) of the 
University of Texas Medical Branch (UTMB) has implemented 
the Information System for the health of people of UTMB to 

reduce disparities in health. Their information system is also 
known as REAL (race, ethnicity and language) [122]. Figure 13 
illustrates the role of CEHD in the health system of UTMB and 
Galveston County as a whole. UTMB is a university health center 
that welcomes patients from diverse backgrounds. It provides 
services to different racial groups whose income level is below 
the poverty line. However, the main objectives of this REAL 
project are (1) to improve the UTMB's health information system 
for better diagnostics and stratified quality measures by race, 
ethnicity, language and status (2) to develop and disseminate 
contingency plans to address disparities through effective 
partnerships with relevant stakeholders. 

5.5. Aesthetic Surgery 

Aesthetic surgery is described as a facial plastic surgery either 
for the beautification of face or to create an attractive face [123]. 
Anthropometric measurement is the distance between two facial 
points. It has been revealed in literature that anthropological 
measurements such as ratio, geometric distance and Euclidean 
distance are different for different racial groups [124-126]. 
Geometric and Euclidean distances are the distances between 
primary or secondary facial landmarks on the frontal face/profile 
face. Depending on the race of patient, anthropological 
measurements are derived and used in aesthetic surgery [127-129]. 
For example, aesthetic surgery for Chinese people and Indian 
people is different as both groups have different facial features 
and thereby different anthropological measurements. 

5.6. Face Recognition 
Racial difference in humans is useful for biometric illustration 

and human identification [130]. Race cues and race wise 
anthropological measurements make it easy for face recognition 
systems to recognize the person [131-134]. Moreover, integration 
of race information with face recognition makes the face 
recognition system more intelligent and quick for accurate face 
recognition [135-136]. 

 
Figure 13: Role of the health center system to eliminate health disparities for different ethnicity [122]
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5.7. Human Computer Interface 
Nowadays, several systems are automated using robots [137-

140]. Consumers of such robotic systems need to interact with 
robots frequently. In human-robot communication, racial cues 
play an important role [141-145]. Specifically, by recognizing the 
race of a human from his face, behavior and expression, robots 
can deliver the relevant services to humans. Such robotic systems 
are useful for an open service atmosphere where robots work as 
humans [146]. In particular, they are useful in hospitals, malls, 
stadiums, hotels, gaming zones and intelligent HCI organizations 
for easy communication with humans. 

6. Challenges in Racial Categorization 

Several challenges are faced to get correct and accurate racial 
categorization. Below we mention the major challenges faced in 
racial categorization.  These challenges create new opportunities 
for researchers in this field to carry out further research. An 
efficient racial categorization method can be developed by 
overcoming these challenges and higher classification accuracy 
can be achieved. 

6.1. Intra-race Categorization 

To the best of our knowledge, intra-race categorization has not 
been focused much in literature. 85% of the worldwide population 
is divided into major 7-racial groups, namely African-American, 
South-Asian, East-Asian, Caucasian, Indian, Arabian and Latino 
race [30]. Intra-race categorization for aforementioned racial 
groups is challenging due to severe similarity in facial features 
and in physical appearance of humans belonging to a particular 
group [147-148]. It is difficult to infer different clues for intra-
race categorization. 

6.2. Anthropometry Measurements 

Facial landmarking technique is used to measure 
anthropometry measurements. It has been shown in literature that 
accuracy of anthropometry measurements and thereby accuracy 
of racial categorization method varies with respect to the number 
of facial landmarks [21, 51, 56, 62, 147-148]. Thus, existing 
landmarking methods can be further improved by increasing the 
number of landmarks. Moreover, landmarks on forehead area, 
hairline and earlobe can be additionally considered to increase 
accuracy further [56]. In addition, anatomists have revealed that 
Ear pinna and Iannarelli's measures differ for different racial 
groups. Like finger print, ear pinna is unique for each individual. 

6.3. Real-Time Data 

It is required to process real-time video streams at public 
places such as airports, hospitals, health care centers, malls and 
stadiums for public safety and security systems. However, 
existing racial categorization methods are not applicable and 
reliable for processing real-time video stream [53]. They are 
applicable to only off-line image dataset. 

6.4. Manual Racial Categorization 

The aforementioned issues are related to automated racial 
categorization methods. However, the issues faced by manual 
racial categorization methods are different. The major issue 

related to manual racial categorization which involves 
participants is that the number of stimulus levels for race 
prediction is limited. Stimulus level is defined as the number of 
tasks performed by participants for race prediction [56, 61]. 

7. Conclusion 

In this paper, we have presented in-depth review on various 
single model and multi model racial categorization methods. 
Moreover, parametric evaluation of racial categorization methods 
based on identified set of parameters is presented. It has been 
observed that fusion of facial features and physical appearance 
provides accurate race categorization. Moreover, it has also been 
observed that CNN based racial categorization model gives 
substantially higher accuracy because it extracts deep features. 
Our rigorous review on racial categorization methods will provide 
researchers state-of-the-art advancements related to racial 
categorization methods. Furthermore, the applications and 
challenges of racial categorization discussed herein will help 
researchers to develop an efficient and competent racial 
categorization method. 
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