
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 4, 824-840 (2020)

www.astesj.com
Special Issue on Multidisciplinary Innovation in Engineering Science &

Technology

ASTES Journal
ISSN: 2415-6698

Fine Tuning the Performance of Parallel Codes
Sanaz Gheibi*, Tania Banerjee, Sanjay Ranka, Sartaj Sahni

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, USA

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 03 June, 2020
Accepted: 11 August, 2020
Online: 31 August, 2020

Keywords:
Parallel speed up
Large matrices
Performance fine tuning

We propose a multilevel method to speed highly optimized parallel codes whose runtime
increases faster than their workload. This method requires the ability to solve large in-
stances by decomposing them into smaller instances. Using a simple parallel computing
model, we derive a mathematical model that predicts whether or not our method can im-
prove performance and also predicts the amount of improvement attainable. Our method
is tested and shown to be effective on three highly optimized BLAS (Basic Linear Alge-
bra Subprograms) routines from Intel’s Math Kernel Library (MKL). Those routines are
cblas dgemm, cblas dtrmm and cblas dsymm. On the Intel Knights Landing (KNL) platform
our method speeds cblas dgemm by 33%, cblas dtrmm by 50% and cblas dsymm by 49%
on double-precision matrices of size 16K × 16K, when the KNL’s default memory-clustering
configuration (cache-quadrant) is used.

1 Introduction

This paper is an extension of our previous paper on fine tuning a
group of linear algebra libraries using a multi-level approach [1].

Our problems of interest are a group of parallel codes whose
runtime grows faster than the problem size. The following example
provides a quick demonstration of how such parallel codes behave
and what motivates our proposed method.

Table 1 contains the runtime values for multiplying square
matrices of different sizes on the intel KNL multi-level memory
multicore computer. The memory-clustering configuration is set to
its default which is cache quadrant. The multiplications are done in
double precision using the highly optimized cblas dgemm function
from Intel MKL. The runtimes are obtained using either 32 or 64
cores. For each set of cores and each matrix size of 2N × 2N, the
table also provides the runtime ratio when the matrix size increases
from N × N to 2N × 2N.

Since the matrix dimensions are increasing by a factor of 2 (thus
increasing the workload by a factor of 8), we expect all the ratios
to be 8. However, that is not the case and four of the ratios are
greater than 8. That is where the runtime increases faster than the
workload and that brings up possibilities of improvement. Here,
for both 32 cores and 64 cores, we get better results if instead of
performing a 16K × 16K (64K × 64K) multiplication, we perform
8 instances of 8K × 8K (32K × 32K) multiplications and combine
the results (each input matrix is partitioned into 4 blocks of half the
dimension; the result is obtained by doing 8 block multiplies and

4 block additions). The previous statement is valid as long as the
overhead of performing 4 pairs of matrix additions is less than the
runtime reduction obtained by multiplying 8 smaller instances.

We can further reduce the runtime by running the smaller in-
stances in parallel. For example, instead of running one instance
of 32K × 32K multiplication using 64 cores, we can run 4 parallel
pairs of 16K × 16K multiplications using 32 cores in less total time.
Again, we will have speed up if the overhead of adding 4 pairs of
matrices is less than the obtained runtime reduction.

Table 1: Run times of double-precision matrix multiplications using 32 and 64 cores.
Ratio is obtained by dividing the run time in the current row by the runtime in the
previous row.

Matrix Size 32 Cores 64 Cores
Time(seconds) Ratio Time(seconds) Ratio

4K × 4K 0.37 - 0.32 -
8K × 8K 2.32 6.27 1.51 4.71

16K × 16K 20.56 8.86 12.32 8.16
32K × 32K 159.01 7.73 97.52 7.92
64K × 64K 1517.21 9.64 871.10 8.93

Our proposed method tries to improve the speed of the paral-
lel codes whose runtime increases faster than the workload. This
method uses multiple levels and works on applications that are of a
decomposable nature. We start with a 2-level algorithm. At level
2, the problem is broken into a number of subproblems that are
solved (serially or in parallel) using the 1-level algorithm and then

*Corresponding Author: Sanaz Gheibi, Dept. of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA, sgheibi@ufl.edu

www.astesj.com
https://dx.doi.org/10.25046/aj050497

824

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050497


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

the results are combined to form the final solution. (By 1-level
algorithm we mean the parallel and highly efficient algorithm whose
runtime grows faster than its workload). Now, suppose the 2-level
algorithm itself demonstrates the property that its runtime grows
faster than its workload. In this case, we can gain further speed up
by using a 3-level algorithm in which the problem is broken into a
proper number of subproblems which are solved using the 2-level
algorithm. We can continue increasing the number of levels in a
similar fashion.

While our proposed method has much in common with divide
and conquer, block matrix multiplication and Cannon’s method for
matrix multiplication [2], there are subtle differences. In a typical
divide and conquer algorithm [3]- [7] the division scheme is the
same across the levels (an example being the Strassen’s matrix mul-
tiplication algorithm [3]); whereas in our method the number of
subproblems into which the problem is broken can be different in
different levels. Block matrix multiplication has been used both
in serial and parallel matrix multiplication algorithms [2, 8, 9]. It
can be viewed as a 1-level divide-and-conquer algorithm; while our
method uses multiple levels of decomposition and combination. Our
method is different from Cannon’s algorithm in both the number
of levels and the block’s movement scheme. Cannon’s movement
scheme is designed for mesh-connected parallel computers with
wraparound and uses row-and-column circular shifts. Our method
uses a serpentine movement scheme that will be described in section
3.2.

Regardless of the above-mentioned similarities, the value of our
method is that it can speed up codes whose runtimes grow faster
than their workload. Here, the codes to be optimized are viewed as
black boxes that can be already parallel, highly optimized and have
their own complexities. As a result, this method can be applied to a
range of problems broader than just linear algebra libraries.

We use a simple parallel computing model to formulate the
conditions when our method results in speed up and also predict
the amount of speed up. In section 5 we will demonstrate the
effectiveness of our algorithm and our prediction formula on three
linear algebra libraries from Intel MKL.

Our experimental results are obtained using the Knights Landing
(KNL) computer. Although this architecture has been discontinued
by Intel, we believe our fine-tuning method remains relevant for the
following reasons. First, Knights Landing clusters are still used in
many national laboratories and second, our method can be used in
future architectures that have multilevel memory.

The rest of the paper is organized as follows. Section 2 summa-
rizes some of the related work. In Section 3 we describe a solution
framework for general problems and then describe its specific ap-
plication to a class of linear algebra functions. Section 4 gives
a brief description of KNL architecture. Section 5 presents the
experimental results; and we conclude in Section 6.

2 Related Work

This section summarizes some of the previous methods used to
speed up applications.

Tiling has been used extensively to improve data locality and
cache efficiency. This method works by breaking the problem into

subproblems or tiles in such a way that the amount of memory
reuse in faster levels of memory hierarchy increases. Tiling has
been used in a large group of problems including sparse and dense
matrix-matrix multiplication [10, 11], parallel tensor transpose [12]
and LU factorization [11]. In [13] the authors use tiling along with
thread batching and architecture specific optimizations to speed up
Alternating Least Squares algorithm used in recommender systems.
They use a fine grained tiling in order to mitigate the imbalance in
threads’ workload that results from the sparse nature of the problem
at hand. In [14] the authors use temporal tiling alongside spatial
tiling to improve cache efficiency of large scale stencil computations.
In a particular class of stencil computations that is the focus of their
work, each time step only depends on a limited number of previous
time steps and hence temporal tiling can also be incorporated.

Data reordering has been done to change the order in which
the input data are processed and increase the cache efficiency. This
method performs by mapping the original data indices to the new
indices and has been used to improve the efficiency of both regular
applications such as dense matrix kernels [15] and irregular appli-
cations such as molecular dynamic simulation and hydrodynamic
computations [16]. Other methods have applied data reordering to
matrix multiplication [17] and embedded multimedia processing
[18] with an extra assumption that tiling is already in place.

Reducing communication overhead has also been used to speed
up applications. One way to reduce communication is through
asynchrony. Asynchrony can be very effective in runtime reduc-
tion as synchronizing parallel processes results in much overhead.
However, asynchrony can only be used for applications whose cor-
rectness is not hurt by lack of synchronization; an example being
Stochastic Gradient Descent for sparse matrix factorization [19, 20].
Computation communication overlapping has also been used to hide
the communication latency in a group of problems including three-
dimensional Fast Fourier Transform [21], data-parallel training of
Convolutional Neural Networks [22] and distributed Stochastic Gra-
dient Descent [23]. Block reordering is another method used in
[24] to reduce the amount of communication required in Strassen’s
algorithm. Reducing the communication traffic has also been used
to speed up applications in large scale distributed systems such as
mobile networks [25].

Load balancing has been used to improve the response time of
distributed applications by evenly distributing the workload among
the worker units and preventing one worker to be overloaded while
the other workers are idle. Among the main areas of application are
cloud computing[26] and edge computing[27]. In [28] the authors
have used load balancing to speed up matrix-vector multiplication
in large scale machine learning and data mining applications. The
authors of [29] have developed a simulator to select the best balanc-
ing technique for scientific computing applications whose stochastic
and irregular natures greatly contribute to load imbalance.

Automatic data placement can also be used to improve memory
efficiency of memory bound applications. These methods work by
analysing the memory access patterns of a program either in com-
pile time [30] or during the runtime using a lightweight profiling
method [31] and automatically placing data segments on optimal
memory components.

All of the above-mentioned methods could be used in the 1-level
algorithm that is our starting point; i.e, the algorithm for which the

www.astesj.com 825

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

runtime grows faster than the workload. What we do is essentially
taking the highly optimized code as a black box and adding a layer
of fine-tuning on top of that.

3 Proposed Approach

3.1 General framework

In this section, we provide a general framework for speeding up
any parallel code that is decomposable and whose runtime increases
faster than its workload. In the subsequent sections, we will demon-
strate how to apply our method to speed up the highly optimized
codes for general, triangular and symmetric matrix multiplication.

We have already described our proposed method in the intro-
duction section. Here we give a brief summary and present the
pseudo codes. As we have already mentioned, our method works in
multiple levels. A 2-level implementation divides the problem into
subproblems and solves them using a 1-level code either serially,
in parallel or using a hybrid of the both. Then the solutions to the
subproblems are combined to form the general solution. Similarly,
an n-level code divides the problem into subproblems that are solved
using an (n − 1)-level algorithm and then combines the results.

Our n-level algorithm for n > 2 is described in Algorithm 1.
Given a problem A of size s, we decompose it into s/sb subproblems
of size sb each. In lines 2-4, the subproblems are solved serially
using the (n − 1)-level algorithm (GENn−1). Then in line 5 the so-
lutions to the subproblems are combined to form the final solution
C. Note that multithreading can be incorporated in all the functions
in this section and in subsections 3.2, 3.3 and 3.4. All the threads
can be used to copy the subproblems (as we will explain in the next
paragraph) and to combine the results. If subproblems are solved
serially, then all the threads will be used to solve each subproblem.
However, if b subproblems are solved in parallel, then 1/b of the
total threads will be assigned to each subproblem. Also note that
combination of each partial solution with the final result can happen
at the same time that the partial solution is produced. In that case,
the same number of threads used to solve each subproblem are used
to combine its result with the final solution.

GENn−1 in its turn calls GENn−2 and this process continues until
GEN2 is called. The last level of problem decomposition happens
at GEN2 and then the subproblems are solved using GEN1 which
is the highly optimized parallel code to be sped up. In order to use
the fast levels of memory hierarchy, we copy the subproblems into
a fast memory and that is done in level 2 which is the level at which
the actual problem solving is done. Note that in many cases the
fast memory is one of the levels of cache hierarchy which we can
not directly access and copy blocks into it. In those cases we still
make copies of the blocks in the main memory and that causes the
blocks to be automatically brought into the cache. Due to the space
constraints of the fast memory, the parallel solving of subproblems
happens only at level 2. And that is also why we have two sets of
pseudo codes one for level n, n > 2 and one for level 2. Algorithm 2
describes our two-level algorithm.

Using GEN2, a problem A of size s is divided into s/sb sub-
problems of size sb each. C is the output and b is the degree of
concurrency. Meaning that, at each iteration, the input to b of the

subproblems are copied into the fast memory (line 3), the b subprob-
lems are solved concurrently using GEN1 (lines 4-6) and then the
results are combined to form part of the final solution (line 7).

3.2 Matrix multiplication

This section illustrates our method by demonstrating how it works
to speed up matrix multiplication. Software packages such as AMD
Core Math Library (ACML), OpenBLAS, ATLAS and Intel Math
Kernel Library (MKL) provide efficient parallel implementations
of matrix multiplication as a part of the Basic Linear Algebra
Subroutines (BLAS). In level 1 of our implementation, we use
cblas dgemm that is the double precision matrix multiplication code
from MKL.

Algorithm 1 n-level Algorithm

1: function GENn(A) . Problem A of size s is decomposed into
s/sb subproblems of size sb each. C is the output. Cp[I] is the
solution to the subproblem A[I].

2: for I = 1 to s/sb do
3: Cp[I]← GENn−1(A[I])
4: end for
5: Combine Cp[I], I = 1, 2, ..., s/sb with C
6: return C
7: end function

Algorithm 2 Two level Algorithm

1: function GEN2(A) . Problem A of size s is decomposed
into s/sb subproblems of size sb. C is the output and Cp[I] is the
solution to the subproblem A[I]. b is the degree of concurrency.

2: while I ≤ s/(sb×b) do
3: Copy b subproblems A[I] to A[I + b − 1]
4: start b parallel function calls
5: Cp[J]← GEN1(A[J]) for J = I, ..., (I + b − 1)
6: wait for all functions to return
7: Combine Cp[J], J = I, ..., (I + b − 1) with C
8: I ← I + b
9: end while

10: return C
11: end function

Algorithm 3 L level Matrix Multiplication

1: function MXML(A, B) . Input matrices Am×p, Bp×n

and output matrix Cm×n are divided into blocks of sizes sm × sp,
sp × sn and sm × sn respectively.

2: for I = 1 to m/sm do
3: for J = 1 to n/sn do
4: for K = 1 to p/sp do
5: C[I, J]← C[I, J] + MXML−1(A[I,K], B[K, J])
6: end for
7: end for
8: end for
9: return C

10: end function

www.astesj.com 826

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 1: In parts (a)-(i) the chosen blocks in M1 (the matrix on the left) and M2
(the matrix on the right) are used to compute row 1 of M3. The resulting matrix M3
is not shown. M3[1, 1], M3[1, 2] and M3[1, 3] are computed in parts (a)-(c), (d)-(f)
and (g)-(i) respectively. If we follow the path of the selected blocks in each matrix, a
pattern similar to snake movement will result.

Our method for the matrix multiplication problem follows the
general framework presented in the previous section. Here, the input
is two matrices A and B of sizes m × p and p × n to be multiplied
and the result is stored in matrix C of size m× n. At level L > 2, the
matrices are divided into blocks of sizes sm × sp, sp × sn and sm × sn

respectively. Product of matrix blocks A[I,K] and B[K, J] is com-
puted using a lower level function and the result gets accumulated
in the corresponding output block C[I, J]. Algorithm 3 describes
our L level algorithm (MXML).

MXM2 is our two-level matrix-matrix multiplication algorithm.
Input matrices M1 and M2 are multiplied and the result is stored in
matrix M3. The matrix sizes are m× p, p× n and m× n respectively.

As we previously mentioned, in level 2, the subproblems (ma-
trix blocks in this case) are copied into the fast memory, so that the
highly optimized level 1 code can benefit from the high bandwidth.
To optimize the copying process, we use a serpentine pattern to
iterate through the input sub-matrices. Figure 1 shows an example
of this serpentine movement and how it reduces the amount of data
transfer between the slow and the fast memories. Here, a 3 × 3
grid is used to divide matrices into smaller blocks. Degree of con-
currency b = 1 that means one block from each matrix is selected
at a time. Here, for computing M3[1, 1], blocks [1, 1], [1, 2] and
[1, 3] are selected from M1 with their corresponding blocks from
M2. Now, for computing M3[1, 2], instead of selecting blocks of
M1 in the previous order, i.e. starting from M1[1, 1] and moving
left-to-right, we start from M1[1, 3] and move right-to-left. As a
result, we won’t have to copy M1[1, 3] again as it is already in
the fast memory. For M3[1, 3] we start from M1[1, 1] and move
left-to-right again as then, M1[1, 1] is already present in the fast
memory. If we consider the order in which we iterate the blocks
of M1 and their corresponding blocks in M2, each of them forms
a pattern like a snake movement. Using this iteration pattern we
reduce the number of copied blocks by 2 for computing the first
row of M3. The effect gets more significant for larger matrices with
higher degrees of concurrency.

We should note that in our implementation, we also used serpen-
tine pattern for MXML; however, as the blocks for L − level matrix

multiplication (L > 2) are usually too large to fit in the fast levels of
memory hierarchy, there is not much benefit in using this pattern.
Therefore, we eliminated the details from algorithm 3 to make it
more concise and readable.

Our 2-level algorithm MXM2 is described in algorithm 4. It
follows the general structure of algorithm 2. Matrices M1, M2 and
M3 of sizes m × p, p × n and m × n are divided into blocks of sizes
sb1 × sb3, sb3 × sb2 and sb1 × sb2 respectively. In lines 8-15 b blocks
from each of the two input matrices are copied, then in lines 16-19
b instances of our 1-level algorithm (cblas dgemm) are called in
parallel on each of the block pairs. Finally, the partial results are
combined in lines 20, 21. The rest of the algorithm deals with the
order in which the blocks are selected and whether or not they are
already present in the fast memory (if a block is already present,
then it should not be copied again). That is the serpentine pattern
we previously talked about and is implemented by Kdir and Jdir that
define the moving directions along the columns of M1 and rows
of M2 respectively. Variables copyM1 and copyM2 define when the
blocks of M1 and M2 should be copied.

Algorithm 4 Two level Matrix Multiplication

1: function MXM2(M1,M2) . Input
matrices M1m×p and M2p×n and the output matrix M3m×n are
divided into blocks of sizes sb1 × sb3, sb3 × sb2 and sb1 × sb2
respectively. b is the degree of concurrency. Cp[U] stores the
partial result of M1[I,U]×M2[U, J]. MXM1 is cblas dgemm()
in our case.

2: copyM1 ← true, copyM2 ← true
3: K ← 1, J ← 1, Kdir ← 1, Jdir ← 1
4: for I = 1 to m/sb1 do
5: for n/sb2 iterations involving J do
6: for p/sb3 iterations involving K do
7: if copyM1 then
8: Copy b blocks from M1:
9: (M1[I,K] to M1[I,K + (b − 1) × Kdir])

10: end if
11: if copyM2 then
12: copy b blocks from M2:
13: (M2[K, J] to M[K + (b − 1) × Kdir, J])
14: end if
15: start b parallel function calls
16: Cp[U]← MXM1(M1[I,U],M2[U, J])
17: for U = K, ...,K + (b − 1) × Kdir

18: wait for all functions to return
19: M3[I, J]← M3[I, J] + Cp[K]+
20: ... + Cp[K + (b − 1) × Kdir]
21: K ← K + b × Kdir; copyM1 ← true
22: end for
23: Kdir ← −Kdir; copyM1 ← f alse
24: J ← J + Jdir; copyM2 ← true
25: end for
26: Jdir ← −Jdir; copyM2 ← f alse; copyM1 ← true
27: end for
28: return M3
29: end function

After all blocks corresponding to the K variable in the block

www.astesj.com 827

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

matrix multiplication formula

M3[I, J] =

p/sb3∑
K=1

M1[I,K] × M2[K, J] (1)

have been used, we change the direction in which we select those
blocks for computing M3[I, J + 1]. That is when blocks from M1
are reused. Similarly, after M3[I, 1]...M3[I, n/sb2] have all been com-
puted; we compute M3[I + 1, J]s in reverse direction and b blocks
from M2 are reused.

3.3 Triangular Matrix Multiplication

This section illustrates how our methodology may be employed to
multiply two matrices where one of the matrices is (upper/lower)
triangular. The highly optimized function we use at the first level is
cblas dtrmm from Intel MKL.

Algorithm 5 L level Triangular Matrix Multiplication

1: function TrMXML(A, B) . Input
matrices Am×m, Bm×n and output matrix Cm×n are divided into
blocks of sizes sb1 × sb1, sb1 × sb2 and sb1 × sb2 respectively. b
is the number of block multiplications done in parallel.

2: for I = 1 to m/sb1 do
3: for J = 1 to n/sb2 do
4: for K = 1 to I do
5: if I == K then
6: C[I, J]← C[I, J] +

7: TrMXML−1(A[I,K], B[K, J])
8: else
9: C[I, J]← C[I, J] + MXM(A[I,K], B[K, J])

10: end if
11: end for
12: end for
13: end for
14: return C
15: end function

(a) (b) (c)

(d) (e) (f)

Figure 2: Phase 1 and 2 of TrMXM2. Parts (a)-(c) show three steps from phase
1 where at each step two triangular blocks from the matrix M1 are multiplied in
parallel to the corresponding blocks of M2. Each pair of blocks that are multiplied
at each step are shown with the same shade. The resulting matrix M3 is not shown.
Parts (d)-(f) show three steps from phase 2 where an ordinary block from M1 is
multiplied concurrently to three blocks from M2. For all the parts (a)-(f), M1 is the
matrix on the left, M2 is the matrix on the right and M3 is not shown.

Algorithm 6 Two level Triangular Matrix Multiplication

1: function TrMXM2(M1,M2) . Input matrices M1m×m and
M2m×n and the output matrix M3m×n are divided into blocks
of sizes sb1 × sb1, sb1 × sb2 and sb1 × sb2 respectively. b1 is
the number of triangular block multiplications done in parallel
and b2 is the number of ordinary block multiplications done in
parallel. TrMXM1 is cblas dtrmm() in our case.

2: for I = 1 to m/sb1 increment = b1 do . phase 1
3: for J = 1 to n/sb2 do
4: Copy b1 blocks of M1 along the main diagonal:
5: i.e. M1[I, I] to M1[I + b1 − 1, I + b1 − 1]
6: Copy b1 blocks of M2 along column J:
7: i.e. M2[I, J] to M2[I + b1 − 1, J].
8: start b1 parallel function calls
9: C[U, J]← C[U, J] +

10: TrMXM1(M1[U,U],M2[U, J])
11: for U = I, ..., (I + b1 − 1)
12: wait for all functions to return
13: end for
14: end for
15: cnt ←− 0
16: for I = 2 to m/sb1 do . phase 2
17: for J = 1 to I − 1 do
18: for K = 1 to n/sb2 do
19: Copy M1[I, J]; Copy M2[J,K]; cnt ←− cnt + 1
20: if cnt == b2 then
21: start b2 parallel function calls
22: Call b2 instances of MXM over
23: blocks copied from M1 and M2
24: wait for all functions to return
25: Sum up partial results of MXM
26: to b2 corresponding blocks of M3
27: cnt ←− 0
28: end if
29: end for
30: end for
31: end for
32: return M3
33: end function

Without loss of generality, we assume that the triangular matrix
appears at the left side of multiplication. Therefore, in our triangular
matrix multiplication problem, matrices A and B of sizes m × m
and m × n respectively, are multiplied resulting in a matrix C of
size m × n. Notice that A being triangular means that it should be
a square matrix. Again, without loss of generality, we assume A
is lower triangular.The general framework is also applicable here.
However, the nature of the problem implies some modifications in
our implementation. Here, we divide A into blocks of size sb1 × sb1.
If g = m

sb1
, then we will have g × g blocks, g of which are triangular,

g×g−g
2 of which are ordinary (non triangular) blocks and g×g−g

2 of
which are zero blocks.The zero blocks are ignored while the ordi-
nary blocks are involved in ordinary matrix multiplication and the
triangular blocks get involved in triangular matrix multiplication.

Algorithm 5 describes the L level algorithm (TrMXML) where
L > 2. Here, we break A, B and C into blocks of sizes sb1 × sb1,

www.astesj.com 828

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

sb1× sb2 and sb1× sb2 respectively. In lines 6, 7 the triangular blocks
from A are multiplied to the corresponding blocks from B whereas
in line 9 the ordinary blocks from A are multiplied to the corre-
sponding blocks from B. Here, MXM is an efficient presumably
multilevel matrix multiplication algorithm.

For our two-level algorithm we make an observation:
cblas dtrmm that is used at the leaf level of triangular matrix mul-
tiplication is optimized to benefit from the lower amount of com-
putations that result from the zero elements. Therefore, we can
further improve the runtime by grouping the triangular blocks to-
gether and the ordinary blocks together. That way, the more efficient
triangular matrix multiplications should not wait for the results of
ordinary matrix multiplications. At each iteration, we operate ei-
ther on b1 triangular block multiplications or on b2 ordinary block
multiplications in parallel where b1 can be different from b2.

Our algorithm uses two phases in order to correctly select and
group together the matrix blocks. In the first phase, b1 triangular
blocks from the main diagonal of M1 are copied and at each step,
they are multiplied concurrently to one other block from M2. In
the second phase, ordinary blocks from M1 are picked in a top-to-
bottom and left-to-right order. For each block x from M1, we iterate
over all blocks of M2 to which x should be multiplied. When the
total number of block pairs reaches b2, we stop and perform b2
multiplications concurrently.

The above-mentioned process is illustrated in figure 2. The top
row shows three steps from phase 1 and the bottom row shows three
steps from phase 2. In each part, M1 is the matrix on the left and M2
is the matrix on the right where a 4×4 grid is used to block M1 and a
4 × 3 grid is used to block M2. Here, b1 = 2 and b2 = 3. In part (a),
two triangular blocks M1[1, 1] and M2[2, 2] are copied to the fast
memory; and through steps (a) - (c), those blocks are concurrently
multiplied to M2[1, J] and M2[2, J] respectively (J = 1, 2, 3). In
part (d), the ordinary block M1[2, 1] is copied three times in the fast
memory and three parallel multiplications are done on M1[2, 1] and
M2[1, J], J = 1, 2, 3. In parts (e) and (f) the next ordinary blocks
from M1 are chosen in the top-to-bottom and left-to-right order and
multiplied concurrently with three blocks of M2. Note that if the
degree of concurrency for the ordinary blocks (b2) was equal to 4,
then in part (d), block M1[3, 1] would also be copied along with a
second copy of block M2[1, 1]. Then there would be 4 parallel mul-
tiplications, three of them involving M1[2, 1]×M2[1, J](J = 1, 2, 3)
and one of them M1[3, 1] ×M2[1, 1]. The cases for parts (e) and (f)
would be similar.

Algorithm 6 describes our 2-level triangular matrix multipli-
cation algorithm, TrMXM2. We divide the input matrices M1m×m

and M2m×n into blocks of sizes sb1 × sb1 and sb1 × sb2 respectively.
The output matrix M3m×n will also be divided into blocks of size
sb1 × sb2. Lines 2-14 implement the first phase of the algorithm
where we run b1 parallel cblas dtrmm instances on the triangle-
rectangle block multiplications. Lines 15-33 implement the second
phase of our algorithm where we run b2 parallel instances of MXM
over the square-rectangle block multiplications where MXM is an
efficient matrix multiplication algorithm. The auxiliary variable
cnt is used to keep track of the square blocks being multiplied in
parallel.

3.4 Symmetric Matrix Multiplication

In this section, we illustrate our methodology on symmetric matrix
multiplication. This is when one of the matrices involved in the
multiplication is symmetric. The highly optimized parallel function
we use at the first level is cblas dsymm from Intel MKL.

Without loss of generality, we assume that the symmetric matrix
appears at the left side of multiplication. Therefore, the problem
can be stated as the following: matrices A and B of sizes m × m and
m × n respectively where A is a symmetric matrix, are multiplied
and the result is stored in matrix C of size m × n. Notice again
that symmetry is only defined for square matrices; that is why A is
m × m. The same methodology is used as the general framework.
Here again, similar to triangular multiplication, the nature of the
problem implies some modifications to the implementation details.
We divide A into blocks of size sb1 × sb1. If g = m

sb1
, then we will

have g × g blocks, g of which are symmetric. The ordinary blocks
are involved in ordinary matrix multiplication and the symmetric
blocks get involved in symmetric matrix multiplication.

Algorithm 7 describes the L level algorithm (S yMXML) where
L > 2. Here, we break A, B and C into blocks of sizes sb1 × sb1,
sb1 × sb2 and sb1 × sb2 respectively. In lines 6, 7 the symmetric
blocks from A are multiplied to the corresponding blocks from B
whereas in line 9 ordinary blocks from A are multiplied to the corre-
sponding blocks from B. Here, similar to that of triangular matrix
multiplication, MXM is an efficient matrix multiplication algorithm
that could be multilevel.

Algorithm 7 L Level Symmetric Matrix Multiplication

1: function S yMXML(A, B) . Input matrices
Am×m, Bm×n and output matrix Cm×n are divided into blocks of
sizes sb1 × sb1, sb1 × sb2 and sb1 × sb2 respectively.

2: for I = 1 to m/sb1 do
3: for J = 1 to n/sb2 do
4: for K = 1 to m/sb1 do
5: if I == K then
6: C[I, J]← C[I, J] +

7: S yMXML−1(A[I,K], B[K, J])
8: else
9: C[I, J]← C[I, J] + MXM(A[I,K], B[K, J])

10: end if
11: end for
12: end for
13: end for
14: return C
15: end function

Algorithm 8 describes our 2-level symmetric matrix-matrix mul-
tiplication algorithm, S yMXM2. We divide M1m×m and M2m×n into
blocks of sizes sb1 × sb1 and bs1 × bs2 respectively. The resulting
matrix M3m×n will also be divided into blocks of size sb1 × sb2.
Similar to triangular matrix multiplication, we group the symmetric
blocks together and the ordinary blocks together. The algorithm
works in two phases where at each step of the first phase, b1 sym-
metric blocks multiplications and at each step of the second phase
b2 ordinary block multiplications are performed in parallel. b1 and
b2 are not necessarily equal. Lines 2-14 implement the first phase

www.astesj.com 829

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

and lines 16-33 implement the second phase of our algorithm. The
auxiliary variable cnt is used to keep track of the ordinary blocks be-
ing multiplied in parallel. MXM is an efficient matrix multiplication
algorithm.

Algorithm 8 Two level Symmetric Matrix Multiplication

1: function S yMXM2(M1,M2) . Input matrices M1m×m and
M2m×n and the output matrix M3m×n are divided into blocks
of sizes sb1 × sb1, sb1 × sb2 and sb1 × sb2 respectively. b1 is
the number of symmetric block multiplications done in parallel
and b2 is the number of ordinary block multiplications done in
parallel. S yMXM1 is cblas dsymm() in our case.

2: for I = 1 to m/sb1 increment = b1 do . phase 1
3: for J = 1 to n/sb2 do
4: Copy b1 blocks of M1 along the main diagonal:
5: i.e. M1[I, I] to M1[I + b1 − 1, I + b1 − 1]
6: Copy b1 blocks M2 along column J:
7: i.e. M2[I, J] to M2[I + b1 − 1, J].
8: start b1 parallel function calls
9: C[U, J]← C[U, J] +

10: S yMXM1(M1[U,U],M2[U, J])
11: for U = I, ..., (I + b1 − 1)
12: wait for all functions to return
13: end for
14: end for
15: cnt ←− 0
16: for I = 1 to m/sb1 do . phase 2
17: for J = 1 to m/sb1, I , J do
18: for K = 1 to n/sb2 do
19: Copy M1[I, J]
20: Copy M2[J,K]
21: cnt ←− cnt + 1
22: if cnt == b2 then
23: start b2 parallel function calls
24: Call b2 instances of MXM over
25: blocks copied from M1 and M2
26: wait for all functions to return
27: Sum up partial results of MXM
28: to b2 corresponding blocks of M3
29: cnt ←− 0
30: end if
31: end for
32: end for
33: end for
34: return M3
35: end function

3.5 Performance Analysis

In this section, a simple shared-memory model in which processes
communicate by reading/writing from/to a shared memory is used
to describe the runtime of the parallel codes. Using this model, we
formulate the conditions under which our method will be effective
and also the speed up we can expect. Let T i

x,y be the time our algo-
rithm takes at level i to solve a problem of size y using x processors.
Table 2 illustrates our notation for a level 1 code. Here, b and c are

integer multipliers.

Table 2: Notations used for the runtime of 1-level algorithm depend on the problem
size and the number of processors.

p processors bp processors
problem size= n T 1

p,n T 1
bp,n

problem size= cn T 1
p,cn T 1

bp,cn

Let,

r =
T 1

bp,cn

T 1
p,cn

(2)

k =
T 1

p,cn

f (c) × T 1
p,n

(3)

Where f (c) is defined as follows: if we decompose a problem of
size cn into subproblems of size n; then f (c) denotes the number
of those subproblems. In the case of matrix multiplication, for ex-
ample, if the initial problem is multiplying two 2n × 2n matrices
and we break each matrix into four matrices of size n × n; then we
should multiply eight matrix pairs of size n × n each. Here, we have
c = 2 and f (c) = 8.

Let Ti = T i
bp,cn. We wish to find the ratio Ti/T1. We consider

two cases: i = 2 and i > 2. The reason we consider two cases is that
we use parallelism only at the second level.

We define g(c, n) to be the time it takes to combine f (c) sub-
problems of size n each. For a 2-level algorithm, if the subproblems
run serially, then all the bp processors can be used for each of them.
We will have:

T 2
bp,cn = f (c)T 1

bp,n + g(c, n) (4)

However, if we run b subproblems in parallel at a time, then only
p processors can be used for each of the subproblems. In that case,
the runtime equation will be:

T 2
bp,cn =

f (c)
b

T 1
p,n + g(c, n) (5)

In the rest of this subsection, we use equation 5 to describe T2. That
is

T2 =
f (c)
b

T 1
p,n + g(c, n)

Therefore,
T2

T1
=

1 + rbkδ
rbk

(6)

where
δ =

g(c, n)
T1

(7)

For level i > 2, we consider c1 and c2 to be divisors of c, i.e.
c = c1c2. The time to solve a problem of size cn = c1c2n using bp
processors and an i-level algorithm will be:

Ti = T i
bp,cn = f (c1)T i−1

bp,c2n + g(c1, c2n) (8)

where g(c1, c2n) is the time to combine f (c1) subproblems of size
c2n.

www.astesj.com 830

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

3.6 Speed Up Analysis

In this section, we formulate the conditions for when increasing the
number of levels results in speed up. Throughout this section, we
consider the problem size to be cn and the total number of available
processors to be bp. Also, as mentioned before, we use different
sets of conditions for T2 and Ti, i > 2 and the reason is that we only
run the subproblems in parallel at level 2.

3.6.1 T2 < T1

The condition for a 2-level algorithm to be faster than a 1-level
algorithm is as follows:

T2 < T1 ⇒
T2

T1
< 1

⇒
1 + rbkδ

rbk
< 1⇒ rbk(1 − δ) > 1 (9)

In the formulation for δ, we assume that the combination time is
negligible compared to T1 i.e. g(c, n) � T1 . Then δ → 0 and the
condition for T2 < T1 will be:

rbk > 1 (10)

The expected speed up is T1/T2 = rbk (as δ→ 0).

3.6.2 Ti < T1(i > 2)

Using equation (8) we get the following condition for an i-level
algorithm (i > 2) to be faster than a 1-level algorithm:

Ti < T1 ⇒
Ti

T1
< 1

⇒ f (c1)
T i−1

bp,c2n

T1
+

g(c1, c2n)
T1

< 1 (11)

Again, assuming g(c1, c2n) � T1, the inequality (11) will reduce to

f (c1)
T i−1

bp,c2n

T1
< 1 (12)

Using equations 5 and 8 for i = 3 we get:

T i−1
bp,c2n =

f (c2)
b

T i−2
p,n + g(c2, n) (13)

Ti−1 = T i−1
bp,cn =

f (c1c2)
b

T i−2
p,n + g(c1c2, n) (14)

and for i > 3
T i−1

bp,c2n = f (c2)T i−2
bp,n + g(c2, n) (15)

Ti−1 = T i−1
bp,cn = f (c1c2)T i−2

bp,n + g(c1c2, n) (16)

We make the assumption that f (.) is separable, meaning that
f (c1c2) = f (c1) f (c2). Assuming that g(c2, n) and g(c1c2, n) are
negligible compared to T1; for all values of i > 2 we will have:

f (c1)
T i−1

bp,c2n

T1
=

Ti−1

T1
(17)

Combining equations (17) and (12), we get

Ti−1

T1
< 1 (18)

that is (by induction) rbk > 1.

3.6.3 Ti < Ti−1(i > 3)

In the previous section, the condition for Ti < T1 was established.
Even if Ti < T1, it may be better to stay at level i − 1 and not to
increase the level. To decide whether or not we can use another
level, we can consider the (i − 1)-level code as a new 1-level code.
Then recalculate r, k and δ for this code and set b = 1 (that is
because we don’t use parallelism for i > 2). We call these newly
computed values r′, k′, δ′ and b′. Then the condition for Ti < Ti−1
will be r′b′k′ > 1. As b′ = 1 the condition will reduce to r′k′ > 1.

3.7 Performance Analysis: Matrix Multiplication

The general model can be applied to matrix multiplication. Without
loss of generality, we assume the matrices are square cn × cn matri-
ces divided into blocks of size n × n. The model details will be as
follows:

• f (c) = c3 therefore by plugging it in (3) we get

k =
T 1

p,cn

c3T 1
p,n

(19)

• g(c, n) = (c − 1)c2a(n). Here a(n) is the time it takes to add
two matrix blocks of size n×n and we should add (c−1)c2 of
them to get the final result for a cn × cn matrix multiplication.
By plugging it in (7) we will have:

δ =
(c − 1)c2a(n)

T1
(20)

Therefore, for matrix multiplication, equations (5) and (8) will
be:

T 2
bp,cn =

c3

b
T 1

p,n + (c − 1)c2a(n) (21)

Ti = c1
3T i−1

bp,c2n + (c1 − 1)c2
1a(c2n) (22)

As f (c) is separable and the addition time is negligible compared
to multiplication time for large enough matrices (and therefore we
can safely assume that δ → 0), all the speed up analysis remains
valid.

3.8 Performance Analysis: Triangular Matrix Multipli-
cation

Our multilevel method for triangular matrix multiplication is a com-
pound method. Meaning that for solving the subproblems, we
should call both triangular matrix multiplication and ordinary ma-
trix multiplication functions on the smaller instances. Consider the
following equations for T 2

bp,cn and T i
bp,cn(i > 2) respectively, where -

as before - c = c1c2:

T 2
bp,cn =

f1(c)
b1

T 1
p1,n +

f2(c)
b2

τp2,n + g(c, n) (23)

T i
bp,cn = f1(c1)T i−1

bp,c2n

+ f2(c1)τbp,c2n + g(c1, c2n)
(24)

www.astesj.com 831

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

In both (23) and (24) f1(.) is the number of triangular matrix mul-
tiplication subproblems and f2(.) is the number of ordinary matrix
multiplication subproblems. b1 is the degree of concurrency for
triangular block multiplication and b2 is the degree of concurrency
for ordinary block multiplication. p1 = (bp)/b1 and p2 = (bp)/b2.
We use only one g(., .) function because the result of multiplying
a triangular block with an ordinary block will not necessarily be
triangular and therefore there is no need to distinguish between the
combination times. Also, τx,y is the runtime of an ordinary matrix
multiplication function on blocks of size y using x processors.
Let,

θ =
b2
b1

(25)

λ =
τp2,n

T 1
p1,n × θ

(26)

Now, if we define:
b = b1 (27)

f (x) = f1(x) + λ f2(x) (28)

equations (23) and (24) will turn to

T 2
bp,cn =

f (c)
b

T 1
p,n + g(c, n) (29)

T i
bp,cn = f (c1)T i−1

bp,c2n + g(c1, c2n) (30)

that are the same as equations 5 and 8. Again, without loss of gener-
ality, we assume that the matrices are square, their sizes are cn × cn
and their block sizes are n × n. As a result,

• f1(c) = c2 and f2(c) = c3−c2

2 . By using (28) we get:

f (c) =
λc3 + (2 − λ)c2

2
(31)

• g(c, n) = c3−c2

2 an where an is the time to add two n × n blocks.

We can safely assume that g(c, n) � T1 for large enough matrices
and therefore the condition for T2 < T1 still holds. However, f (c) is
not separable, therefore the conditions for Ti < T1 for i > 2 will not
necessarily work.

3.9 Performance Analysis: Symmetric Matrix Multipli-
cation

The performance analysis for symmetric matrix multiplication has a
lot in common with the performance analysis for triangular matrix
multiplication.Equations 23 - 30 are valid for symmetric matrix
multiplication. The definitions for f1(.), f2(.), b1, b2, θ and λ are
the same as those in section 3.8 and the same equations b = b1 and
f (x) = f1(x) + λ f2(x) work for symmetric matrices. The differences
are in details as described in the following (again, without loss of
generality, we assume that the matrices to be multiplied are both
square matrices of sizes cn × cn which are divided into blocks of
sizes n × n):

• f1(c) = c2 and f2(c) = c3 − c2. By using (28) we get:

f (c) = λc3 + (1 − λ)c2 (32)

• g(c, n) = c2(c − 1)an with an being the time to add two n × n
blocks.

Once again, we can assume that g(c, n) � T1 for large enough
matrices and therefore the condition for T2 < T1 holds. However,
the function f (c) is only separable if λ = 1 and that is the only case
where the conditions Ti < T1(i > 2) will work.

4 KNL Architecture

4.1 Architecture Overview

Knights Landing (KNL) [32] is the codename for the second gener-
ation Intel Xeon Phi product family. It is a many-core architecture
enabling highly parallel workloads. KNL CPU includes up to 36
active tiles. Each tile includes 2 cores, 2 vector processing units
per core and one L2 cache shared between the cores. A 2D mesh
interconnect provides connection between the tiles, memory con-
trollers and other on-board elements. The mesh supports the MESIF
(modified, exclusive, shared, invalid, forward) cache-coherence pro-
tocol and uses a distributed tag directory to keep all the L2 caches
coherent in all the tiles.

KNL includes 2 types of memory: 16GB of multichannel
DRAM (MCDRAM) and up to 384 GB of double data rate (DDR)
memory. MCDRAM is a high bandwidth memory (HBM) that
provides an aggregate bandwidth of more than 450 GBps. The
aggregate bandwidth of DDR is more than 90 GBps.

4.2 Memory Modes

The two memory modules can be configured in three modes ex-
plained below:

4.2.1 Flat Mode

In this mode, MCDRAM is treated as an addressable memory along-
side DDR. Flat mode gives the user the ability to allocate data either
from DDR or MCDRAM. The downside is that it requires software
modification.

4.2.2 Cache Mode

In cache mode, MCDRAM is configured as a memory-side cache
for the whole DDR. Here, the user has no control over MCDRAM
usage, but no software modification is required.

4.2.3 Hybrid Mode

This mode is a combination of flat mode and cache mode. In hybrid
mode, a portion of MCDRAM (either 0.25 or 0.5) is used in cache
mode and the remaining portion is used in flat mode.

4.3 KNL Clustering Modes

The mesh interconnect provides five different clustering modes.
Each of these clustering modes defines the affinity properties of
tiles, tag directories and memory controllers. These modes are
explained in the following:

www.astesj.com 832

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

4.3.1 All-to-All

This is the most general mode that lacks any affinity between tiles,
directory and memory.

4.3.2 Quadrant

This mode divides the KNL chip into four virtual quadrants. A
request from any tile can go to any directory, but the directory can
only access the memory in its own quadrant. Meaning that this
mode provides affinity between directory and memory. However,
there is no affinity between a tile and the directory or memory.

4.3.3 Hemisphere

This mode is similar to the quadrant mode, with the only difference
that the chip is divided into 2 hemispheres instead of 4 quadrants.

4.3.4 SNC4

SNC stands for Sub-NUMA Clustering. SNC4 is a more restricted
version of the quadrant mode where the quadrants are viewed by
the OS as nonuniform memory access (NUMA) nodes (or clusters).
Here, a request form a tile accesses the directory in the same cluster
and the directory will also access a memory controller in that same
cluster. Meaning that this mode provides affinity between tiles,
memory directories and memory controllers.

4.3.5 SNC2

This mode is similar to SNC4 the only difference being the number
of clusters. Here the number of clusters is two instead of four.

5 Experimental Results
We implemented our algorithms using C++ and OpenMP. The
total number of threads was set to 64. Using a larger number
of threads led to performance degradation. We used the Intel
icpc compiler with the flags setting ”-O3 -xMIC-AVX512 -mkl
-lmemkind -qopenmp”. In “flat” memory mode, we have to man-
ually allocate memory from MCDRAM. This was done using
“hbw posix memalign” command. To allocate memory from DDR,
the command “posix memalign” was used.

For all three of our algorithms, namely matrix-matrix multi-
plication, triangular matrix-matrix multiplication and symmetric
matrix-matrix multiplication, we used double precision square ma-
trices as test data for both the operands. For matrix pairs of sizes up
to 16K × 16K, the reported times are the average over 10 run times.
For matrix pairs of sizes 32K × 32K and 64K × 64K, we used only
5 runs. That is because those runs were very time consuming and
also because at those sizes, the runtime values were quite stable and
5 runs seemed to be sufficient. The error bound for our reported
times is at most 4%.

With 3 memory modes and 5 clustering modes, there are 15 pos-
sible architectural configurations in the KNL. Of these, the cache,
all-to-all mode is not supported. So, in reality, the KNL has 14
architectural configurations. In our experiments, we do not consider
the hybrid memory mode. This leaves us with 9 configurations to

consider. There are at least three different scenarios for configura-
tion selection; the selection of scenario being limited by system and
application constraints.

1. S1: Each algorithm can select the configuration to run on
based on the size of the matrices to be multiplied.

2. S2: The configuration is determined by the application and
cannot be changed by the algorithm.

3. S3: Each algorithm must use the same configuration for all in-
stances; different algorithms can use different configurations.

In Sections 5.1-5.3, we give the measured average run times for
the three versions of matrix multiplication considered in this paper
for all 9 of the architectural configurations considered. A compar-
ison of these run times for each of the three scenarios (S1-S3) of
configuration selection is done in Section 5.4. The speed up val-
ues reported in Section 5.4 are the percentage of runtime reduction
(Told−Tnew)/Told.

5.1 Matrix Multiplication Times

Table 3 shows the runtime values for the code we use as the 1-level
matrix multiplication algorithm (cblas dgemm) for different matrix
sizes and different KNL memory/clustering configurations.

Table 4 contains the runtimes for our 2-level algorithm. For
all the matrix sizes, the input and output matrices are divided into
sub-matrices using a 4 × 4 grid. The degree of concurrency used
in our 2-level implementation is (b = 4), meaning that at each step
4 pairs of matrix blocks are multiplied in parallel. We have also
experimented with other block arrangements such as 2 × 2 and
other degrees of concurrency such as 2 and 8; however, the current
configuration resulted in the best runtimes.

Tables 5 and 6 show the runtimes for our 3 and 4-level algo-
rithms respectively. For both the levels, we used 2×2 grids to divide
the input and output matrices into sub-matrices. The block pairs
were multiplied sequentially.

5.2 Triangular Matrix Multiplication Times

Table 7 shows the run times for the one-level code (cblas dtrmm).
This table together with Table 3 show the speed up potential using
our method. Consider 64K × 64K multiplications as an example. In-
stead of performing one 64K×64K triangular matrix multiplication;
we can multiply six 32K × 32K blocks and combine the results. Out
of those block multiplications, four of them are triangular matrix
multiplication and two of them are ordinary matrix multiplication.
If we consider the combination time to be small enough, then on
all the memory-clustering configurations, the time to sequentially
perform two ordinary multiplications of 32K × 32K matrices plus
the time to sequentially perform four triangular multiplications of
32K × 32K matrices is less than the time to perform one 64K × 64K
triangular matrix multiplication. That notifies us about the potential
of speed up. Note that this is just an initial evaluation and in practice
we can also use parallelism and different settings for block sizes.

Table 8 shows the run time values for our two-level algorithm.
Here, matrix A is divided using a 2×2 grid and matrices B and C are
divided using a 2× 1 block arrangement. Degree of concurrency for

www.astesj.com 833

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

Table 3: Run time (in seconds) of the 1-level matrix multiplication using cblas dgemm

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
4K × 4K 0.65 0.39 0.30 0.33 0.30
8K × 8K 3.41 1.99 1.64 1.49 1.39

16K × 16K 23.21 15.42 12.74 11.92 10.25
32K × 32K 119.81 121.47 102.53 101.58 102.63
64K × 64K 1002.30 843.25 843.04 826.23 824.15

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
4K × 4K 0.48 0.42 — 0.32 0.29
8K × 8K 1.94 1.71 — 1.51 1.39

16K × 16K 10.89 11.32 — 12.32 10.36
32K × 32K 88.90 87.39 — 97.52 80.18
64K × 64K 618.26 781.83 — 871.10 652.60

Table 4: Run time (in seconds) of the 2-level matrix multiplication algorithm

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
4K × 4K 0.36 0.32 0.30 0.30 0.28
8K × 8K 2.42 1.52 1.27 1.21 1.25

16K × 16K 113.51 14.82 10.12 8.87 8.85
Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere

4K × 4K 0.31 0.29 — 0.30 0.32
8K × 8K 1.62 1.36 — 1.17 1.21

16K × 16K 11.71 11.54 — 8.15 8.61

Table 5: Run time (in seconds) of the 3-level matrix multiplication algorithm

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
32K × 32K 151.12 119.23 80.62 70.50 70.28
64K × 64K 10540.52 884.25 768.97 720.37 653.97

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
32K × 32K 93.53 94.26 — 64.98 68.35
64K × 64K 729.14 805.44 — 686.36 651.94

Table 6: Run time (in seconds) of the 4-level matrix multiplication algorithm

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
64K × 64K 1292.55 945.01 640.35 560.46 557.92

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
64K × 64K 744.34 745.16 — 517.99 544.31

Table 7: Run time (in seconds) of the 1-level triangular matrix multiplication using cblas dtrmm

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
4K × 4K 0.46 0.40 0.34 0.36 0.41
8K × 8K 2.43 1.50 1.31 1.41 1.12

16K × 16K 10.97 10.38 7.83 9.12 6.21
32K × 32K 73.78 79.32 62.85 71.24 62.82
64K × 64K 556.95 588.33 503.83 556.77 501.58

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
4K × 4K 0.49 0.38 — 0.37 0.38
8K × 8K 2.04 1.43 — 1.61 1.12

16K × 16K 7.99 7.93 — 15.40 6.20
32K × 32K 54.03 59.04 — 77.93 50.15
64K × 64K 450.17 445.05 — 596.00 389.26

www.astesj.com 834

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

Table 8: Run time (in seconds) of the 2-level triangular matrix multiplication algorithm

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
4K × 4K 0.44 0.40 0.35 0.33 0.35
8K × 8K 1.65 1.32 1.16 1.33 1.04

16K × 16K 10.02 9.52 6.91 7.72 6.02
32K × 32K 69.81 59.07 52.05 51.58 51.64
64K × 64K 868.32 566.61 382.54 380.42 380.55

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
4K × 4K 0.35 0.35 — 0.33 0.32
8K × 8K 1.11 1.13 — 1.26 1.04

16K × 16K 6.87 6.60 — 7.64 5.97
32K × 32K 50.60 50.57 — 49.77 42.98
64K × 64K 402.92 414.56 — 422.38 356.40

triangular blocks is b1 = 2 and for ordinary blocks is b2 = 1. More-
over, for square-rectangle block multiplication, we called MXM2
instead of cblas dgemm. In the MXM2 algorithm we used, the grids
imposed on the matrices were 4 × 4, 4 × 8 and 4 × 8 for A, B and C
respectively.

5.3 Symmetric Matrix Multiplication Times

Table 9 shows the run time values for the one-level symmetric
matrix-matrix multiplication code (cblas dsymm). Similar to what
we did for triangular matrix multiplication, here again we can use
this table along with Table 3 to make sure that there is the potential
for performance improvement. Consider the multiplication time
for 64K × 64K matrices as an example. We can break matrices
into 32K × 32K blocks and perform 8 block multiplications 4 of
which are symmetric matrix multiplication and the remaining 4 are
ordinary matrix multiplication. For all memory-clustering configu-
rations (except for flat-snc2) the time to sequentially perform four
ordinary 32K × 32K multiplication plus the time to sequentially per-
form four symmetric 32K×32K multiplications is less than the time
to perform one symmetric 64K × 64K multiplication. As a result,
the initial test has passed and the potential for speed up exists for a
simple sequential model using 2 × 2 grids to block the matrices. We
can also use parallelism and different settings for block dimensions.

Table 10 shows the run time values for our two-level algorithm.
In this implementation, matrix A is divided using a 2 × 2 grid and
matrices B and C are divided using a 2 × 1 grid each. The degree of
concurrency for both symmetric and ordinary blocks is b1 = b2 = 2.

5.4 Run Time Comparison For Different Configuration
Selection Scenarios

Throughout this section, we use the layout convention given in Ta-
ble 11 when we refer to “our algorithm”. For example, the 3-level
algorithm for matrix multiplication is the same one for which we
reported runtimes in Section 5.1 and has the same parameters.

Figures 3, 4 and 5 compare the algorithms under scenario S1
(each algorithm uses the best configuration for each matrix size),
for matrix multiplication, triangular matrix multiplication and sym-
metric matrix multiplication respectively. For matrix multiplication,
our algorithm results in 20.5% speed up for 16K × 16K matrices,

19.0% for 32K × 32K matrices and 16.2% for 64K × 64K matrices.
The corresponding speed up values are 3.7%, 14.3% and 8.4% for
triangular matrix multiplication and -0.5%, 11.5% and 10.5% for
symmetric matrix multiplication.

Tables 12, 13 and 14 show the comparison results using scenario
S2 (all algorithms use the same configuration) for matrix multiplica-
tion, triangular matrix multiplication and symmetric matrix multipli-
cation respectively. The comparisons are expressed as the percent-
age runtime reduction obtained by our algorithm over the 1-level
code for each of the above-mentioned applications. In all the three
tables, the negative percentages (where our algorithm has performed
worse than the 1-level code) appear at the configurations involving
snc2 or snc4 (Table 14 is exception, but the negative speed up values
we get for other configurations have very small absolute values). We
will briefly explain in Section 5.5 why our method performs poorly
in the Sub-NUMA Clustering modes. If we ignore the modes involv-
ing snc2 and snc4, then for matrix multiplication on 16K × 16K ma-
trices, the speed up we get is in range [13.7%, 33.8%]; for 32K×32K
matrices it is in range [14.8%, 33.4%] and for 64K × 64K matri-
ces it is in range [16.6%, 40.5%]. The corresponding ranges for
triangular matrix multiplication are [3.1%, 50.4%], [14.3%, 36.1%]
and [8.4%, 31.7%] and for symmetric matrix multiplication are
[−0.9%, 50.9%], [10.3%, 28.2%] and [11.6%, 30.1%].

For the third scenario S3, we make the following observations
(con f1 is the best configuration for the 1-level algorithm and con fm
is the best one for our multilevel algorithm):

• For matrix multiplication, con f 1 : cache-hemisphere and
con f m : cache-quadrant (for con f m, results of 2-level, 3-level
and 4-level algorithms have been considered collectively).

• For triangular matrix multiplication, con f 1 : cache-
hemisphere and con f m : cache-hemisphere.

• For symmetric matrix multiplication, con f 1 : cache-
hemisphere and con f m : cache-hemisphere.

Figures 6, 7 and 8 compare our algorithms vs. the 1-level code
for scenario S3. Using our speed up method on matrix multiplica-
tion, we get 21.3% speed up for 16K × 16K matrices, 19.0% for
32K × 32K matrices and 20.6% for 64K × 64K matrices. The corre-
sponding speed up values are 3.7%, 14.3% and 8.4% for triangular
matrix multiplication and -0.9%, 10.3% and 11.6% for symmetric

www.astesj.com 835

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

Table 9: Run time (in seconds) of the 1-level symmetric matrix multiplication algorithm using cblas dsymm

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
4K × 4K 0.67 0.57 0.47 0.54 0.56
8K × 8K 4.47 2.63 2.33 2.97 1.99

16K × 16K 24.78 20.75 15.12 32.13 11.96
32K × 32K 130.27 152.23 122.94 120.16 123.49
64K × 64K 1006.21 957.23 994.72 1002.23 1005.31

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
4K × 4K 0.67 0.55 — 0.53 0.55
8K × 8K 2.98 2.50 — 2.87 1.97

16K × 16K 13.43 13.98 — 31.66 12.00
32K × 32K 99.14 109.71 — 153.31 98.17
64K × 64K 791.85 778.54 — 1346.62 797.71

Table 10: Run time (in seconds) of 2-level symmetric matrix multiplication algorithm

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
4K × 4K 0.75 0.51 0.41 0.39 0.39
8K × 8K 3.59 2.59 2.15 2.27 1.80

16K × 16K 24.09 19.95 14.78 15.78 12.02
32K × 32K 93.36 164.51 89.49 89.71 90.72
64K × 64K 1631.96 1312.09 711.02 711.50 709.60

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
4K × 4K 0.45 0.45 — 0.36 0.38
8K × 8K 2.08 2.16 — 2.19 1.77

16K × 16K 12.85 13.41 — 16.05 12.11
32K × 32K 94.60 100.01 — 110.11 88.03
64K × 64K 826.87 765.08 — 941.59 704.79

matrix multiplication. Note that for the latter two applications as
con f 1 = con f m, the speed up values are the same as the ones in the
“cache-hemisphere” column of Tables 13 and 14 respectively.

Table 11: The algorithm we use (number of levels) depends on the target application
and the size of the input matrices.

16K × 16K 32K × 32K 64K × 64K
matrices matrices matrices

Matrix 2-level 3-level 4-level
Multiplication (MXM) algorithm algorithm algorithm

Triangular MXM 2-level algorithm
Symmetric MXM 2-level algorithm

16Kx16K 32Kx32K 64Kx64K

1-Level Algorithm 10.25 80.18 618.26

Our Algorithm 8.15 64.98 517.99

0

100

200

300

400

500

600

700

Se
co

n
d

s

Figure 3: Comparison of our method against the 1-level matrix multiplication algo-
rithm (cblas dgemm) using scenario S1.

16Kx16K 32Kx32K 64Kx64K

1-Level Algorithm 6.2 50.15 389.26

Our Algorithm 5.97 42.98 356.4

0

50

100

150

200

250

300

350

400

450

Se
co

n
d

s

Figure 4: Comparison of our method against the 1-level triangular matrix multiplica-
tion algorithm (cblas dtrmm) using scenario S1.

5.5 Model Validation

In this section, we validate the mathematical model we developed
in Section 3.5 to predict performance improvement. The valida-
tion is done on matrix multiplication. It is similar for triangular
and symmetric matrix multiplication problems. We show that the
rbk > 1 condition correctly predicts the potential for speed up. Also,
we compare the actual Ti

T1
ratios with those predicted using our for-

mulation. For predicting the ratios, we use equations (5) and (8)
ignoring the g(., .) terms. We ignore the g(., .) terms by assuming

www.astesj.com 836

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

that g(c, n) � T1 (the same assumption as the one we made several
times in Section 3.5). Meaning that we use (33) and (34) to predict
the runtime ratios.

T2

T1
=

f (c)
b
×

T 1
p,n

T1
(33)

Ti

T1
=

f (c1)T i−1
bp,c2n

T1
(34)

16Kx16K 32Kx32K 64Kx64K

1-Level Alforithm 11.96 98.17 778.54

Our Algorithm 12.02 88.03 704.79

0

100

200

300

400

500

600

700

800

900

Se
co

n
d

s

Figure 5: Comparison of our method against the 1-level symmetric matrix multipli-
cation algorithm (cblas dsymm) using scenario S1.

16Kx16K 32Kx32K 64Kx64K

1-Level Algorithm 10.36 80.18 652.6

Our Algorithm 8.15 64.98 517.99

0

100

200

300

400

500

600

700

Se
co

n
d

s

Figure 6: Comparison of our method against the 1-level matrix multiplication algo-
rithm (cblas dgemm) for scenario S3.

16Kx16K 32Kx32K 64Kx64K

1-Level Algorithm 6.2 50.15 389.26

Our Algorithm 5.97 42.98 356.4

0

50

100

150

200

250

300

350

400

450

Se
co

n
d

s

Figure 7: Comparison of our method against the 1-level triangular matrix multiplica-
tion algorithm (cblas dtrmm) for scenario S3.

In our analysis we ignore matrix addition time as well as the
time spent on copying the matrix blocks into the fast memory. The
reason is that theoretically those are O(n2) operations while ma-
trix multiplication is an O(n3) operation. In practice, for our two -
level matrix multiplication code in the default KNL mode (cache -
quadrant) for instance, the ratio (multiplication time)/(data transfer

time) is 3 for matrices of size 4K × 4K and 42 for matrices of size
16K × 16K. The ratio (multiplication time)/(addition time) is 21
and 199, for matrix sizes of 4K × 4K and 16K × 16K respectively.
Similar ratios can be obtained for other matrix sizes and using other
configurations.

Table 15 shows the validation results for our T2 formula in
Equation 5. Here, cn = 16K, number of blocks c = 4 and there-
fore n = 4K. The degree of concurrency b is 4. Here and also
in the following validation experiments, the total number of pro-
cessors bp = 64. The error between the computed value of T2/T1

and the measured value ranges from 1.27% (Flat-all2all) to 19.44%
(Cache-snc4) in all the modes except for Flat-snc4 (86.09%).

16Kx16K 32Kx32K 64Kx64K

1-Level Algorithm 12 98.17 797.71

Our Algorithm 12.11 88.03 704.79

0

100

200

300

400

500

600

700

800

900

Se
co

n
d

s

Figure 8: Comparison of our method against the 1-level symmetric matrix multipli-
cation algorithm (cblas dsymm) for scenario S3.

Table 16 shows the validation results for our T3 formula. Here,
matrix size cn = 32K, number of blocks in the first (outermost)
level c1 = 2 (arranged as a 2 × 2 grid) and therefore the outermost
blocks are of size 16K × 16K. The error between computed T3/T1

and the observed value ranges from 0% (Flat-snc2, Flat-all2all) to
1.85% (Cache-snc2) for all the modes except for Flat-snc4 where it
is 502%.

Table 17 shows the validation results for our T4 formula. Here,
matrix size cn = 64K, number of blocks in the first (outermost) level
c1 = 2 (arranged as a 2 × 2 grid) and therefore the outermost blocks
are 32K × 32K. Note that in tables 15, 16 and 17 the computed and
the actual runtime ratios have been rounded to the nearest hundredth
and that the error values are computed based on those rounded ra-
tios. Here, the error between the computed and the observed values
ranges from 0% (Flat - quadrant) to 1.69% (Cache - quadrant) in all
the modes except for the Flat-snc4 mode where it is 6.2%.

Figures 9, 10 and 11 visually show the actual values versus the
computed values for T3/T1, T2/T1 and T4/T1 respectively.

Our validation results show that our model works fairly well
for all the KNL configurations except for those involving snc2 or
snc4. The reason is that in the Sub-NUMA Clustering modes, each
half (or quadrant) of the chip is exposed as a separate domain to the
OS, essentially making the chip analogous to a 2 or 4 socket Xeon.
This restricts data sharing and memory access time will increase as
a result.

The condition for speed up, namely rbk > 1 works correctly for
8 out of 9 KNL configurations (the only exception being Flat-snc4).
Note that the rbk column is the same in all the three tables. That is
because its value only depends on the parameters of levels 1 and 2.

www.astesj.com 837

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

Table 12: The speed up obtained by our algorithm over the 1-level matrix multiplication code (cblas dgemm) for scenario S2,

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
16K × 16K -389.0% 3.9% 20.6% 25.6% 13.7%
32K × 32K -26.1% 1.8% 21.4% 30.6% 31.5%
64K × 64K -29.0% -12.1% 24.0% 32.2% 32.3%

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
16K × 16K -7.5% -1.9% — 33.8% 16.9%
32K × 32K -5.2% -7.9% — 33.4% 14.8%
64K × 64K -20.4% 4.7% — 40.5% 16.6%

Table 13: The speed up obtained by our algorithm over the 1-level triangular matrix multiplication code (cblas dtrmm) for Scenario S2.

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
16K × 16K 8.7% 8.3% 11.7% 15.4% 3.1%
32K × 32K 5.4% 25.5% 17.2% 27.6% 17.8%
64K × 64K -55.9% 3.7% 24.1% 31.7% 24.1%

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
16K × 16K 14.0% 16.8% — 50.4% 3.7%
32K × 32K 6.3% 14.3% — 36.1% 14.3%
64K × 64K 10.5% 6.9% — 29.1% 8.4%

Table 14: The speed up obtained by our algorithm over the 1-level symmetric matrix multiplication code (cblas dsymm) for Scenario S2.

Matrix Dimensions Flat-SNC4 Flat-SNC2 Flat-All2All Flat-Quadrant Flat-Hemisphere
16K × 16K 2.8% 3.9% 2.2% 50.9% -0.5%
32K × 32K 28.3% -8.1% 27.2% 25.3% 26.5%
64K × 64K -62.2% -37.1% 28.5% 29.0% 29.4%

Matrix Dimensions Cache-SNC4 Cache-SNC2 Cache-All2All (not supported) Cache-Quadrant Cache-Hemisphere
16K × 16K 4.3% 4.1% — 49.3% -0.9%
32K × 32K 4.6% 8.8% — 28.2% 10.3%
64K × 64K -4.4% 1.7% — 30.1% 11.6%

Table 15: Evaluation of T2 formula against different KNL configurations - All time values are in seconds

T1 T2 T 1
p,n T 1

bp,n T 1
p,cn Computed T2/T1 Actual T2/T1 Error rbk

Flat - SNC4 23.21 113.51 0.98 0.65 46.04 0.68 4.89 86.09% 1.48
Flat - SNC2 15.42 14.82 0.84 0.39 51.67 0.87 0.96 9.37% 1.15
Flat - All2All 12.74 10.12 0.64 0.3 52.88 0.80 0.79 1.27% 1.24
Flat - Quadrant 11.92 8.87 0.57 0.33 35.62 0.77 0.74 4.05% 1.31
Flat - Hemisphere 10.25 8.85 0.59 0.3 38.02 0.92 0.86 6.98% 1.09
Cache - SNC4 10.89 11.71 0.88 0.48 38.03 1.29 1.07 19.44% 0.77
Cache - SNC2 11.32 11.54 0.81 0.42 42.56 1.14 1.02 11.76% 0.87
Cache - Quadrant 12.32 8.15 0.55 0.32 35.79 0.71 0.66 7.58% 1.40
Cache - Hemisphere 10.36 8.61 0.56 0.29 38.33 0.86 0.83 3.61% 1.16

Table 16: Evaluation of T3 formula against different configurations - All time values are in seconds

T1 T 2
bp,c2n T3 Computed T3/T1 Actual T3/T1 Error rbk

Flat - SNC4 119.81 113.51 151.12 7.58 1.26 501.59% 1.48
Flat - SNC2 121.47 14.82 119.23 0.98 0.98 0.00% 1.15
Flat - All2All 102.53 10.12 80.62 0.79 0.79 0.00% 1.24
Flat - Quadrant 101.58 8.87 70.5 0.70 0.69 1.45% 1.31
Flat - Hemisphere 102.63 8.85 70.28 0.69 0.68 1.47% 1.09
Cache - SNC4 88.9 11.71 93.53 1.05 1.05 0.00% 0.77
Cache - SNC2 87.39 11.54 94.26 1.06 1.08 1.85% 0.87
Cache - Quadrant 97.52 8.15 64.98 0.67 0.67 0.00% 1.40
Cache - Hemisphere 80.18 8.61 68.35 0.86 0.85 1.18% 1.16

www.astesj.com 838

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

Table 17: Evaluation of T4 formula against different KNL configurations - All time values are in seconds

T1 T 3
bp,c2n T4 Computed T4/T1 Actual T4/T1 Error rbk

Flat - SNC4 1002.3 151.12 1292.55 1.21 1.29 6.20% 1.48
Flat - SNC2 843.25 119.23 945.01 1.13 1.12 0.89% 1.15
Flat - All2All 843.04 80.62 640.35 0.77 0.76 1.32% 1.24
Flat - Quadrant 826.23 70.5 560.46 0.68 0.68 0.00% 1.31
Flat - Hemisphere 824.15 70.28 557.92 0.68 0.68 0.00% 1.09
Cache - SNC4 618.26 93.53 744.34 1.21 1.20 0.83% 0.77
Cache - SNC2 781.83 94.26 745.16 0.96 0.95 1.05% 0.87
Cache - Quadrant 871.1 64.98 517.99 0.60 0.59 1.69% 1.40
Cache - Hemisphere 652.6 68.35 544.31 0.84 0.83 1.20% 1.16

0

1

2

3

4

5

6

Computed Value

Actual Value

Figure 9: T2/T1: Computed Values vs. Actual Values. Demonstrated over KNL
memory-clustering configurations.

0

1

2

3

4

5

6

7

8

Computed Value

Actual Value

Figure 10: T3/T1: Computed Values vs. Actual Values. Demonstrated over KNL
memory-clustering configurations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Computed Value

Actual Value

Figure 11: T4/T1: Computed Values vs. Actual Values. Demonstrated over KNL
memory-clustering configurations.

If we leave out the Flat-snc4 configuration, then the speed up
predictions of our model (either negative or positive) are within
2%, 2% and 20% of the actual values for matrix sizes 64K × 64K,
32K × 32K and 16K × 16K, respectively.

6 Conclusions

We have proposed a multilevel method to speed parallel codes whose
runtime grows faster than their workload. The target problems are
the ones that can be decomposed into smaller subproblems. The
original highly optimized parallel code is treated as a black box
and no change is made to it. Using a simple parallel computing
model, we derived formulas to predict whether or not any speed up
is possible and also the amount of attainable speed up.

We demonstrated the effectiveness of our multilevel method
on the highly optimized parallel BLAS routines cblas dgemm,
cblas dtrmm and cblas dsymm that are in the MKL library using
the Intel KNL platform. Our proposed method is, however, general
and can be potentially applied to other optimized parallel codes and
on other platforms.

In our experiments, we considered 3 possible application sce-
narios. In the first of these (each algorithm is run using the best
memory/clustering configuration for each problem size), we ob-
tained speed up values of 16.2%, 8.4%, and 10.5%, respectively,
for matrix multiplication, triangular matrix multiplication, and sym-
metric matrix multiplication for 64K × 64K matrices. In the second
scenario (all algorithms use the same configuration), these percent-
ages are up to 40.5%, 31.7%, and 30.1%. The default mode in the
KNL is cache - quadrant configuration. For this mode, the speed
up percentages are 40.5%, 29.1%, and 30.1%. In the third scenario
(each algorithm uses the same configuration regardless of problem
size; different algorithms may use different configurations), the
speed up values were 20.6%, 8.4%, and 11.6%.

For the matrix multiplication problem, the simple predictive
mathematical model developed by us is able to correctly predict
whether or not speed up is possible for 8 out of the 9 mem-
ory/clustering configurations tested. Also, for 8 out of the 9 con-
figurations and for the matrix sizes of 64K × 64K, the amount of
runtime increase or decrease our formula predicted for matrix multi-
plication was within 2% of the actual value. For both predicting the
potential of speed up and predicting the amount of attainable speed
up, Flat-snc4 was the configuration for which our model failed.

Conflict of Interest The authors declare no conflict of interest.

www.astesj.com 839

http://www.astesj.com


S. Gheibi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 824-840 (2020)

Acknowledgment This work was funded, in part, by the National
Science Foundation, under Contract No. 1748652.

References
[1] S. Gheibi, T. Banerjee, S. Ranka, S. Sahni, “Multilevel Approaches to Fine

Tune Performance of Linear Algebra Libraries,” in 2019 IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT), 1–6,
IEEE, 2019.

[2] L. E. Cannon, A cellular computer to implement the Kalman filter algorithm,
Ph.D. thesis, Montana State University-Bozeman, College of Engineering,
1969.

[3] V. Strassen, “Gaussian elimination is not optimal,” Numerische mathematik,
13(4), 354–356, 1969.

[4] H. Prokop, Cache-oblivious algorithms, Ph.D. thesis, Massachusetts Institute
of Technology, 1999.

[5] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, K. H. Randall, “An
analysis of dag-consistent distributed shared-memory algorithms,” in SPAA,
volume 96, 297–308, 1996.

[6] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, O. Spillinger,
“Communication-optimal parallel recursive rectangular matrix multiplication,”
in 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing, 261–272, IEEE, 2013.

[7] B. Lipshitz, G. Ballard, J. Demmel, O. Schwartz, “Communication-avoiding
parallel strassen: Implementation and performance,” in SC’12: Proceedings of
the International Conference on High Performance Computing, Networking,
Storage and Analysis, 1–11, IEEE, 2012.

[8] G. H. Golub, C. F. Van Loan, Matrix computations, volume 3, JHU press, 2012.

[9] R. A. Van De Geijn, J. Watts, “SUMMA: Scalable universal matrix multi-
plication algorithm,” Concurrency: Practice and Experience, 9(4), 255–274,
1997.

[10] M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park, M. J. Anderson, S. G.
Vadlamudi, D. Das, S. G. Pudov, V. O. Pirogov, P. Dubey, “Parallel efficient
sparse matrix-matrix multiplication on multicore platforms,” in International
Conference on High Performance Computing, 48–57, Springer, 2015.

[11] Q. Xiangzhen, “Cache performance and algorithm optimization,” in High Per-
formance Computing on the Information Superhighway, 1997. HPC Asia’97,
12–17, IEEE, 1997.

[12] D. I. Lyakh, “An efficient tensor transpose algorithm for multicore CPU, Intel
Xeon Phi, and NVidia Tesla GPU,” Computer Physics Communications, 189,
84–91, 2015.

[13] J. Chen, J. Fang, W. Liu, T. Tang, C. Yang, “clmf: A fine-grained and portable
alternating least squares algorithm for parallel matrix factorization,” Future
Generation Computer Systems, 108, 1192–1205, 2020.

[14] C. Yount, A. Duran, “Effective use of large high-bandwidth memory caches in
HPC stencil computation via temporal wave-front tiling,” in Performance Mod-
eling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS), International Workshop on, 65–75, IEEE, 2016.

[15] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, M. Thottethodi, “Nonlinear
array layouts for hierarchical memory systems,” in Proceedings of the 13th
international conference on Supercomputing, 444–453, ACM, 1999.

[16] J. Mellor-Crummey, D. Whalley, K. Kennedy, “Improving memory hierarchy
performance for irregular applications using data and computation reorderings,”
International Journal of Parallel Programming, 29(3), 217–247, 2001.

[17] E. Athanasaki, N. Koziris, “Fast indexing for blocked array layouts to improve
multi-level cache locality,” in Interaction between Compilers and Computer
Architectures, 2004. INTERACT-8 2004. Eighth Workshop on, 107–119, IEEE,
2004.

[18] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor, H. De Man, “Cache conscious
data layout organization for embedded multimedia applications,” in Proceed-
ings of the conference on Design, automation and test in Europe, 686–693,
IEEE Press, 2001.

[19] B. Recht, C. Re, S. Wright, F. Niu, “Hogwild: A lock-free approach to par-
allelizing stochastic gradient descent,” in Advances in neural information
processing systems, 693–701, 2011.

[20] W.-S. Chin, Y. Zhuang, Y.-C. Juan, C.-J. Lin, “A fast parallel stochastic gradient
method for matrix factorization in shared memory systems,” ACM Transactions
on Intelligent Systems and Technology (TIST), 6(1), 2, 2015.

[21] S. Song, J. K. Hollingsworth, “Designing and auto-tuning parallel 3-D FFT
for computation-communication overlap,” in Proceedings of the 19th ACM
SIGPLAN symposium on Principles and practice of parallel programming,
181–192, 2014.

[22] S. Lee, D. Jha, A. Agrawal, A. Choudhary, W.-k. Liao, “Parallel deep convolu-
tional neural network training by exploiting the overlapping of computation
and communication,” in 2017 IEEE 24th International Conference on High
Performance Computing (HiPC), 183–192, IEEE, 2017.

[23] H. Wang, S. Guo, R. Li, “Osp: Overlapping computation and communication
in parameter server for fast machine learning,” in Proceedings of the 48th
International Conference on Parallel Processing, 1–10, 2019.

[24] J. Huang, T. M. Smith, G. M. Henry, R. A. van de Geijn, “Strassen’s algorithm
reloaded,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 59, IEEE Press, 2016.

[25] R.-I. Ciobanu, C. Dobre, M. Bălănescu, G. Suciu, “Data and task offloading in
collaborative mobile fog-based networks,” IEEE Access, 7, 104405–104422,
2019.

[26] V. Priya, C. S. Kumar, R. Kannan, “Resource scheduling algorithm with load
balancing for cloud service provisioning,” Applied Soft Computing, 76, 416–
424, 2019.

[27] D. Puthal, R. Ranjan, A. Nanda, P. Nanda, P. P. Jayaraman, A. Y. Zomaya, “Se-
cure authentication and load balancing of distributed edge datacenters,” Journal
of Parallel and Distributed Computing, 124, 60–69, 2019.

[28] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, G. Joshi, “Rateless codes
for near-perfect load balancing in distributed matrix-vector multiplication,” Pro-
ceedings of the ACM on Measurement and Analysis of Computing Systems,
3(3), 1–40, 2019.

[29] A. Mohammed, A. Eleliemy, F. M. Ciorba, F. Kasielke, I. Banicescu, “An ap-
proach for realistically simulating the performance of scientific applications on
high performance computing systems,” Future Generation Computer Systems,
111, 617–633, 2020.

[30] I.-J. Sung, J. A. Stratton, W.-M. W. Hwu, “Data layout transformation exploit-
ing memory-level parallelism in structured grid many-core applications,” in
Proceedings of the 19th international conference on Parallel architectures and
compilation techniques, 513–522, ACM, 2010.

[31] G. Chen, B. Wu, D. Li, X. Shen, “PORPLE: An extensible optimizer
for portable data placement on GPU,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 88–100, IEEE
Computer Society, 2014.

[32] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, Y.-C. Liu, “Knights landing: Second-generation intel
xeon phi product,” Ieee micro, 36(2), 34–46, 2016.

www.astesj.com 840

http://www.astesj.com

	Introduction
	Related Work
	Proposed Approach
	General framework
	Matrix multiplication
	Triangular Matrix Multiplication
	Symmetric Matrix Multiplication
	Performance Analysis
	Speed Up Analysis
	T2<T1
	Ti < T1 (i>2)
	Ti < Ti-1 (i>3)

	Performance Analysis: Matrix Multiplication
	Performance Analysis: Triangular Matrix Multiplication
	Performance Analysis: Symmetric Matrix Multiplication

	KNL Architecture
	Architecture Overview 
	Memory Modes
	Flat Mode
	Cache Mode
	Hybrid Mode

	KNL Clustering Modes
	All-to-All
	Quadrant
	Hemisphere
	SNC4
	SNC2


	Experimental Results
	Matrix Multiplication Times
	Triangular Matrix Multiplication Times
	Symmetric Matrix Multiplication Times
	Run Time Comparison For Different Configuration Selection Scenarios
	Model Validation

	Conclusions

