

www.astesj.com 154

Four-Dimensional Sparse Data Structures for Representing Text Data

Martin Marinov*, Alexander Efremov

Faculty of Automatics, Technical University of Sofia, 1000, Bulgaria

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 12 July, 2020
Accepted: 24 August, 2020
Online: 10 September, 2020

 This paper focuses on a string encoding algorithm, which produces sparse distributed
representations of text data. A characteristic feature of the algorithm described here, is that
it works without tokenizing the text and can avoid other data preparation steps, such as
stemming and lemmatization. The text can be of arbitrary size, whether it is a single word
or an entire book, it can be processed in the same way. Such approaches to text
vectorization are not common in the machine learning literature. This sets the presented
encoder apart from conventional text vectorizers. Two versions of the encoding algorithm
are described and compared - the initial one and an improved version. The goal is to
produce a robust data preparation procedure, capable of handling highly corrupted texts.

Keywords:
Text Classification
Data Cleaning
Data Preparation
Sparse Representations

1. Introduction

This paper describes a modification of a text encoding
algorithm, presented at ICASC 2019. Since the conference
proceedings paper [1] was written, there have been further
developments and those will be presented here, but first a bit of
backstory.

One of the most prolific research teams, who currently
experiment with sparse distributed representations (SDR), are Jeff
Hawkins, Subutai Ahmad [2] and the people working with them at
the private company Numenta. The principle author of this paper
found out about the concept of SDR from their work and drew
inspiration from their research.

An important thing to note, is that the long term goal of the
researchers at Numenta is to distance their developments from
conventional machine learning and artificial neural networks. We
do not share this goal, in fact we are merely trying to make
solutions based on sparse information representation, which are
complementary to classic machine learning.

Here we present a type of encoder for text data, which is not
described in the research paper on sparse encoders, published by a
member of Numenta [3]. Our solution is also different from the
Cortical.io SDR text encoder, which is mentioned in point 6 of the
Numenta paper (Webber, “Semantic Folding”). We follow the
principles described in the conclusions of the Numenta research

paper, but the algorithms and implementation are entirely our own.
The data structures we use are not binary arrays, we use key-value
data structures to implement the representations. Compared to
other SDR text encoders, another notable difference in our
approach is that we consider characters to be the basic building
units of text, not abstract constructs such as words.

This paper focuses on a key enhancement made to our
algorithm, presented at ICASC, and the potential benefits it offers.
It also covers the development of a benchmark text classification
problem, for evaluating the utility of our text encoding algorithms,
by comparing them to conventional text vectorizers.

To avoid confusion, our initial algorithm will be referred to as
CP (Current-Prior). The modified one, which is the focus of this
paper, will be referred to as CPPP (Current-Position-Prior-
Position). Their names hint at the way in which they transform
strings into sparse distributed representations.

2. Comparing CP and CPPP sparse representations

In brief, CP encoding goes through strings character by
character and uses only their sequencing to create a sparse
representation of the strings in a two-dimensional encoding space.
For a more detailed description of each step, please refer to the
ICASC paper. The encoding space is an abstract concept and one
of its key features is that the coordinate system uses non-numeric
characters, to define the location of points within the space. As the
CP encoder moves from character to character, it projects the last

ASTESJ

ISSN: 2415-6698

*Corresponding Author, Martin Marinov, e-mail: mu_marinov@abv.bg

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com

Special Issue on Multidisciplinary Innovation in Engineering Science & Technology

https://dx.doi.org/10.25046/aj050521

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050521

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 155

character it has read onto the horizontal axis, but it also uses the
vertical axis to track prior characters. This is why the algorithm is
called current-prior. The result is a specific pattern of points in the
encoding space, which is highly dependent on the symbol
arrangement of the strings being processed.

Figure 1: edge (CP encoded)

Figure 2: edge (CPPP encoded)

 The encoding patterns can be illustrated in various ways, with
one of the more human-readable ones being tabular representation,
as seen on Figure 1. If the representations are being processed by
a computer program, however, there are more suitable data
structures, which could be used. For example, the CP encoded
word shown in Figure 1 can be stored as a set of character pairs:
{' e', ' d', ' g', ' ', 'ed', 'eg', 'ee', 'e ', 'dg', 'de', 'd ', 'ge', 'g '}.

 CPPP encoding works in a similar way, but in addition to
character sequences it also factors in the position of the characters.
In other words, the sparse encoding space has two additional sub-
axes, which track the positions of the last read symbol and the
position of prior symbols. Even though this defines a four-
dimensional encoding space, it can still be represented in tabular
form (Figure 2). This is the key modification to the CP algorithm
and it is noted in the name (Current-Position-Prior-Position).

 In theory, the readability of these tables does not diminish,
because the encoded strings are sparse patterns by definition. The

repetition of the sub-axes below the main axes doesn’t make the
tabular representation harder to interpret. It still looks like a grid
with seemingly random non-empty elements scattered throughout.
There is actually nothing random about the distribution of the non-
empty elements, however. It is strictly based on the encoded string.

Figure 3: The phrase “when it rains”, encoded with CPPP

 Difficulties could arise in practice, because of the size of the
string being encoded. The sparse representation is still logical and
consistent, it is just not possible for a human to comprehend what
it means at a glance (Figure 3).

 However, these algorithms are meant to be utilized by
computers, not people. Machines are far better at processing large
amounts of information. The ability to represent the encodings in
a human-readable format is useful mainly to the developers, as a
debugging tool and a way to illustrate the working principles of
these algorithms.

3. Pseudocode implementation

3.1. Input-output

strIn - The string which has to be transformed into a sparse
representation. It can be of arbitrary length.

SR - The output from the encoding procedure, i.e. the sparse
representation of the input. It is just a key-value data structure. We
used python dictionaries, but any other dictionary-like data
structures from other languages can be used to implement the
algorithms.

winSize - A control parameter, which sets the maximum allowed
distance between characters, when forming character pairs.

For example, when encoding an entire book, it would make little
sense to form pairs from characters at the start of the book and
characters at the very end of the book. That would just create more
character pairs (points in the encoding space) than is necessary and
significantly increase the size of the sparse representation.

We used winSize = 20, i.e. we told the program not to form
points from characters, which were separated by more than 20
characters.

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 156

3.2. CP encoding algorithm

Algorithm 1: Current-Prior
Result: SR
Receive strIn;
Initialize dictionary object SR;
prior_pos = 0;
while prior_pos < length of strIn do
 current_pos = prior_pos + 1;
 while current_pos < length of strIn do
 chrPair = Concat(strIn[prior_pos], strIn[current_pos]);
 SR[chrPair] = 1;
 current_pos += 1;
 end
 prior_pos += 1;
end

3.3. CPPP encoding algorithm

The keys in the CPPP sparse representation key-value data
structure are derived in the same way as the ones produced by CP
encoding. However, the values are not just a single number. The
values are lists of numbers, specifically the positions of the
characters, which produced the keys of the dictionary.

Algorithm 2: Current-Position-Prior-Position
Result: SR
Receive strIn;
Initialize dictionary object SR;
prior_pos = 0;
while prior_pos < length of strIn do
 current_pos = prior_pos + 1;
 while current_pos < length of strIn do
 chrPair = Concat(strIn[prior_pos], strIn[current_pos])
 if chrPair not in keys of SR then
 SR[chrPair] = list(empty list, empty list);
 append current_pos to list SR[chrPair][0];
 append prior_pos to list SR[chrPair][1];
 end
 current_pos += 1;
 end
 prior_pos += 1;
end

4. Advantages and disadvantages of CPPP

When processing repeating syllables and characters, the CP
algorithm projects them in the same points of the sparse encoding
space. In contrast, CPPP ensures that each repeating symbol will
be projected to a different point in the encoding space. A direct
consequence of this is that CPPP encoding can handle strings with
arbitrary lengths, whereas CP cannot.

It is possible to saturate the two-dimensional encoding space
used by the CP algorithm, if a sufficiently long string is processed.
CPPP can transform large strings, without decreasing the sparsity
of their representations in the four-dimensional encoding space.
The significant advantages of this are:

• Reversible encoding. It is possible to turn the sparse
representations back into strings, without information loss.

• No need for tokenization. Text documents (data) can be
processed as a single, long, uninterrupted sequence of
characters. There is no need for splitting them by delimiters,
such as whitespace, commas and such.

• Increased capacity. Due to the introduction of the two
additional dimensions, for tracking character positions, it is
possible to compare not only tokens (words), but entire
sentences, phrases, paragraphs and documents.

• Precise string comparison. CPPP allows not only the
quantification of similarity between strings, but it also makes
it possible to determine which specific parts of the strings
correspond to each other and which ones differ.

Despite the advantages, the modified algorithm has a notable
drawback: the simple methodology for comparison of CP sparse
representations is not applicable to CPPP encoded text.

To illustrate the reason, several words encoded by the two
algorithms will be examined. The chosen words are tree, trim and
tree-trimmer, because these words are short, some of them have
double characters and the third one is a compound word, which
includes the other two.

CP encoding (Figures 4 to 6) does not represent the following
things properly:

• The double е in tree and the double m в trimmer. In both
cases, the corresponding points for these characters in the
encoding space overlap. For the word tree, the points are re
and te. For trimmer, the points are im, rm and tm.

• The repetition of tr in tree-trimmer (Figure 6). Again, the
representations of the two different instances of this character
sequence overlap completely in the two-dimensional
encoding space. This means that the initial string cannot be
recovered, by using only its sparse representation.

Figure 4: tree (CP encoded)

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 157

Figure 5: trim (CP encoded)

Figure 6: tree-trimmer (CP encoded)

On the other hand, CPPP encoding creates mirror points, when
representing repeating character sequences. An example of this can
be seen on Figure 7, arrows have been drawn to bring attention to
the points in question. They indicate, that the letter е is present
more than once in the word tree. The fact that sectors re and te
have more than one non-empty value is informative, although the
algorithmic processing of this information is not as trivial, as the
procedure used to compare sparse patterns in CP encoded strings.

Figure 7: tree (CPPP encoded)

Figure 8: trim (CPPP encoded)

A second complication inherent in CPPP encoding is
illustrated on Figures 8 and 9. The points which represent the
word trim have shifted their positions in the sparse space. This is
to be expected, in the third string there is another word before
trim, which causes a translation of the sparse pattern to the right.
This is logical and informative, but again, the algorithmic analysis
and quantification of such relations is more complex than the one
employed for CP sparse representations of text.

Figure 9: tree-trimmer (CPPP encoded)

 These two characteristics of the modified encoding space
(mirror points and non-stationary sparse patterns) are the things
that give it the aforementioned advantages. However, there is no
analogue for them in the two-dimensional encoding space, which
means the comparison method developed for CP sparse
representations is not applicable to four-dimensional encodings of
strings. To utilize the full potential of CPPP encoding, other
comparison techniques have to be used.

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 158

5. Methods for comparing CPPP sparse representations

In theory, it is possible to feed the encoded strings into artificial
neural networks and have them learn to recognize the same types
of patterns, which people can notice in small sparse
representations. However, in recent years the European Union has
begun to implement legal frameworks and guidelines for the use
of artificial intelligence, which emphasize the need for algorithmic
transparency (see the publications from 2019 by the EPRS, such as
"A governance framework for algorithmic accountability and
transparency").

It is the opinion of the authors, that the more society delegates
decision making to machines, the more the legal regulations and
requirements for decision transparency will increase. Conventional
ANN are black-box approaches to modelling data and as such, the
authors try to avoid relying on them, in favor of more
algorithmically transparent models. In addition, it is possible to
logically and methodically explain why each element of a CPPP
sparse representation exists in the encoding space.

In order to make use of the encoded data, however, specialized
procedures have to be developed, for quantifying similarities
between encoded strings, as well as processing larger units of
written information, such as documents, chapters in books etc. To
be more specific, text classifiers based on the bag-of-words
approach require accurate word/token counts, in order to build
quality TF-IDF representations of textual data. Other machine
learning approaches, such as n-gram modelling, require tracking
of token sequences as well, in order to take into account the context
in which individual words are used in the text.

The methods for distinguishing and locating words in CPPP
encoded corpora are currently under development, their
implementations could change. However, brief examples will be
given, to showcase possible ways of carrying out basic operations
with CPPP encoded text.

5.1. Basics of locating words in CPPP text representations

The text is CPPP encoded as a single, uninterrupted string. In
addition, the computer has access to a machine-readable
dictionary, which consists of separately encoded words. Note the
different way of encoding the data and the dictionary. Unlike
common practice, tokenization of the dataset is avoided, the text is
kept intact and it is CPPP encoded as a whole. This is because it is
not known which parts of the text correspond to which words,
before some kind of analysis is done. This approach avoids the
presupposition, that the text being processed is well formatted and
can easily be parsed with a few simple delimiting characters.

The dictionary, however, is a collection of distinct words, by
definition, so it is divided into separately encoded strings. It is also
possible to curate the dictionary manually and ensure the entries
are properly separated, something which usually isn’t practicable
with the dataset.

5.2. Word search based on maximizing pattern overlaps

For each element (word, token, phrase) in the machine-
readable dictionary, the following steps are carried out: finding all
potential locations of the search term within the text and filtering
the possible results, to leave only the most consistent matches.

5.2.1. Initialization of a character weight vector W.

The purpose of W is to indicate which parts of the text
correspond to the dictionary entry, which is under consideration
during the entry enumeration. It is initialized as an all-zero vector,
with a length equal to the number of characters in the text being
analyzed. The first element of W indicates how many times the
first character takes part in forming character pairs, which are
common to both data and dictionary sparse representations. The
second element of W indicates the same for the second character
of the text. The third element covers the third character etc.

5.2.2. SPOQ procedure - pseudocode implementation.

The current implementation of the Sparse Pattern Overlap
Quantification Procedure, or SPOQ for short, is described here
(algorithm 3). It is used to find similar patterns in the encoded data.
SR_1 is the sparse representation of the data, SR_2 is a sparse
representation of a specific dictionary entry.

Algorithm 3: SPOQ
Result: WSPOQ
Initialize W vector with all zero elements;
commonKeys = Intersection(keys of SR_1, keys of SR_2);
for each com in commonKeys do
 crnt_pos1 = SR_1[com][0]; prev_pos1 = SR_1[com][1];
 crnt_pos2 = SR_2[com][0]; prev_pos2 = SR_2[com][1];
 delta1 = crnt_pos1 - prev_pos1;
 delta2 = crnt_pos2 - prev_pos2;
 for each b in delta2 do
 proximity = abs(delta1 - b);
 W[crnt_pos1[index of min(proximity)]] += 1;
 W[prev_pos1[index of min(proximity)]] += 1;
 end
end

5.2.3. SPOQ example.

If we look at the sparse representations shown on Figures 8 and
9, their encoding spaces can be divided into sectors (denoted ST
and SD respectively), by using the primary axes (the ones that track
character sequencing). These sectors correspond to the common
keys between the two sparse representation data structures. For
those sectors, which are not empty and present in both
representations, the distances ∆pT and ∆pD are calculated. They
indicate how far apart specific pairs of characters are in both
representations. For details, see Table 1.

The example shown in Table 1 assumes that the word trim is
a word from the machine-readable dictionary and tree-trimmer is
the text. The elements of the weight vector are incremented, based
on the closest matches between ∆pT and ∆pD in each sector. This
is why indices 6,7,8 and 9 of W will have the highest non-zero
values. They correspond neatly to the location of the word trim,
within the string tree-trimmer.

Note that this is a relatively simple procedure and it can
produce false positives. The fact that index 1 and 2 also get
incremented once is an example of the limitations of SPOQ. In
addition, there is no guarantee that all relevant characters will be
matched properly.

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 159

Table 1: Principle of operation of the SPOQ procedure

ST ∆p𝑇𝑇 SD ∆p𝐷𝐷 Incrementations of W

ri 3 – 2 = 1
ri 8 – 2 = 6
ri 8 – 7 = 1 W8 += 1 and W7 += 1

ti 3 – 1 = 2
ti 8 – 1 = 7

ti 8 – 6 = 2 W8 += 1 and W6 += 1

im 4 – 3 = 1
im 9 – 8 = 1 W9 += 1 and W8 += 1

im 10 – 8 = 2

rm 4 – 2 = 2

rm 9 – 2 = 7
rm 9 – 7 = 2 W9 += 1 and W7 += 1
rm 10 – 2 = 8
rm 10 – 7 = 3

tm 4 – 1 = 3

tm 9 – 1 = 8
tm 9 – 6 = 3 W9 += 1 and W6 += 1
tm 10 – 1 = 9
tm 10 – 6 = 4

tr 2 – 1 = 1

tr 2 – 1 = 1 W2 += 1 and W1 += 1
tr 7 – 1 = 6
tr 7 – 6 = 1 W7 += 1 and W6 += 1
tr 12 – 1 = 11
tr 12 – 6 = 6

5.2.4. Filtration of weak matches

The SPOQ search procedure described in points 5.2.2 and
5.2.3 is supposed to generate rough estimations of word positions,
within a given text. False positives and overlaps between the
weight vectors of multiple dictionary entries are to be expected.
Currently, it is assumed that these can be handled with adequate
filtration techniques.

Regarding how the filtration of each weight vector is done,
the code for the SPOQ procedure was described in point 5.2.2, it
is the one which produces the initial W vectors, denoted as WSPOQ.
Point 5.2.5 covers the code for the filtration steps, which further
modify WSPOQ.

5.2.5. Pseudocode of the filtration procedures.

Algorithm 4: Frequency filtration
Result: WF
W = WSPOQ; #input
W[W == 1] = 0;
N = length of W – 2; cp = 1;
while cp <= N do
 if W[cp-1] == 0 and W[cp] != 0 and W[cp+1] == 0 do
 W[cp] = 0;
 end
 cp += 1;
end

Algorithm 5: Match length filtration
Result: WL
W = WF; #input
likely_loc = integer sequence from 0 to length of W;
Keep only the elements of W where W > 0;
W_filtered = zero vector of length W;
i = 0;
j = 1;
while j < length of W do
 if likely_loc[j] - likely_loc[j-1] != 1 then
 substring_size = likely_loc[j-1] - likely_loc[i];
 if substring_size > 2 then
 # This substring is a good match, it is long enough
 W_filtered[likely_loc[i]: likely_loc[j-1]] = 1;
 else
 # Bad match, substring is too short
 end
 i = j
 end
 j += 1
end

5.3. Visualization of SPOQ and W filtration.

To visualize the values of the character weight vector, as it is
altered by the filtration steps, we utilize custom plots. In addition
to W, they display the actual text under evaluation, so that we can
quickly determine if the values of W are as they should be.

The layout of the custom plots is described in Figure 10. For
specific example with data, refer to Figures 11 to 14 and point
5.3.1, which describes what those figures illustrate.

Figure 10: Description of custom plot layout

5.3.1. Example of SPOQ and W filtration used on text

To illustrate the filtration process, the Bulgarian poem
“Поточе” (Stream), written by Elin Pelin, will be used as an
example dataset. When searching for the word песни (songs), the
SPOQ procedure is used to obtain an initial weight vector WSPOQ,
shown on Figure 11.

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 160

Figure 11: search for песни

The largest peak in WSPOQ is roughly equal in size to the length
of the search word, about five in this case. As expected, the biggest
peak is roughly where the word is in the poem, but there are many
other smaller peaks scattered around it. This is why additional
filtration steps are necessary.

Many of the individual elements in WSPOQ are equal to 1 or are
surrounded by zeros on both sides. Using the frequency filtration
procedure, we zero-out all of these and get a clearer indication of
where the search-word is, as shown on Figure 11, subplot WF.
Unfortunately, some false positives still remain.

An additional filtration step can be applied, this time targeting
the lengths of the matches. Presumably longer sequences of non-
zero values indicate better matches. If we zero-out all matches
shorter than 2 characters, we obtain the result seen on Figure 11,
subplot WL. This is indeed where the word is in the document.

5.3.2. Necessary refinements to SPOQ and filtration.

There is a caveat to the simple filtrations described here. Their
thresholds are static hyper-parameters, meaning they were set by a
person at some point and are not necessarily a good fit in all
possible word search cases.

For an example of this, refer to Figure 12, which shows the
search for the word песен (song). This is the singular form of the
word and a more likely entry in a properly curated dictionary. In
this case, the match is weaker and a small increase in the threshold
of the length filter (from 2 to 4) could zero-out the entire weight
vector, thereby suppressing the one relevant match in the dataset.

Figure 12: search for песен

The filtration thresholds have to be dynamically adjustable by
an automated subroutine. Manual adjustment would not be
practicable, considering the number of word searches and
comparisons that have to be done in an adequately sized corpus.

A single search in the encoded text could produce multiple
results, if the search-word is present in the data more than once, as
seen on Figure 13. However, multiple results for a single search
could also contain false positives, due to the nature of the
algorithm.

Figure 14 shows an example of false positives making it
through both filtration steps. The reason for this is that the search-
word бистро (pure) is contained nearly unchanged in the word
сребристо (silvery). This is why the filtered weight vector has 4
peaks, instead of just 2, which is the correct number of occurrences
of the search-word. Finding similar character sequences is the
intended behavior of the program, but they aren’t always a correct
match.

Work is still ongoing on the development of dynamic filtration,
capable of resolving the issues caused by false positives and
ambiguities arising from overlaps between the weight vectors of
different dictionary entries. Formulating the problem as an
optimization procedure is under consideration, the idea being that
this way it will be possible to automatically reach a single
interpretation of a given corpus. The aim is to produce a data
preparation module, based on CPPP encoding. It should be capable
of replacing conventional data preparation steps, such as
tokenization, stemming, lemmatization, as well as give sufficiently
accurate word counts and position estimations.

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 161

Figure 13: search for щастливо

Figure 14: search for бистро

6. Text classification benchmark

In order to conduct a more rigorous evaluation, of the
performance and quality of CPPP data preparation, a
classification problem has been defined, by using a dataset from
the LSHTC challenges [4]. Specifically, the small wikipedia
dataset from LSHTC3 was used, since it was the only challenge
in which the raw text was provided.

The dataset has 456886 documents, each one containing only
abstracts of wikipedia articles. The documents are labeled,
although the labels are not human readable, they are merely
integers representing a specific topic covered in each document.
There is also a complex label hierarchy, however for the purposes
of our benchmark problem, we do not take it into account. We
only use a subset of the entire corpus, which contains documents
with a single label. In addition, we alter the labels to reduce
everything to a binary classification problem. This way we can
train a simple model and focus on the data preparation part of the
workflow. The aim is to make changes only in the data preparation
stage, the text classifier itself will always be the same, with fixed
hyper-parameters.

6.1. Subsetting the dataset and forming binary labels

Looking only at the documents with a single label, the top 10
most frequently occurring label codes are listed in Table 2. Next to
the codes are descriptions, based on reading and evaluating a dozen
of the documents associated with a given label.

Table 2: Top 10 most used labels

Label Documents Label Description
167593 5277 Movies
347803 1470 Businessmen and inventors
324660 1433 Historic buildings
283823 1359 Writers and journalists
284433 1310 Journalists
272741 1006 Film actors
395447 999 Screenwriters
114873 945 Plants
352578 846 Novelists
93043 762 Painters

Label 167593 was chosen as the positive class (the one we want
to predict with the model). The decision was based solely on the
number of documents tagged with 167593. To create the
benchmark corpus, all documents with the chosen label were
selected, and reassigned to class 1. An additional 4000 randomly
chosen documents, from the remaining 451609 in the dataset, were
assigned to class 0, regardless of what their labels were originally.
This is how the initial classification of the documents was reduced
to a binary classification problem.

In addition, a variable was added to the subset, which randomly
separates it into two roughly equal in size parts. This is used to
perform a training-validation split, for when the text classification
model is trained on the subset.

The only preprocessing of the raw text was the removal of
punctuation and the substitution of numbers with the placeholder
<NUMBER>. Other preprocessing steps, such as named entity

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 162

recognition, have not been implemented, although they are under
consideration.

Note that for statistical purposes, this procedure was repeated
30 times, to produce 30 distinct subsets, each with different
documents assigned to the negative class 0 and different training-
validation splits. The number 47 was used as a seed for generating
30 random numbers, which in turn were used as seeds when the
subsets were created. This ensures repeatability of the process. The
pseudocode for creating subsets is included (Algorithm 6).

Algorithm 6: Procedure for subsetting the LSHTC3 dataset
Result: Document subsets

Parameters for subset generation
ran_stat = 47; # keep constant, used as seed
num_of_subsets = 30; # Can be varied
N_neg = 4000; # Can be varied
train_test_ratio = 0.5; # Can be varied

Load dataset (Dw)
Separate docs for positive and negative class (Dn and Dp);

Generate a list of random integers
rand_int_list = generate_random_integers(
 max value = 1000000,
 length = num_of_subsets,
 seed = ran_stat
);

for each rand_int in rand_int_list do
 Randomly sample (seed = rand_int) N_neg documents

from Dn;
 Append Dn_sample to Dp to get subset Ds;
 Remove punctuation in Ds;

Replace numbers with <NUMBER> in Ds;
 Add train-test separation flag to Ds(seed = rand_int);
 Save the subset Ds as "subset_<rand_int>.csv";
end

6.2. Corrupting the text

In order to test whether CPPP encoding can provide more
robust data preparation than conventional techniques, each of the
created subsets had its documents subjected to varying degrees of
text corruption. Note that this only affects the documents used for
model validation, the training documents were untouched. The
types of text corruption used are:

• D – character deletions. Example: word becomes wrd.

• I – character insertions. Example: word becomes wyozrds.

• B – character blurring. Repeating one or more character in the
string many times. Example: wworrrd.

 These three basic types of corruption can be combined together
in 7 meaningful ways (___, __I, _D_, _DI, B__, B_I, BD_, BDI),
if we allow for the possibility that one or more of them can be
inactive. The inactive ones are indicated by an underscore.

 In addition, it is possible to regulate the number of affected
words in a document, as well as the severity of text corruption.

Table 3 shows examples of the codes used to denote corruption
type and severity and explains how to interpret them.

Table 3: Corruption code examples

Corruption
code Interpretation

___ 000 000
0011528

No corruption, use the subset derived from
seed 11528.

__I 001 005
0367540

Insert extra characters, at most 1 per word,
for 5% of the words in each document. Use
the subset derived from seed 367540.

B_I 009 001
0815602

Blur and insert characters, at most 9 per
word, for 1% of the words in each document.
Use the subset derived from seed 815602.

 Generating the corrupted subsets is done automatically by the
benchmark application, which enables the systematic production
of thousands of datasets, with varying degrees of corruption. This
procedure has a longer code implementation than the algorithms
described so far, which is why it has been split into two parts for
ease of readability.

 The inner word corruption procedure (Algorithm 8) is the one,
which actually changes the words/tokens. The outer corruption
procedure (Algorithm 7) is the one which tokenizes the documents
and selects which words/tokens in which documents to corrupt.
The outer corruption procedure also cycles through all test
documents and generates different corruption possibilities,
depending on three parameters:

• CT – corruption type (see the start of 6.2);
• NCA – number of characters to alter per word;
• NWD – number of words to alter per document.

 Note that the user does not simply specify the values of these 3
parameters, the user provides several valid values for each of them.
The benchmark application determines all relevant parameter
combinations by itself.

Algorithm 7: Outer word corruption procedure
Result: Corrupted document subset
Load subset file;
Determine which documents are for training and testing;
Extract rand_int from the subset name, it will be used as a
seed for the random number generator;
ParamCombinations = VaryParameters(
 valid_values_for_CT,
 valid_values_for_NCA,
 valid_values_for_NWD
);
for each parameter combination in ParamCombinations do
 for each docTxt in documents for testing do
 Tokenize docTxt;
 indeces_of_words = randomly select words to alter;
 for each wrd_ind in indeces_of_words do
 Call the inner word corruption procedure;
 end
 end
end

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 163

Algorithm 8: Inner word corruption procedure
Result: A single corrupted word/token

Read parameters from the outer procedure;
Read docTxt and wrd_ind (indexes the target word);

Randomly select only one type of text corruption to use;

Select positions in the word for corrupting randomly
max_index = length of doc_txt[wrd_ind] – 1;
wrd_seed = rand_int + max_index +
Unicode code point of first character +
Unicode code point of last character;
 if max_index == 0 do
 positions = list with one element (index 0);
 Else
 positions = generate_random_integers(
 from 0 to max_index,
 length = chars_to_alter,
 seed = wrd_seed
);
 End

 if corruption_type is D do
 if length of positions > 1 do
 Leave only unique values in positions list;
 Sort positions list in descending order;
 End
 for each pos in positions do
 delete character at pos in doc_txt[wrd_ind];
 End
 End

 if corruption_type is I or B do
 if corruption_type is I do
 if length of positions > 1 do
 Sort positions list in descending order;
 End
 seed = wrd_seed;

chars2ins_length = chars_to_alter;
 chars2ins = random Unicode code points (32 to 126);
 End

 if corruption_type is B do
 chars2ins = empty list
 for each pos in positions do
 Append Unicode code point of

doc_txt[wrd_ind][pos] to chars2ins;
 End
 End

 i = 0
 while i < length of positions do
 insert chars2ins[i] into positions[i] of doc_txt[wrd_ind];
 i += 1
 End

End

6.3. Predetermining computation requirements

 If processing time or memory is an issue, the total number of
corrupted datasets Dc can be calculated beforehand with an
equation (1).

𝐷𝐷𝑐𝑐 = 𝑁𝑁𝑠𝑠(1 + 𝐶𝐶𝐴𝐴𝑐𝑐𝐴𝐴𝑤𝑤) (1)

where:

• NS – Number of initial subsets.
• C – The number of meaningful combinations of the basic

types of text corruption.
• AC – The number of character alteration levels.
• AW – The number of word alteration levels.

 As mentioned earlier, we prepared an example with 30 distinct
subsets from the full corpus. If we want to alter 1, 3 and 9
characters per word for 1, 5, 20, 50, 80 and 95 percent of the words
in each document, then:

 AC = |{1, 3, 9}| = 3

 AW = |{1, 5, 20, 50, 80, 95}| = 6

 Thus, the application would produce 30*(1+7*3*6) = 3810
distinct subsets, all with varying types and severity of text
corruption, within the desired ranges.

6.4. Training the text classifiers

The Python module scikit-learn was used, specifically the
TfidfVectorizer object for feature extraction and the
RandomForestClassifier object for creating the text classification
models. A distinct model is trained on each of the subsets. Their
hyper-parameters are fixed, so any change in prediction quality is
due entirely to the dataset, nothing else. The feature extractor and
model were trained only on the training data, the validation data
was only used to generate class predictions.

The hyper-parameters of the TfidfVectorizer are as follows:

• stop_words = 'english'
• analyzer = 'word'
• vocabulary = None
• binary = True
• max_df = 1.0
• min_df = 1
• use_idf = False
• smooth_idf = False
• sublinear_tf = False

The hyper-parameters of the random forest classifier were the
default ones, the only parameter we explicitly specified was
random_state. This was set equal to the final number in the
corrupted subset names (see Table 3). This number is the seed used
to generate the subset. Using it as the seed for the model ensures
that the random forest algorithm will produce consistentl results
for each subset file, no matter how many times the benchmark is
executed.

6.5. Evaluating the benchmark results

As expected, models evaluated with uncorrupted or lightly
corrupted datasets perform very well, models tested with

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 164

moderately corrupted documents perform worse and the ones
tested with text with severe corruption perform the worst of all.

The full table of classification results is 3810 rows, too large to
be included in this paper. Only a snippet is included (Table 4) to
show what the format of the output looks like. The full table is
summarized with charts in point 6.6.

Table 4: Excerpt from the classification results table

CT NCC PWC Seed TP TN FP FN
___ 0 0 189191 2525 1891 107 95
BDI 3 1 265329 2543 1844 136 96
BDI 3 5 11528 2422 1800 213 169
BD_ 1 20 265329 1303 1865 1376 75
BD_ 1 50 11528 2387 1247 248 722
B_I 3 95 265329 269 1886 2410 54
B_I 9 1 11528 2520 1866 115 103
D 9 95 11528 2380 1436 255 533
D 9 5 889991 2513 1905 141 80
D 9 50 616169 1321 1880 1327 90
_DI 9 20 837510 1459 1889 1170 82
__I 1 5 998096 2482 1868 146 127
__I 1 20 11528 2348 1826 287 143

Table header descriptions:

• CT – text corruption type.
• NCC – Number of characters altered per word.
• PWC – Percentage of words affected in each test document.
• Seed – The random number generator seed, which was used

to create the initial subset and to alter the text.
• TP – true positives.
• TN – true negatives.
• FP – false positives.
• FN – false negatives.

6.6. Visualizing the benchmark results

In order to visualize the classifier results in a more compact
manner, two things were done with the full results table. First, all
TP, TN, FP and FN were averaged and grouped by CT, NCC and
PWC. This effectively combines the results for all of the 30 distinct
seeds/subsets which were used. The aggregated results table is
reduced to only 128 rows as a result of this summarization.

The second step is quantifying the quality of the classification
models. Two metrics were calculated, the first one of which is the
widely used F1 score (4), which is just the harmonic mean of the
Precision (2) and Recall (3) metrics. The other quality metric is the
Matthews correlation coefficient MCC [5], which is specifically
designed to give more reliable evaluations for binary classification
results (5).

𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (2), 𝑅𝑅 =

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁

 (3), 𝐹𝐹1 = 2
𝑃𝑃𝑃𝑃
𝑃𝑃 + 𝑅𝑅

 (4)

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑁𝑁 − 𝐹𝐹𝑃𝑃𝐹𝐹𝑁𝑁

�(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃)(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁)
 (5)

The resulting charts are shown on Figures 15 to 28. Note that
the Percent of Words Changed per test document (PWC) is on the
x-axis, the classification quality metrics are on the y-axis and there
is a separate line for each of the 3 levels of word corruption used
(1, 3 and 9 character alterations per word).

From the charts it is evident, that there is a consistent
downward trend of model quality versus PWC, regardless of the
way in which the datasets were corrupted. An interesting thing to
note is that MCC is more sensitive than the F1 score. This,
combined with the fact that it gives reliable results, even when the
class sizes are imbalanced, makes it the preferred model evaluation
metric by the authors.

A detailed comparison between the many text corruption
approaches is beyond the scope of this paper. What matters is that
the overall trends are the same, regardless of the exact manner in
which the test texts were damaged.

The intent here is to describe the benchmark classification
problem, which will serve as an evaluation tool for the quality of
the custom data preparation tools, based on CPPP encoding. The
experimental setup might change (more granulated levels of PWC,
more subsets etc.). Once the custom data preparation solution is
more mature, it will be evaluated alongside the conventional
feature extraction objects from the nltk package in Python.

Figure 15: Effect of character insertions on classification quality

Figure 16: Effect of character insertions (MCC)

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 165

Figure 17: Effect of character repetitions on classification quality

Figure 18: Effect of character repetitions (MCC)

Figure 19: Effect of character deletions on classification quality

Figure 20: Effect of character deletions (MCC)

Figure 21: Effect of character repetition and insertion on classification quality

Figure 22: Effect of character repetition and insertion (MCC)

Figure 23: Effect of character repetition and deletion on classification quality

Figure 24: Effect of character repetition and deletion (MCC)

http://www.astesj.com/

M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)

www.astesj.com 166

Figure 25: Effect of character deletions and insertions on classification quality

Figure 26: Effect of character deletions and insertions (MCC)

Figure 27: Effect of character repetition, deletion and insertions on quality

Figure 28: Effect of character repetition, deletion and insertions (MCC)

The CPPP text encoding algorithm has notable advantages over
the initial CP algorithm. The significant ones are:

• drastically increased capacity of the encoding space;
• corpora don’t have to be tokenized with delimiters;
• the ability to create sparse representations of words, phrases,

sentences, paragraphs and even entire documents.

The CPPP algorithm also has advantages over conventional
text vectorizers, which rely on tokenization, stemming and other
rudimentary techniques of parsing out individual words in a text.
The current versions of the string comparison subroutines (SPOQ
and its associated filtrations) were presented in the paper. These
will be developed further, in order to fully utilize the potential of
the sparse representations, produced by the CPPP algorithm.

The benchmark classification problem, described at the end of
the paper, will help guide the ongoing development effort. It will
also enable comparisons to be made with conventional solutions
for data preparation and feature extraction, by using widely known
and reliable classification quality evaluation metrics.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

The authors would like to thank Technical University of Sofia –
Research and Development Sector, for their financial support.

References

[1] M. Marinov and A. Efremov, “Representing character sequences as sets : a
simple and intuitive string encoding algorithm for NLP data cleaning,” in
2019 IEEE International Conference on Advanced Scientific Computing
(ICASC), 1-6, 2019, https://doi.org/10.1109/ICASC48083.2019.8946281

[2] Subutai Ahmad, Jeff Hawkins, “Properties of Sparse Distributed
Representations and their Application to Hierarchical Temporal Memory”,
Cornell University, 2015, arXiv:1503.07469

[3] Scott Purdy, “Encoding Data for HTM Systems”, Cornell University, 2016,
arXiv:1602.05925

[4] Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis, Thierry Artieres,
George Paliouras, Eric Gaussier, Ion Androutsopoulos, Massih-Reza Amini,
Patrick Galinari, “LSHTC: A Benchmark for Large-Scale Text
Classification”, Cornell University, 2015, arXiv:1503.08581

[5] Chicco, Davide, and Giuseppe Jurman. “The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary
classification evaluation,” BMC Genomics, 21(6), 2020,
https://doi.org/10.1186/s12864-019-6413-7

http://www.astesj.com/

	2. Comparing CP and CPPP sparse representations
	3. Pseudocode implementation
	3.1. Input-output
	3.2. CP encoding algorithm
	3.3. CPPP encoding algorithm

	4. Advantages and disadvantages of CPPP
	5. Methods for comparing CPPP sparse representations
	5.1. Basics of locating words in CPPP text representations
	5.2. Word search based on maximizing pattern overlaps
	5.2.1. Initialization of a character weight vector W.
	5.2.2. SPOQ procedure - pseudocode implementation.
	5.2.3. SPOQ example.
	5.2.4. Filtration of weak matches
	5.2.5. Pseudocode of the filtration procedures.
	5.3. Visualization of SPOQ and W filtration.
	5.3.1. Example of SPOQ and W filtration used on text
	5.3.2. Necessary refinements to SPOQ and filtration.

	6. Text classification benchmark
	6.1. Subsetting the dataset and forming binary labels
	6.2. Corrupting the text
	6.3. Predetermining computation requirements
	6.4. Training the text classifiers
	6.5. Evaluating the benchmark results
	6.6. Visualizing the benchmark results

	7. Conclusions
	Conflict of Interest
	Acknowledgment
	References

