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 The purpose of this research paper is to demonstrate that optimization of energy 
consumption, distributed generation and storage contribute towards mutually beneficial 
and satisfactory Demand Side Management algorithms that can be installed into consumer 
smart meters or in Home Energy Storage. A new solution based on an Energy Scheduling 
and Distributed Storage (ESDS) and Microgrid Energy Management Distributed 
Optimization Algorithm Demand Side Management (MEM-DOA DSM) algorithms 
Microgrid Energy Management Distributed Optimization Algorithm Demand Side 
Management that offers benefits to consumers, utility providers, policy makers and the 
environment Smart grid, Demand Side Management and mathematical optimization 
techniques which were studied. A successful development operation of a Demand Side 
Management Algorithms is made by using appropriate mathematical programming 
methods depending on the nature of their objective functions, tests results are 
accomplished. 
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1. Introduction   

The Distributed Energy Storage (DES) refers to the location of 
energy storage devices in consumer premises (commercial, 
industrial), storage stations or sub-stations for purposes such 
reducing consumer energy consumption from the grid, providing 
emergency energy supplies, and spinning reserves. İn our study the 
owners of storage devices is a consumers. DES device operates by 
taking energy from grid during off-peak periods and stores the 
energy to be discharged to consumers at a later scheduled time, 
especially during peak periods and/or to sell to the grid during peak 
periods or as requested. The aim of such scheduling includes 
energy and financial savings, a reduction in peak demand from the 
grid. DES device is installed in one of two modes – standalone or 
grid-connected mode. The standalone DES receives energy from 
the grid or a DEG and discharges the same locally to meet 
consumer demand. On the other hand, a grid-connected DES 
performs all the functions of the standalone DES, with inclusion of 
the capability to propid energy. DES has the potential to be located 
throughout the entire chain of the energy network from generation 

right into consumer premises. The location of a DES device in the 
smart grid can be at consumer premises (be it residential, 
commercial or industrial), community or microgrid, substation or 
utility generation site. The DSM problems can have deterministic 
or stochastic techniques depending several elements and variables. 
Stochastic optimization is used for many years that depends on 
historical data. Hence, many DSM methods are designed with 
robust optimization.  

We demonstrate that the good method that can be used in order 
to reduce the crosstalk effect in Digital Subscriber Line, is 
Dynamic Spectrum Management method. This work describes a 
series of Dynamic Spectrum Management algorithms including 
Optimal/ Iterative/ Autonomous Spectrum Balancing, Iterative or 
Selective Iterative Water-filling, Successive Convex 
Approximation for low complexity. The important point, is the 
existence of compared in terms of performance and computational 
complexity. 

The purpose of the DES device determines where it will be 
located in the smart grid. In our research, we find out multi-
benefits of Distributed Energy Storage in the smart grid in a 
various locations: for consumer premises such as residential/ 
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commercial and industrial, their benefits are leverage on time-
varying energy pricing (TOU, CPP and RTP), reduction in demand 
charge by utility, DR and DSM capabilities, enhances installation 
of DEGs, and offers support during critical load or critical peak 
period. İn case of community or microgrid, we have a reduces 
congestion in distribution network, less need and frequency of 
electricity cable replacements, upgrades, offer support to 
distributed generation through connection with DEGs, mitigate 
load shedding, electricity outages and blackouts. Reduces 
congestion in distribution network offers support to distributed 
generation through DERs and power quality to consumers.  

The utility generation site can serve as spinning reserve to the 
utility grid, offers ramping advantage to the grid and support to 
distributed generation through connection with DEGs, applicable 
for line frequency control and used for black start generation. 
Electric Vehicles (EVs), also known as Electric Drive Vehicles 
(EDVs), are automobiles that use at least one of electric or traction 
motors for propulsion. EVs are basically of three types namely: 
Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV) 
and Plug-in Hybrid Electric Vehicle (PHEV) or Plug-in Electric 
Vehicle (PEV). The BEVs have only battery as the source of 
power. They can be charged during low price periods and 
discharged at high price periods or when the energy is needed. 
HEV is made up of an internal combustion engine and a small 
battery. It uses the battery to optimize the operation of the internal 
combustion engine and recharges the battery from the gasoline 
engine and regenerative braking. Studies demonstrates that EVs 
could lead to reduced dependence on fossil fuels and CO2 
emissions in the transport sector by offering an environmental-
friendly and sustainable alternative to traditional internal 
combustion engine vehicles. EVs can be used to supply peak 
demand, balance power in feed prediction error in renewable 
integration [1][2], offer Demand Side Management functionalities 
[3], grid and tariff stability [4].  

The possibilities that EVs can provide electricity to the grid 
when parked, as dispatchable energy sources, have led to vehicle-
to-grid (V2G) technologies [5] [6]. Such parking locations could 
be in consumer premises, parking lots, shopping malls or other 
public and easily accessible locations. The technical and financial 
motivations behind V2G in the smart grid offer benefits to the 
utility provider, consumer, policy makers and the environment. 
However, increasing penetration of EVs can increase the grid peak 
demand due to their charging patterns and load and consumer 
driving behavior hence, the need to schedule EV loads. We 
propose for the three major component systems in DSM to be 
modelled by applying mathematical optimization techniques and 
can be used to obtain the optimum demand, supply in addition 
storage profiles in the smart grid for the benefits of all stakeholders 
in the energy industry. This research paper proves the importance 
of mathematical optimisation role in DSM algorithms. 

2. Mathematical Optimization 

A mathematical optimisation provides mathematical basics 
needed for solving several optimisation problems in economics, 
science and engineering because it can be applied to study system 
performance, efficiency and cost effectiveness [7][8]. İn our study, 
we classify nine sverel classes of mathematical optimisation 
problems [9]: the first is based on the existence of constraints: This 

includes constrained optimisation and unconstrained optimisation 
problems. When there are no constraints attached to the objective 
function of an optimisation problem, it’s called an unconstrained 
optimisation problem and vice versa, the second based on the 
nature of the design variables as parameter (or static) and trajectory 
(or dynamic) optimisation problems, the third based on the 
physical structure of the problem which includes optimal control 
and non-optimal control optimisation problems, the fourth based 
on the nature of the equations involved, it is a popular way to 
classify optimisation problems and includes nonlinear 
programming (NLP), geometric programming (GMP), quadratic 
programming (QP), and linear programming (LP) problems, where 
is the classification based on the permissible values of the design 
variables, it includes integer programming (IP) and real valued 
programming problems. We have also a classification based on the 
deterministic nature of the variables including stochastic 
programming and deterministic programming problems. 
Stochastic programming involves problems with uncertainty 
variables while deterministic programming involves problems 
with known parameters or variables, for the classification based on 
the separability of the functions: This includes separable 
programming and non-separable programming problems, and tha 
classification based on the number of objective functions: it 
includes single objective programming and multi-objective 
programming problems. Most optimisation problems can belong 
to more than one category of these classifications. A careful study 
of an optimisation problem is therefore needed to be able to choose 
the appropriate solution method and tool. 

3. Mathematical Optimization 

A mathematical optimization provides mathematical basics 
needed for solving several optimization problems in economics, 
science and engineering because it can be applied to study system 
performance, efficiency and cost effectiveness [7][8]. İn our study, 
we classify nine several classes of mathematical optimization 
problems [9]: the first is based on problems including constrained 
and or unconstrained optimization problems.  

When there are no constraints attached to the objective function 
of an optimization problem, it’s called an unconstrained 
optimization problem and vice versa, the second based on the 
design nature variables as parameter (or static) and trajectory (or 
dynamic) optimizations problems, the third based on the physical 
problem structure. It includes optimal control and non-optimal 
control optimizations problems, the fourth based on the nature of 
the equations involved, it is a popular way to classify optimization 
problems and includes nonlinear programming (NLP), geometric 
programming (GMP), quadratic programming (QP), and linear 
programming (LP) problems, where is the classification based on 
the permissible values of the design variables, it includes integer 
programming (IP) and real valued programming problems. We 
have also a classification based on the deterministic nature of the 
variables including stochastic programming and deterministic 
programming problems. Stochastic programming involves 
problems with uncertainty variables while deterministic 
programming involves problems with known parameters or 
variables, for the classification based on the separability of the 
functions: This includes separable programming and non-
separable programming problems, and tha classification based on 
the number of objective functions: it includes single objective 

http://www.astesj.com/


C. Hamrouni / Advances in Science, Technology and Engineering Systems Journal  5,  4, 99-104 (2020) 

www.astesj.com     101 

programming and multi-objective programming problems. Most 
optimization problems can belong to more than one category of 
these classifications. A careful study of an optimization problem is 
therefore needed to be able to choose the appropriate solution 
method and tool. 

4. Mathematical Formulation of Optimization Problem 

Mathematical optimization involves the search for the best 
element or optimal solution from a set of available elements and 
solutions respectively subject to certain conditions. It involves 
maximizing, minimizing or maximizing and minimizing a real 
function by selecting different input values from a set of values and 
obtains the optimal value that best satisfies all the constraints. 
Basically, an optimization problem comprises optimization 
variable, objective function and constraint function(s) and is of the 
general form: 

min(x) fo (x)    (1) 

Subject to      fi (x) ≤  bi,  i=1,2,3,.....m 
 

where  x = [x1, x2, x3,....... xn]T  is the optimization variable   
vector, fo (x):  IRn → IR is the objective function/cost function and 
is subject to constraint function fi (x), where 

fi (x):  IRn → IR (2) 

i= 1,2,3,.....m  and  b1, b2, b3,........ bm are constants that sets limits 
or bounds to the constraint [10]. The problem in (1) describes a 
minimisation problem that chooses the optimal vector x subject to 
the given constraints. The domain D of the optimisation problem 
is the set of points where the objective function and constraints 
are defined by: 

D = ⋃m
i=0 dom fi  (3) 

The problem in (1) can be said to be feasible if there exists a 
subset of points  x ∈ D which satisfies all the constraints. 
Therefore, a vector xn  is called the optimal solution of (1) if it has 
the smallest objective value among all other possible vectors that 
satisfy the constraints:  

For any 

z  with f1 (z) ≤  b1, b2,........ fm (z) ≤  bm                     (4) 
 

So that 

 fo (z) ≥  fo (x*), ∀x ∈ D              (5) 

Examples of minimization problems include optimization 
problems that attempt to minimize the expenditure of a consumer 
on certain commodities, the running capital of a company, the 
runtime of delivery of certain services to customers, energy 
consumption and expenditure. 

On the contrary, maximization problems look for optimal 
largest objective value in their solutions (maximization of profit by 
a utility or manufacturing company), satisfaction or comfort for 
consumers etc. A general format for expressing a maximization 
problem is given by : 

Max(x)     fo (x)                (6) 
Subject to      fi (x) ≤  bi,  i=1,2,3,.....m 

where x = [x1, x2, x3,....... xn]T
  is the optimisation variable vector, 

fo (x): IRn → IR is the objective function/cost function and is 
subject to constraint function: 

                 fi (x): IRn  →IR                                             (7) 

i= 1,2,.....m  and  b1, b2,........ bm are constants that sets limits or 
bounds to the constraint [11]. In addition, there could also be 
combination of minimisation and maximisation in some problems. 
Such problems could either be minimax or maximin problem. A 
minimax problem is formulated to minimise the maximum value 
of a number of decision variables, while a maximin problem 
maximises the minimum value of a number of decision variables. 
For example, solving for x* in: 

max Y∈G F F( X*,Y) = min x∈H max y∈G  F( X,Y)             (8) 

where H is a convex closed subset of En,G is a bounded closed 
subset of Em, X is a known parameter and F (X,Y) is the cost 
function. If F(X,Y) is linear, then (2) is a linear minimax problem. 
However, if H ≠ En then (2) is a constrained minimax problem 
[12]. Similarly, the maximin of (2) can be expressed as: 

min x∈H F F( X,Y) = max y∈G min x∈H F( X,Y)              (9) 

5. Solving Mathematical Optimization Problems 

The size and nature of the objective function, variables and 
constraints determines what type of mathematical programming 
method to be applied and solver to be used for its solution. For 
instance, linear programming problems can be effectively solved 
using the popular Dantzig Simplex method [13], [14] or interior-
point method [15] or through the use of an embedded computer 
application solver like the CVX toolbox for Matlab [16]. LP can 
also be solved using Karmarkar’s method, which was presented to 
be fifty times faster than the Dantzig Simplex method [17]. For 
example, the problem in (1) can be said to be a LP problem 
provided the objective and constraint functions are all linear 
functions. 

Integer and mixed integer programming problems can 
generally be solved by choosing the best solution from all possible 
solutions, but when the number of variables is large, it becomes 
very difficult to solve. Although there are several techniques for 
solving integer and mixed integer programming problems, the 
cutting plane algorithm of Gomory [18] and the branch-and-bound 
algorithm of Land and Doig [19] are the most popular. Balas in 
[20] went on to develop the Balas algorithm for solving zero-one 
LPs even though they could also be solved using the cutting plane 
and branch-and-bound methods. The various methods for solving 
different integer programming problems are presented in Figure.1 

MILP problems are optimisation problems with linear 
objective function CTX constraints where C is a column vector of 
constants and T is a column vector of unknowns with restrictions 
on some components of T to take on integer values. MILP 
problems can be conveniently solved using branch-and-bound 
method [21] and can be generally represented as: 
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Min CTX                                                (10) 

                                  s.t. Ax = b                                               (11) 

                       x ≥  0 , x1 ∈ Z/, ; ∀ i  ∈ I.                                  (12) 

CP has attractive theoretical properties and has found 
applications in the development of efficient and reliable numerical 
algorithms. It unifies and generalises some common optimisation 
problems such as least square, quadratic programming and linear 
programming problems. A CP problem is of the general form: 

                                          min   f(x)                                       (13) 

s.t. gi (x) ≤ 0, i=1,....m 

Where functions f(x), g1(x)...........gm(x): IR → IR are convex 
functions satisfying the condition: 

                        f(∝x + (1-∝)y)≤ f(x) + (1-∝)f(y)                   (14) 

∝ ∈ [0,1], x,y∈ IR. 

If f(x) is a convex function then −f(x) is a concave function. 
CP problems are commonly solved using the interior-point 
method. Convex and concave functions are illustrated in Figure.2:  

 

 
Figure 2: Illustration of convex and concave 

 

                             minimize  n ½  xT Qx + cTx                        (15) 

subject to   Ax   ≤  b. 
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Suppose an n-dimensional vector is determined by w, and n x 
n-dimensional real symmetric matrix is presented as Q, b is an m-
dimensional real vector and n-dimensional real matrix. 

Stochastic programming involves optimisation problems that 
have uncertain objective or constraint functions, which are 
characterised by a probability distribution on the variables. 

Examples of mathematical programming methods found in 
DSM literature include linear/ integer/  binary/ mixed integer 
linear programming  [22] [23], quadratic programming (QP), 
convex programming (CP), nonlinear programming (NLP) [24], 
stochastic programming (SP), heuristics and metaheuristic 
programming, and mixed integer nonlinear programming 
(MINLP). 

Additional sensitivity analyses were carried out to study the 
robustness of the ESDS algorithm [25] [26],,  on PAR demand, 
dissatisfaction cost. First, the effect of battery capacity on 
consumer dissatisfaction was investigated. It was discovered that 
battery capacity has an indirect relationship to dissatisfaction of 
energy consumption. That is, the higher battery capacity value 
which can be acquired by consumers as iHES device, the less the 
consumer will be dissatisfied by appliance scheduling to an extent.  

However, capacity of battery can never indefinitely increase; 
so, the diminishing law returns and set on savings point and then 
battery pay-back period. Simulation result of battery capacity 
assumed to be 7 kWh [27]. Therefore, 4 kWh and 10 kWh battery 
capacities were simulated and the results obtained are presented 
in Figure.3.  

 
Figure 3: Relation between battery capacity and dissatisfaction coast 

 [28], [29], is effective 
in terms of robustness and convergence of algorithm. The 
performance of optimization techniques depends on user 
interactions and time scale. 

The algorithm determines the energy value stored in the 
battery, it purchases from the grid and schedules demand to be 
met within the capacity of stored energy, at mentioned price. The 
results showed that peak period dissatisfaction, which is a 
common feature in DSM programs, and based on incorporation 

distributed energy storage system, it can be reduced. Consumer 
premises applying above constraints. The effect of DSM 
scheduling on dissatisfaction cost is shown in Figure.3.  

6. Conclusion 

Smart grid, Demand Side Management and mathematical 
optimisation techniques were reviewed in this work. Optimisation 
of energy consumption, distributed generation and storage can 
contribute towards mutually beneficial and satisfactory Demand 
Side Management Algorithms, which can be installed into 
consumer smart meters. These Demand Side Management 
Algorithms can be designed using any appropriate mathematical 
programming methods depending on the nature of their objective 
functions, variables and constraints. The DSM algorithms 
proposed in this paper are DMES, DOS-EUP. 
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