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 This paper focuses on a string encoding algorithm, which produces sparse distributed 
representations of text data. A characteristic feature of the algorithm described here, is that 
it works without tokenizing the text and can avoid other data preparation steps, such as 
stemming and lemmatization. The text can be of arbitrary size, whether it is a single word 
or an entire book, it can be processed in the same way. Such approaches to text 
vectorization are not common in the machine learning literature. This sets the presented 
encoder apart from conventional text vectorizers. Two versions of the encoding algorithm 
are described and compared - the initial one and an improved version. The goal is to 
produce a robust data preparation procedure, capable of handling highly corrupted texts. 
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1. Introduction 

This paper describes a modification of a text encoding 
algorithm, presented at ICASC 2019. Since the conference 
proceedings paper [1] was written, there have been further 
developments and those will be presented here, but first a bit of 
backstory. 

One of the most prolific research teams, who currently 
experiment with sparse distributed representations (SDR), are Jeff 
Hawkins, Subutai Ahmad [2] and the people working with them at 
the private company Numenta. The principle author of this paper 
found out about the concept of SDR from their work and drew 
inspiration from their research. 

An important thing to note, is that the long term goal of the 
researchers at Numenta is to distance their developments from 
conventional machine learning and artificial neural networks. We 
do not share this goal, in fact we are merely trying to make 
solutions based on sparse information representation, which are 
complementary to classic machine learning. 

Here we present a type of encoder for text data, which is not 
described in the research paper on sparse encoders, published by a 
member of Numenta [3]. Our solution is also different from the 
Cortical.io SDR text encoder, which is mentioned in point 6 of the 
Numenta paper (Webber, “Semantic Folding”). We follow the 
principles described in the conclusions of the Numenta research 

paper, but the algorithms and implementation are entirely our own. 
The data structures we use are not binary arrays, we use key-value 
data structures to implement the representations. Compared to 
other SDR text encoders, another notable difference in our 
approach is that we consider characters to be the basic building 
units of text, not abstract constructs such as words. 

This paper focuses on a key enhancement made to our 
algorithm, presented at ICASC, and the potential benefits it offers. 
It also covers the development of a benchmark text classification 
problem, for evaluating the utility of our text encoding algorithms, 
by comparing them to conventional text vectorizers. 

To avoid confusion, our initial algorithm will be referred to as 
CP (Current-Prior). The modified one, which is the focus of this 
paper, will be referred to as CPPP (Current-Position-Prior-
Position). Their names hint at the way in which they transform 
strings into sparse distributed representations. 

2. Comparing CP and CPPP sparse representations 

In brief, CP encoding goes through strings character by 
character and uses only their sequencing to create a sparse 
representation of the strings in a two-dimensional encoding space. 
For a more detailed description of each step, please refer to the 
ICASC paper. The encoding space is an abstract concept and one 
of its key features is that the coordinate system uses non-numeric 
characters, to define the location of points within the space. As the 
CP encoder moves from character to character, it projects the last 
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character it has read onto the horizontal axis, but it also uses the 
vertical axis to track prior characters. This is why the algorithm is 
called current-prior. The result is a specific pattern of points in the 
encoding space, which is highly dependent on the symbol 
arrangement of the strings being processed. 

 
Figure 1: edge (CP encoded) 

 
Figure 2: edge (CPPP encoded) 

 The encoding patterns can be illustrated in various ways, with 
one of the more human-readable ones being tabular representation, 
as seen on Figure 1. If the representations are being processed by 
a computer program, however, there are more suitable data 
structures, which could be used. For example, the CP encoded 
word shown in Figure 1 can be stored as a set of character pairs:  
{' e', ' d', ' g', '  ', 'ed', 'eg', 'ee', 'e ', 'dg', 'de', 'd ', 'ge', 'g '}. 

 CPPP encoding works in a similar way, but in addition to 
character sequences it also factors in the position of the characters. 
In other words, the sparse encoding space has two additional sub-
axes, which track the positions of the last read symbol and the 
position of prior symbols. Even though this defines a four-
dimensional encoding space, it can still be represented in tabular 
form (Figure 2). This is the key modification to the CP algorithm 
and it is noted in the name (Current-Position-Prior-Position). 

 In theory, the readability of these tables does not diminish, 
because the encoded strings are sparse patterns by definition. The 

repetition of the sub-axes below the main axes doesn’t make the 
tabular representation harder to interpret. It still looks like a grid 
with seemingly random non-empty elements scattered throughout. 
There is actually nothing random about the distribution of the non-
empty elements, however. It is strictly based on the encoded string. 

 
Figure 3: The phrase “when it rains”, encoded with CPPP 

 Difficulties could arise in practice, because of the size of the 
string being encoded. The sparse representation is still logical and 
consistent, it is just not possible for a human to comprehend what 
it means at a glance (Figure 3).  

 However, these algorithms are meant to be utilized by 
computers, not people. Machines are far better at processing large 
amounts of information. The ability to represent the encodings in 
a human-readable format is useful mainly to the developers, as a 
debugging tool and a way to illustrate the working principles of 
these algorithms. 

3. Pseudocode implementation 

3.1. Input-output 

strIn - The string which has to be transformed into a sparse 
representation. It can be of arbitrary length. 

SR - The output from the encoding procedure, i.e. the sparse 
representation of the input. It is just a key-value data structure. We 
used python dictionaries, but any other dictionary-like data 
structures from other languages can be used to implement the 
algorithms. 

winSize - A control parameter, which sets the maximum allowed 
distance between characters, when forming character pairs. 

For example, when encoding an entire book, it would make little 
sense to form pairs from characters at the start of the book and 
characters at the very end of the book. That would just create more 
character pairs (points in the encoding space) than is necessary and 
significantly increase the size of the sparse representation. 

We used winSize = 20, i.e. we told the program not to form 
points from characters, which were separated by more than 20 
characters. 
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3.2. CP encoding algorithm 

Algorithm 1: Current-Prior 
Result: SR 
Receive strIn; 
Initialize dictionary object SR; 
prior_pos = 0; 
while prior_pos < length of strIn do 
   current_pos = prior_pos + 1;  
 while current_pos < length of strIn do  
  chrPair = Concat(strIn[prior_pos], strIn[current_pos]); 
  SR[chrPair] = 1;   
  current_pos += 1;   
 end    
 prior_pos += 1;    
end    

 
3.3. CPPP encoding algorithm 

The keys in the CPPP sparse representation key-value data 
structure are derived in the same way as the ones produced by CP 
encoding. However, the values are not just a single number. The 
values are lists of numbers, specifically the positions of the 
characters, which produced the keys of the dictionary. 

Algorithm 2: Current-Position-Prior-Position 
Result: SR 
Receive strIn; 
Initialize dictionary object SR; 
prior_pos = 0; 
while prior_pos < length of strIn do 
   current_pos = prior_pos + 1;  
 while current_pos < length of strIn do  
  chrPair = Concat(strIn[prior_pos], strIn[current_pos]) 
   if chrPair not in keys of SR then  
   SR[chrPair] = list(empty list, empty list); 
   append current_pos to list SR[chrPair][0]; 
   append prior_pos to list SR[chrPair][1]; 
  end   
  current_pos += 1;   
 end    
 prior_pos += 1;    
end    

4. Advantages and disadvantages of CPPP 

When processing repeating syllables and characters, the CP 
algorithm projects them in the same points of the sparse encoding 
space. In contrast, CPPP ensures that each repeating symbol will 
be projected to a different point in the encoding space. A direct 
consequence of this is that CPPP encoding can handle strings with 
arbitrary lengths, whereas CP cannot. 

It is possible to saturate the two-dimensional encoding space 
used by the CP algorithm, if a sufficiently long string is processed. 
CPPP can transform large strings, without decreasing the sparsity 
of their representations in the four-dimensional encoding space. 
The significant advantages of this are: 

• Reversible encoding. It is possible to turn the sparse 
representations back into strings, without information loss. 

• No need for tokenization. Text documents (data) can be 
processed as a single, long, uninterrupted sequence of 
characters. There is no need for splitting them by delimiters, 
such as whitespace, commas and such. 

• Increased capacity. Due to the introduction of the two 
additional dimensions, for tracking character positions, it is 
possible to compare not only tokens (words), but entire 
sentences, phrases, paragraphs and documents. 

• Precise string comparison. CPPP allows not only the 
quantification of similarity between strings, but it also makes 
it possible to determine which specific parts of the strings 
correspond to each other and which ones differ. 

Despite the advantages, the modified algorithm has a notable 
drawback: the simple methodology for comparison of CP sparse 
representations is not applicable to CPPP encoded text. 

To illustrate the reason, several words encoded by the two 
algorithms will be examined. The chosen words are tree, trim and 
tree-trimmer, because these words are short, some of them have 
double characters and the third one is a compound word, which 
includes the other two. 

CP encoding (Figures 4 to 6) does not represent the following 
things properly: 

• The double е in tree and the double m в trimmer. In both 
cases, the corresponding points for these characters in the 
encoding space overlap. For the word tree, the points are re 
and te. For trimmer, the points are im, rm and tm. 

• The repetition of tr in tree-trimmer (Figure 6). Again, the 
representations of the two different instances of this character 
sequence overlap completely in the two-dimensional 
encoding space. This means that the initial string cannot be 
recovered, by using only its sparse representation. 

 
Figure 4: tree (CP encoded) 
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Figure 5: trim (CP encoded) 

 
Figure 6: tree-trimmer (CP encoded) 

On the other hand, CPPP encoding creates mirror points, when 
representing repeating character sequences. An example of this can 
be seen on Figure 7, arrows have been drawn to bring attention to 
the points in question. They indicate, that the letter е is present 
more than once in the word tree. The fact that sectors re and te 
have more than one non-empty value is informative, although the 
algorithmic processing of this information is not as trivial, as the 
procedure used to compare sparse patterns in CP encoded strings. 

 
Figure 7: tree (CPPP encoded) 

 
Figure 8: trim (CPPP encoded) 

A second complication inherent in CPPP encoding is 
illustrated on Figures 8 and 9. The points which represent the 
word trim have shifted their positions in the sparse space. This is 
to be expected, in the third string there is another word before 
trim, which causes a translation of the sparse pattern to the right. 
This is logical and informative, but again, the algorithmic analysis 
and quantification of such relations is more complex than the one 
employed for CP sparse representations of text. 

 
Figure 9: tree-trimmer (CPPP encoded) 

 These two characteristics of the modified encoding space 
(mirror points and non-stationary sparse patterns) are the things 
that give it the aforementioned advantages. However, there is no 
analogue for them in the two-dimensional encoding space, which 
means the comparison method developed for CP sparse 
representations is not applicable to four-dimensional encodings of 
strings. To utilize the full potential of CPPP encoding, other 
comparison techniques have to be used. 

http://www.astesj.com/
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5. Methods for comparing CPPP sparse representations 

In theory, it is possible to feed the encoded strings into artificial 
neural networks and have them learn to recognize the same types 
of patterns, which people can notice in small sparse 
representations. However, in recent years the European Union has 
begun to implement legal frameworks and guidelines for the use 
of artificial intelligence, which emphasize the need for algorithmic 
transparency (see the publications from 2019 by the EPRS, such as 
"A governance framework for algorithmic accountability and 
transparency"). 

It is the opinion of the authors, that the more society delegates 
decision making to machines, the more the legal regulations and 
requirements for decision transparency will increase. Conventional 
ANN are black-box approaches to modelling data and as such, the 
authors try to avoid relying on them, in favor of more 
algorithmically transparent models. In addition, it is possible to 
logically and methodically explain why each element of a CPPP 
sparse representation exists in the encoding space. 

In order to make use of the encoded data, however, specialized 
procedures have to be developed, for quantifying similarities 
between encoded strings, as well as processing larger units of 
written information, such as documents, chapters in books etc. To 
be more specific, text classifiers based on the bag-of-words 
approach require accurate word/token counts, in order to build 
quality TF-IDF representations of textual data. Other machine 
learning approaches, such as n-gram modelling, require tracking 
of token sequences as well, in order to take into account the context 
in which individual words are used in the text. 

The methods for distinguishing and locating words in CPPP 
encoded corpora are currently under development, their 
implementations could change. However, brief examples will be 
given, to showcase possible ways of carrying out basic operations 
with CPPP encoded text. 

5.1. Basics of locating words in CPPP text representations 

The text is CPPP encoded as a single, uninterrupted string. In 
addition, the computer has access to a machine-readable 
dictionary, which consists of separately encoded words. Note the 
different way of encoding the data and the dictionary. Unlike 
common practice, tokenization of the dataset is avoided, the text is 
kept intact and it is CPPP encoded as a whole. This is because it is 
not known which parts of the text correspond to which words, 
before some kind of analysis is done. This approach avoids the 
presupposition, that the text being processed is well formatted and 
can easily be parsed with a few simple delimiting characters. 

The dictionary, however, is a collection of distinct words, by 
definition, so it is divided into separately encoded strings. It is also 
possible to curate the dictionary manually and ensure the entries 
are properly separated, something which usually isn’t practicable 
with the dataset. 

5.2. Word search based on maximizing pattern overlaps 

For each element (word, token, phrase) in the machine-
readable dictionary, the following steps are carried out: finding all 
potential locations of the search term within the text and filtering 
the possible results, to leave only the most consistent matches. 

5.2.1. Initialization of a character weight vector W. 

The purpose of W is to indicate which parts of the text 
correspond to the dictionary entry, which is under consideration 
during the entry enumeration. It is initialized as an all-zero vector, 
with a length equal to the number of characters in the text being 
analyzed. The first element of W indicates how many times the 
first character takes part in forming character pairs, which are 
common to both data and dictionary sparse representations. The 
second element of W indicates the same for the second character 
of the text. The third element covers the third character etc. 

5.2.2.  SPOQ procedure - pseudocode implementation. 

The current implementation of the Sparse Pattern Overlap 
Quantification Procedure, or SPOQ for short, is described here 
(algorithm 3). It is used to find similar patterns in the encoded data. 
SR_1 is the sparse representation of the data, SR_2 is a sparse 
representation of a specific dictionary entry. 

Algorithm 3: SPOQ 
Result: WSPOQ 
Initialize W vector with all zero elements; 
commonKeys = Intersection(keys of SR_1, keys of SR_2); 
for each com in commonKeys do 
 crnt_pos1 = SR_1[com][0];   prev_pos1 = SR_1[com][1]; 
 crnt_pos2 = SR_2[com][0];   prev_pos2 = SR_2[com][1]; 
 delta1 = crnt_pos1 - prev_pos1;  
 delta2 = crnt_pos2 - prev_pos2;  
 for each b in delta2 do  
  proximity = abs(delta1 - b);  
  W[ crnt_pos1[ index of min(proximity) ] ] += 1; 
  W[ prev_pos1[ index of min(proximity) ] ] += 1; 
 end    
end    

5.2.3. SPOQ example. 

If we look at the sparse representations shown on Figures 8 and 
9, their encoding spaces can be divided into sectors (denoted ST 
and SD respectively), by using the primary axes (the ones that track 
character sequencing). These sectors correspond to the common 
keys between the two sparse representation data structures. For 
those sectors, which are not empty and present in both 
representations, the distances ∆pT and ∆pD are calculated. They 
indicate how far apart specific pairs of characters are in both 
representations. For details, see Table 1. 

The example shown in Table 1 assumes that the word trim is 
a word from the machine-readable dictionary and tree-trimmer is 
the text. The elements of the weight vector are incremented, based 
on the closest matches between ∆pT and ∆pD in each sector. This 
is why indices 6,7,8 and 9 of W will have the highest non-zero 
values. They correspond neatly to the location of the word trim, 
within the string tree-trimmer. 

Note that this is a relatively simple procedure and it can 
produce false positives. The fact that index 1 and 2 also get 
incremented once is an example of the limitations of SPOQ. In 
addition, there is no guarantee that all relevant characters will be 
matched properly. 
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Table 1: Principle of operation of the SPOQ procedure 

ST ∆p𝑇𝑇 SD ∆p𝐷𝐷  Incrementations of W 

ri 3 – 2 = 1 
ri 8 – 2 = 6  
ri 8 – 7 = 1 W8 += 1  and  W7 += 1 

ti 3 – 1 = 2 
ti 8 – 1 = 7  

ti 8 – 6 = 2 W8 += 1  and  W6 += 1 

im 4 – 3 = 1 
im 9 – 8 = 1 W9 += 1  and  W8 += 1 

im 10 – 8 = 2  

rm 4 – 2 = 2 

rm 9 – 2 = 7  
rm 9 – 7 = 2 W9 += 1  and  W7 += 1 
rm 10 – 2 = 8  
rm 10 – 7 = 3  

tm 4 – 1 = 3 

tm 9 – 1 = 8  
tm 9 – 6 = 3 W9 += 1  and  W6 += 1 
tm 10 – 1 = 9  
tm 10 – 6 = 4  

tr 2 – 1 = 1 

tr 2 – 1 = 1 W2 += 1  and  W1 += 1 
tr 7 – 1 = 6  
tr 7 – 6 = 1 W7 += 1  and  W6 += 1 
tr 12 – 1 = 11  
tr 12 – 6 =  6  

5.2.4.  Filtration of weak matches 

The SPOQ search procedure described in points 5.2.2 and 
5.2.3 is supposed to generate rough estimations of word positions, 
within a given text. False positives and overlaps between the 
weight vectors of multiple dictionary entries are to be expected. 
Currently, it is assumed that these can be handled with adequate 
filtration techniques. 

Regarding how the filtration of each weight vector is done, 
the code for the SPOQ procedure was described in point 5.2.2, it 
is the one which produces the initial W vectors, denoted as WSPOQ. 
Point 5.2.5 covers the code for the filtration steps, which further 
modify WSPOQ. 

5.2.5. Pseudocode of the filtration procedures. 

Algorithm 4: Frequency filtration 
Result: WF 
W = WSPOQ;  #input 
W[W == 1] = 0; 
N = length of W – 2; cp = 1; 
while cp <= N do 
  if W[cp-1] == 0 and W[cp] != 0 and W[cp+1] == 0 do 
  W[cp] = 0; 
  end   
 cp += 1;   
end   

Algorithm 5: Match length filtration 
Result: WL 
W = WF;  #input 
likely_loc = integer sequence from 0 to length of W; 
Keep only the elements of W where W > 0; 
W_filtered = zero vector of length W; 
i = 0; 
j = 1; 
while j < length of W do 
  if likely_loc[j] - likely_loc[j-1] != 1 then 
   substring_size = likely_loc[j-1] - likely_loc[i]; 
   if substring_size > 2 then   
   # This substring is a good match, it is long enough 
   W_filtered[ likely_loc[i]: likely_loc[j-1] ] = 1; 
  else    
   # Bad match, substring is too short  
  end    
  i = j    
 end    
 j += 1    
end    

5.3. Visualization of SPOQ and W filtration. 

To visualize the values of the character weight vector, as it is 
altered by the filtration steps, we utilize custom plots. In addition 
to W, they display the actual text under evaluation, so that we can 
quickly determine if the values of W are as they should be. 

The layout of the custom plots is described in Figure 10. For 
specific example with data, refer to Figures 11 to 14 and point 
5.3.1, which describes what those figures illustrate. 

 
Figure 10: Description of custom plot layout 

5.3.1. Example of SPOQ and W filtration used on text 

To illustrate the filtration process, the Bulgarian poem 
“Поточе” (Stream), written by Elin Pelin, will be used as an 
example dataset. When searching for the word песни (songs), the 
SPOQ procedure is used to obtain an initial weight vector WSPOQ, 
shown on Figure 11. 
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Figure 11: search for песни 

The largest peak in WSPOQ is roughly equal in size to the length 
of the search word, about five in this case. As expected, the biggest 
peak is roughly where the word is in the poem, but there are many 
other smaller peaks scattered around it. This is why additional 
filtration steps are necessary. 

Many of the individual elements in WSPOQ are equal to 1 or are 
surrounded by zeros on both sides. Using the frequency filtration 
procedure, we zero-out all of these and get a clearer indication of 
where the search-word is, as shown on Figure 11, subplot WF. 
Unfortunately, some false positives still remain. 

An additional filtration step can be applied, this time targeting 
the lengths of the matches. Presumably longer sequences of non-
zero values indicate better matches. If we zero-out all matches 
shorter than 2 characters, we obtain the result seen on Figure 11, 
subplot WL. This is indeed where the word is in the document. 

5.3.2. Necessary refinements to SPOQ and filtration. 

There is a caveat to the simple filtrations described here. Their 
thresholds are static hyper-parameters, meaning they were set by a 
person at some point and are not necessarily a good fit in all 
possible word search cases. 

For an example of this, refer to Figure 12, which shows the 
search for the word песен (song). This is the singular form of the 
word and a more likely entry in a properly curated dictionary. In 
this case, the match is weaker and a small increase in the threshold 
of the length filter (from 2 to 4) could zero-out the entire weight 
vector, thereby suppressing the one relevant match in the dataset. 

 
Figure 12: search for песен 

The filtration thresholds have to be dynamically adjustable by 
an automated subroutine. Manual adjustment would not be 
practicable, considering the number of word searches and 
comparisons that have to be done in an adequately sized corpus. 

A single search in the encoded text could produce multiple 
results, if the search-word is present in the data more than once, as 
seen on Figure 13. However, multiple results for a single search 
could also contain false positives, due to the nature of the 
algorithm. 

Figure 14 shows an example of false positives making it 
through both filtration steps. The reason for this is that the search-
word бистро (pure) is contained nearly unchanged in the word 
сребристо (silvery). This is why the filtered weight vector has 4 
peaks, instead of just 2, which is the correct number of occurrences 
of the search-word. Finding similar character sequences is the 
intended behavior of the program, but they aren’t always a correct 
match. 

Work is still ongoing on the development of dynamic filtration, 
capable of resolving the issues caused by false positives and 
ambiguities arising from overlaps between the weight vectors of 
different dictionary entries. Formulating the problem as an 
optimization procedure is under consideration, the idea being that 
this way it will be possible to automatically reach a single 
interpretation of a given corpus. The aim is to produce a data 
preparation module, based on CPPP encoding. It should be capable 
of replacing conventional data preparation steps, such as 
tokenization, stemming, lemmatization, as well as give sufficiently 
accurate word counts and position estimations. 
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Figure 13: search for щастливо 

 
Figure 14: search for бистро 

6. Text classification benchmark 

In order to conduct a more rigorous evaluation, of the 
performance and quality of CPPP data preparation, a 
classification problem has been defined, by using a dataset from 
the LSHTC challenges [4]. Specifically, the small wikipedia 
dataset from LSHTC3 was used, since it was the only challenge 
in which the raw text was provided. 

The dataset has 456886 documents, each one containing only 
abstracts of wikipedia articles. The documents are labeled, 
although the labels are not human readable, they are merely 
integers representing a specific topic covered in each document. 
There is also a complex label hierarchy, however for the purposes 
of our benchmark problem, we do not take it into account. We 
only use a subset of the entire corpus, which contains documents 
with a single label. In addition, we alter the labels to reduce 
everything to a binary classification problem. This way we can 
train a simple model and focus on the data preparation part of the 
workflow. The aim is to make changes only in the data preparation 
stage, the text classifier itself will always be the same, with fixed 
hyper-parameters. 

6.1. Subsetting the dataset and forming binary labels 

Looking only at the documents with a single label, the top 10 
most frequently occurring label codes are listed in Table 2. Next to 
the codes are descriptions, based on reading and evaluating a dozen 
of the documents associated with a given label. 

Table 2: Top 10 most used labels 

Label Documents Label Description 
167593 5277 Movies 
347803 1470 Businessmen and inventors 
324660 1433 Historic buildings 
283823 1359 Writers and journalists 
284433 1310 Journalists 
272741 1006 Film actors 
395447 999 Screenwriters 
114873 945 Plants 
352578 846 Novelists 
93043 762 Painters 

Label 167593 was chosen as the positive class (the one we want 
to predict with the model). The decision was based solely on the 
number of documents tagged with 167593. To create the 
benchmark corpus, all documents with the chosen label were 
selected, and reassigned to class 1. An additional 4000 randomly 
chosen documents, from the remaining 451609 in the dataset, were 
assigned to class 0, regardless of what their labels were originally. 
This is how the initial classification of the documents was reduced 
to a binary classification problem. 

In addition, a variable was added to the subset, which randomly 
separates it into two roughly equal in size parts. This is used to 
perform a training-validation split, for when the text classification 
model is trained on the subset. 

The only preprocessing of the raw text was the removal of 
punctuation and the substitution of numbers with the placeholder 
<NUMBER>. Other preprocessing steps, such as named entity 
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recognition, have not been implemented, although they are under 
consideration. 

Note that for statistical purposes, this procedure was repeated 
30 times, to produce 30 distinct subsets, each with different 
documents assigned to the negative class 0 and different training-
validation splits. The number 47 was used as a seed for generating 
30 random numbers, which in turn were used as seeds when the 
subsets were created. This ensures repeatability of the process. The 
pseudocode for creating subsets is included (Algorithm 6). 

Algorithm 6: Procedure for subsetting the LSHTC3 dataset 
Result: Document subsets 

# Parameters for subset generation 
ran_stat = 47; # keep constant, used as seed 
num_of_subsets = 30; # Can be varied 
N_neg = 4000; # Can be varied 
train_test_ratio = 0.5; # Can be varied 

Load dataset (Dw) 
Separate docs for positive and negative class (Dn and Dp); 

# Generate a list of random integers 
rand_int_list = generate_random_integers( 
 max value = 1000000, 
 length = num_of_subsets, 
 seed = ran_stat 
);  

for each rand_int in rand_int_list do 
 Randomly sample (seed = rand_int) N_neg documents 

from Dn; 
 Append Dn_sample to Dp to get subset Ds; 
 Remove punctuation in Ds; 

Replace numbers with <NUMBER> in Ds; 
 Add train-test separation flag to Ds(seed = rand_int); 
 Save the subset Ds as "subset_<rand_int>.csv"; 
end    

6.2. Corrupting the text 

In order to test whether CPPP encoding can provide more 
robust data preparation than conventional techniques, each of the 
created subsets had its documents subjected to varying degrees of 
text corruption. Note that this only affects the documents used for 
model validation, the training documents were untouched. The 
types of text corruption used are: 

• D – character deletions. Example: word becomes wrd. 

• I – character insertions. Example: word becomes wyozrds. 

• B – character blurring. Repeating one or more character in the 
string many times. Example: wworrrd. 

 These three basic types of corruption can be combined together 
in 7 meaningful ways (___, __I, _D_, _DI, B__, B_I, BD_, BDI), 
if we allow for the possibility that one or more of them can be 
inactive. The inactive ones are indicated by an underscore. 

 In addition, it is possible to regulate the number of affected 
words in a document, as well as the severity of text corruption. 

Table 3 shows examples of the codes used to denote corruption 
type and severity and explains how to interpret them. 

Table 3: Corruption code examples 

Corruption 
code Interpretation 

___ 000 000 
0011528 

No corruption, use the subset derived from 
seed 11528. 

__I 001 005 
0367540 

Insert extra characters, at most 1 per word, 
for 5% of the words in each document. Use 
the subset derived from seed 367540. 

B_I 009 001 
0815602 

Blur and insert characters, at most 9 per 
word, for 1% of the words in each document. 
Use the subset derived from seed 815602. 

 Generating the corrupted subsets is done automatically by the 
benchmark application, which enables the systematic production 
of thousands of datasets, with varying degrees of corruption. This 
procedure has a longer code implementation than the algorithms 
described so far, which is why it has been split into two parts for 
ease of readability. 

 The inner word corruption procedure (Algorithm 8) is the one, 
which actually changes the words/tokens. The outer corruption 
procedure (Algorithm 7) is the one which tokenizes the documents 
and selects which words/tokens in which documents to corrupt. 
The outer corruption procedure also cycles through all test 
documents and generates different corruption possibilities, 
depending on three parameters: 

• CT – corruption type (see the start of 6.2); 
• NCA – number of characters to alter per word; 
• NWD – number of words to alter per document. 

 Note that the user does not simply specify the values of these 3 
parameters, the user provides several valid values for each of them. 
The benchmark application determines all relevant parameter 
combinations by itself. 

Algorithm 7: Outer word corruption procedure 
Result: Corrupted document subset 
Load subset file; 
Determine which documents are for training and testing; 
Extract rand_int from the subset name, it will be used as a 
seed for the random number generator; 
ParamCombinations = VaryParameters( 
 valid_values_for_CT, 
 valid_values_for_NCA, 
 valid_values_for_NWD 
);  
for each parameter combination in ParamCombinations do 
 for each docTxt in documents for testing do 
  Tokenize docTxt; 
  indeces_of_words = randomly select words to alter; 
  for each wrd_ind in indeces_of_words do 
   Call the inner word corruption procedure; 
  end 
 end    
end    
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Algorithm 8: Inner word corruption procedure 
Result: A single corrupted word/token 

Read parameters from the outer procedure; 
Read docTxt and wrd_ind (indexes the target word); 

Randomly select only one type of text corruption to use; 

# Select positions in the word for corrupting randomly 
max_index = length of doc_txt[wrd_ind] – 1; 
wrd_seed = rand_int + max_index +  
Unicode code point of first character +  
Unicode code point of last character; 
  if max_index == 0 do 
 positions = list with one element (index 0); 
  Else 
 positions = generate_random_integers( 
  from 0 to max_index, 
  length = chars_to_alter, 
  seed = wrd_seed 
 );  
  End 

  if corruption_type is D do 
  if length of positions > 1 do 
  Leave only unique values in positions list; 
  Sort positions list in descending order; 
 End    
 for each pos in positions do  
  delete character at pos in doc_txt[wrd_ind]; 
 End    
  End    

  if corruption_type is I or B do  
 if corruption_type is I do   
  if length of positions > 1 do  
   Sort positions list in descending order;  
  End    
  seed = wrd_seed; 

chars2ins_length = chars_to_alter; 
  chars2ins = random Unicode code points (32 to 126); 
 End    

 if corruption_type is B do   
  chars2ins = empty list 
  for each pos in positions do 
   Append Unicode code point of 

doc_txt[wrd_ind][pos] to chars2ins; 
  End 
 End    

 i = 0    
 while i < length of positions do  
  insert chars2ins[i] into positions[i] of doc_txt[wrd_ind]; 
  i += 1    
 End    

End    

 

 

6.3.  Predetermining computation requirements 

 If processing time or memory is an issue, the total number of 
corrupted datasets Dc can be calculated beforehand with an 
equation (1). 

𝐷𝐷𝑐𝑐 = 𝑁𝑁𝑠𝑠(1 + 𝐶𝐶𝐴𝐴𝑐𝑐𝐴𝐴𝑤𝑤)                            (1) 

where: 

• NS – Number of initial subsets. 
• C – The number of meaningful combinations of the basic 

types of text corruption. 
• AC – The number of character alteration levels. 
• AW – The number of word alteration levels. 

 As mentioned earlier, we prepared an example with 30 distinct 
subsets from the full corpus. If we want to alter 1, 3 and 9 
characters per word for 1, 5, 20, 50, 80 and 95 percent of the words 
in each document, then: 

  AC = |{1, 3, 9}| = 3 

  AW = |{1, 5, 20, 50, 80, 95}| = 6 

 Thus, the application would produce 30*(1+7*3*6) = 3810 
distinct subsets, all with varying types and severity of text 
corruption, within the desired ranges. 

6.4. Training the text classifiers 

The Python module scikit-learn was used, specifically the 
TfidfVectorizer object for feature extraction and the 
RandomForestClassifier object for creating the text classification 
models. A distinct model is trained on each of the subsets. Their 
hyper-parameters are fixed, so any change in prediction quality is 
due entirely to the dataset, nothing else. The feature extractor and 
model were trained only on the training data, the validation data 
was only used to generate class predictions. 

The hyper-parameters of the TfidfVectorizer are as follows: 

• stop_words = 'english' 
• analyzer = 'word' 
• vocabulary = None 
• binary = True 
• max_df = 1.0 
• min_df = 1 
• use_idf = False 
• smooth_idf = False 
• sublinear_tf = False 

The hyper-parameters of the random forest classifier were the 
default ones, the only parameter we explicitly specified was 
random_state. This was set equal to the final number in the 
corrupted subset names (see Table 3). This number is the seed used 
to generate the subset. Using it as the seed for the model ensures 
that the random forest algorithm will produce consistentl results 
for each subset file, no matter how many times the benchmark is 
executed. 

6.5. Evaluating the benchmark results 

As expected, models evaluated with uncorrupted or lightly 
corrupted datasets perform very well, models tested with 

http://www.astesj.com/


M. Marinov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 154-166 (2020)  

www.astesj.com     164 

moderately corrupted documents perform worse and the ones 
tested with text with severe corruption perform the worst of all. 

The full table of classification results is 3810 rows, too large to 
be included in this paper. Only a snippet is included (Table 4) to 
show what the format of the output looks like. The full table is 
summarized with charts in point 6.6. 

Table 4: Excerpt from the classification results table 

CT NCC PWC Seed TP TN FP FN 
___ 0 0 189191 2525 1891 107 95 
BDI 3 1 265329 2543 1844 136 96 
BDI 3 5 11528 2422 1800 213 169 
BD_ 1 20 265329 1303 1865 1376 75 
BD_ 1 50 11528 2387 1247 248 722 
B_I 3 95 265329 269 1886 2410 54 
B_I 9 1 11528 2520 1866 115 103 
_D_ 9 95 11528 2380 1436 255 533 
_D_ 9 5 889991 2513 1905 141 80 
_D_ 9 50 616169 1321 1880 1327 90 
_DI 9 20 837510 1459 1889 1170 82 
__I 1 5 998096 2482 1868 146 127 
__I 1 20 11528 2348 1826 287 143 

Table header descriptions: 

• CT – text corruption type. 
• NCC – Number of characters altered per word. 
• PWC – Percentage of words affected in each test document. 
• Seed – The random number generator seed, which was used 

to create the initial subset and to alter the text. 
• TP – true positives. 
• TN – true negatives. 
• FP – false positives. 
• FN – false negatives. 

6.6. Visualizing the benchmark results 

In order to visualize the classifier results in a more compact 
manner, two things were done with the full results table. First, all 
TP, TN, FP and FN were averaged and grouped by CT, NCC and 
PWC. This effectively combines the results for all of the 30 distinct 
seeds/subsets which were used. The aggregated results table is 
reduced to only 128 rows as a result of this summarization. 

The second step is quantifying the quality of the classification 
models. Two metrics were calculated, the first one of which is the 
widely used F1 score (4), which is just the harmonic mean of the 
Precision (2) and Recall (3) metrics. The other quality metric is the 
Matthews correlation coefficient MCC [5], which is specifically 
designed to give more reliable evaluations for binary classification 
results (5). 

𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
  (2),   𝑅𝑅 =

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁

  (3),   𝐹𝐹1 = 2
𝑃𝑃𝑃𝑃
𝑃𝑃 + 𝑅𝑅

  (4) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑁𝑁 − 𝐹𝐹𝑃𝑃𝐹𝐹𝑁𝑁

�(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃)(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁)
       (5) 

The resulting charts are shown on Figures 15 to 28. Note that 
the Percent of Words Changed per test document (PWC) is on the 
x-axis, the classification quality metrics are on the y-axis and there 
is a separate line for each of the 3 levels of word corruption used 
(1, 3 and 9 character alterations per word). 

From the charts it is evident, that there is a consistent 
downward trend of model quality versus PWC, regardless of the 
way in which the datasets were corrupted. An interesting thing to 
note is that MCC is more sensitive than the F1 score. This, 
combined with the fact that it gives reliable results, even when the 
class sizes are imbalanced, makes it the preferred model evaluation 
metric by the authors. 

A detailed comparison between the many text corruption 
approaches is beyond the scope of this paper. What matters is that 
the overall trends are the same, regardless of the exact manner in 
which the test texts were damaged. 

The intent here is to describe the benchmark classification 
problem, which will serve as an evaluation tool for the quality of 
the custom data preparation tools, based on CPPP encoding. The 
experimental setup might change (more granulated levels of PWC, 
more subsets etc.). Once the custom data preparation solution is 
more mature, it will be evaluated alongside the conventional 
feature extraction objects from the nltk package in Python. 

 
Figure 15: Effect of character insertions on classification quality 

 

Figure 16: Effect of character insertions (MCC) 
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Figure 17: Effect of character repetitions on classification quality 

 

Figure 18: Effect of character repetitions (MCC) 

 
Figure 19: Effect of character deletions on classification quality 

 

Figure 20: Effect of character deletions (MCC) 

 
Figure 21: Effect of character repetition and insertion on classification quality 

 

Figure 22: Effect of character repetition and insertion (MCC) 

 

Figure 23: Effect of character repetition and deletion on classification quality 

 

Figure 24: Effect of character repetition and deletion (MCC) 
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Figure 25: Effect of character deletions and insertions on classification quality 

 

Figure 26: Effect of character deletions and insertions (MCC) 

 

Figure 27: Effect of character repetition, deletion and insertions on quality 

 

Figure 28: Effect of character repetition, deletion and insertions (MCC) 

The CPPP text encoding algorithm has notable advantages over 
the initial CP algorithm. The significant ones are: 

• drastically increased capacity of the encoding space; 
• corpora don’t have to be tokenized with delimiters; 
• the ability to create sparse representations of words, phrases, 

sentences, paragraphs and even entire documents. 

The CPPP algorithm also has advantages over conventional 
text vectorizers, which rely on tokenization, stemming and other 
rudimentary techniques of parsing out individual words in a text. 
The current versions of the string comparison subroutines (SPOQ 
and its associated filtrations) were presented in the paper. These 
will be developed further, in order to fully utilize the potential of 
the sparse representations, produced by the CPPP algorithm. 

The benchmark classification problem, described at the end of 
the paper, will help guide the ongoing development effort. It will 
also enable comparisons to be made with conventional solutions 
for data preparation and feature extraction, by using widely known 
and reliable classification quality evaluation metrics. 
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