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Over the last decades, numerous distributed consensus-based algorithms have found a
wide application as a complementary mechanism for data aggregation in wireless sensor
networks. In this paper, we provide an analysis of the generalized Metropolis-Hastings
algorithm for data aggregation with a fully-distributed stopping criterion. The goal of
the implemented stopping criterion is to effectively bound the algorithm execution over
wireless sensor networks. In this paper, we analyze and compare the performance of
the mentioned algorithm with various mixing parameters for distributed averaging, for
distributed summing, and for distributed graph order estimation. The algorithm is examined
under different configurations of the implemented stopping criterion over random geometric
graphs by applying two metrics, namely the mean square error and the number of the
iterations for the consensus. The goal of this paper is to examine the applicability of the
analyzed algorithm with the stopping criterion to estimating the investigated aggregate
functions in wireless sensor networks. In addition, the performance of the algorithm is
compared to the average consensus algorithm bounded by the same stopping criterion.

1 Introduction

This paper is an extension of work originally presented in the Pro-
ceedings of the EUROCON 2019 - 18th International Conference
on Smart Technologies [1].

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) are a technology formed by small-
size autonomous low-cost sensor nodes equipped with three basic
components - a sensing subsystem, a processing subsystem, and
a wireless communication subsystem [2]–[4]. These subsystems
enable the sensor nodes to concurrently sense the surrounding area,
to process the measured data, and to communicate with each other
via wireless transmission channels [2, 3]. Moreover, the sensor
nodes are supplied by an energy source, allowing WSNs to execute
the programmed tasks [3]. WSNs are required to obtain a lot of
information about the observed physical phenomenon (e.g., light,
motion, temperature, seismic events, humidity, pressure, etc.) and to
effectively deliver the measured data to the end-users [3, 5]. Further-
more, they are self-organizing systems typically consisting of many

sensor nodes (i.e., hundreds or even thousands) distributed over
large-scale areas (either in a random fashion or manually) whereby
large geographical territories can be cooperatively monitored with
very high precision [2, 6]. As WSNs are generally built-up on an
ad-hoc basis, the deployment of the sensor nodes is significantly
simplified [7]. In many applications, the sensor nodes are required
to operate under inhospitable environmental conditions and without
any human interaction; therefore, the design of the algorithms for
WSNs has to be affected by these facts [2]. So, WSN-based applica-
tions have to be viable and energy-efficient so that the robustness
of WSNs to potential threads is high [2]–[4]. Over the last years,
WSNs have found the application in various areas such as industrial
monitoring, health care, localization, security, structural monitoring,
military monitoring, etc. [8].

1.2 Consensus-based Algorithms for Data Aggregation

As the sensor nodes are vulnerable to numerous threats (e.g., temper-
ature, radiation, pressure variations, electromagnetic noise, coverage
problems, a high failure rate, etc.) and can measure highly correlated
or even duplicated information, complementary algorithms for data
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aggregation are applied in many WSN-based applications in order
to suppress these negative factors and to optimize the overall energy
consumption (see Figure 1 for an example demonstrating the dif-
ference between WSNs with and without data aggregation) [9, 10].
In addition, data aggregation algorithms can optimize also routing
mechanisms, thereby reducing the total energy requirements as well
[11]. In the literature, one can find several papers concerned with
how to effectively bound algorithms for data aggregation whereby
the communication, computation, and energy requirements of WSNs
can be optimized [12]–[14]. Note that data aggregation is an impor-
tant process not only in WSNs but also in other industries [15]–[18].

Over the last decades, consensus-based algorithms for data
aggregation have significantly gained the attention of the world-
wide scientific community [13, 17, 19]. The problem of consensus
achievement poses one of the most fundamental challenges in dis-
tributed computing [20]. In WSNs, the term consensus, in general,
means the task of getting a group of the sensor nodes to agree
on a common value determined by the initial states of all the sen-
sor nodes in this group [21]. The consensus is achieved either
asymptotically or in a bounded time interval due to iterative mutual
interactions among these sensor nodes [21]. Eventually, each sensor
node knows the exact value or an estimate of the wanted aggregate
function. Gutierrez-Gutierrez et al. [22] define two categories of
consensus-based algorithms for data aggregation, namely the deter-
ministic and the stochastic algorithms. In the literature, one can find
many deterministic approaches, e.g., the Maximum Degree weights
algorithm, the Metropolis-Hastings algorithm (MH), the Best Con-
stant weights algorithms, the Convex Optimized weights algorithm,
etc. [1, 13, 19]. Probably, the most frequently quoted stochastic
consensus-based algorithms are the Push-Sum algorithm, the Push-
Pull algorithm, the Broadcast gossip algorithm, the Pairwise gossip
algorithm, the Geographic gossip algorithm, etc. [14, 22]–[25]. As
stated in [4], the algorithms differ from each other in many aspects
such as the convergence rate, the robustness to potential threats, the
initial configuration, the performance in mobile systems, etc.

Figure 1: Comparison of WSN with/without data aggregation

1.3 Generalized Metropolis-Hastings for Data Aggre-
gation

In this paper, we focus our attention on MH, which was proposed by
Nicolas Metropolis et al. in the 1950s and extended by Wilfred Keith
Hastings approximately twenty years later [1]. Since its definition,
it has found the application in various areas, e.g., simulating mul-
tivariate distributions, block-at-a-time scans, acceptance-rejection
sampling, etc. [1]. Lately, Schwarz et al. have defined its gener-
alized variant (referred to as the generalized Metropolis-Hastings

algorithm and labeled as GMH) and derived the convergence condi-
tions over arbitrary graphs including critical topologies such as bi-
partite regular graphs [26]. This algorithm poses a multi-functional
distributed linear consensus algorithm able to estimate various ag-
gregate functions, namely the arithmetic mean, the sum, and the
graph order. Its weight matrix is symmetric and doubly stochas-
tic, and each graph edge is allocated a weight determined by the
degrees of two linked vertices [1]. Thus, this algorithm represents
a fully-distributed approach in contrast to many other distributed
consensus-based algorithms for data aggregation that require global
information for the optimal initial configuration and the proper oper-
ating (e.g., the maximum degree, the Laplacian spectrum, etc.) [19].
Therefore, this algorithm (including its original version) has signifi-
cantly attracted the attention of the world-wide scientific community
over the past years [1].

1.4 Summary of Contribution

In this paper, we extend the analysis from [1], where GMH for
distributed averaging with the stopping criterion proposed in [27] is
analyzed. The extension presented in this paper lies in an analysis
of GMH also for distributed summing and distributed graph order
estimation. Thus, we compare GMH for estimating different aggre-
gate functions with a various mixing parameter and under various
initial configurations of the implemented stopping criterion over
100 unique random geometric graphs (RGGs). In [1], it is identified
that GMH can be applied to estimate the arithmetic mean, which
motivates us to examine and to compare the applicability of GMH to
estimating also other aggregate functions. In the case of distributed
summing, we carry out two scenarios - either the initial inner states
or the final estimates (i.e., the inner states after the consensus is
achieved) are multiplied by the graph order. Thus, the experimental
section consists of four scenarios. Finally, GMH for distributed
summing and distributed graph order estimation is compared to our
previous work where the average consensus algorithm is analyzed
[8].

1.5 Paper Organization

The content of this paper is organized as follows:

• Section 1: is divided into five subsections:

– Section 1.1: provides basic information about WSNs,
i.e., a brief introduction about this technology, its pur-
pose, constraints, and application.

– Section 1.2: is concerned with consensus-based al-
gorithms, i.e., a brief introduction into data aggrega-
tion/these algorithms, their purpose, classification, and
examples.

– Section 1.3: deals with GMH and introduces its history,
application, purpose, and features.

– Section 1.4: is focused on a summary of our contribution
presented in this paper.

• Section 2: is concerned with a literature review focused on
the application of GMH in (not only) WSNs.
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• Section 3: provides a theoretical insight into the topic and is
partitioned into two subsections:

– Section 3.1: introduces the applied mathematical model
of WSNs, the definition of GMH, its convergence con-
ditions, and the analyzed functionalities of GMH.

– Section 3.2: deals with the implemented stopping cri-
terion, i.e., why to implement it, its parameters, and its
principle.

• Section 4: is focused on the applied research methodology
and the metrics for performance evaluation.

• Section 5: consists of the experimentally obtained results
in Matlab2018b (32 figures in overall), an analysis of the
depicted results, a comparison of various functionalities of
GMH, and a comparison of GMH to the average consensus
algorithm.

• Section 6: briefly summarizes the outcomes of the research
presented in this paper.

2 Literature Review
In this section, we turn our attention to the applicability of MH for
various purposes in (not only) WSNs.

In [29], the authors focus their attention on data acquisition in
WSNs. They apply MH to determine the mixing time, which is
the minimal length of a random walk to approximate a uniform
stationary distribution. In the next paper [30], the authors pro-
pose an approach for estimating the model parameters for time
synchronization in WSNs. Here, they apply MH in combination
with Gibbs samples for estimating the parameters of the Bayesian
model. The paper [31] is concerned with the tuning parameters
of WSNs. In this case, MH is used to determine the acceptance
probability. For higher values of the temperature, the algorithm
accepts all the moves, meanwhile, stochastic hill-climbing is per-
formed in the case of lower temperatures. The authors of [32] apply
a random walk as a routing scheme and compressive sensing to
recover raw data in order to optimize the communication costs and
detection performance. MH is used to choose neighbors that receive
a message. In [33], a novel approach based on MH that synthesizes
safe reversible Markov chains is introduced. The authors of [34]
propose an approach for evaluating the network loss probability of
the mobile collectors for harvesting data in WSNs. As stated in
the paper, the optimal movement strategy is achieved in the case of
applying MH. In [35], the authors provide a Markov point process
model to generate evolving geometric graphs capable of responding
to external effects. In the presented model, the vertices can move
according to MH-based rules, giving a random pattern of points
whose distribution is similar to the Markov point process distribu-
tion. In [36], MH finds an application to obtaining a sequence of
random samples from an arbitrary distribution. The biggest benefit
of applying MH is that this algorithm is independent of the nor-
malization factor. In the paper [37], a novel MH-based algorithm
assumed to protect WSNs from internal attacks is proposed and
analyzed. In this approach, MH is used to generate the samples

from a stationary distribution. In [38], the authors propose a spatial-
temporal data gathering mechanism based on MH with delayed
acceptance. This approach allows harvesting compressive data by
sequentially visiting small subsets of nodes along a routing path. In
[13], MH is analyzed over WSNs with embedded computing and
communication devices. A centralized stopping criterion based on
the mean square error is applied to bound the algorithm execution
in this paper. The authors of [39] propose a novel consensus-based
algorithm for data aggregation over WSNs by combining MH with
the convex optimized weights algorithm, thereby optimizing both
the transient and the steady-state algorithm phase. In [40], MH
is applied to target tracking in WSNs for surveillance tasks. The
proposed approach is to convert binary detections into finer posi-
tion reports by applying the spatial correlation. The mechanism for
a node-specific interference problem appearing in heterogeneous
WSNs is proposed in [41]. In this approach, MH is employed in its
first step. In [42], it is stated that MH can be used to choose the next
nodes in random walks. The paper [43] is focused on a modified
MH for estimating the item, structural, and Q matrix parameters.
In [44], the authors propose a TunaMH method based on MH (as
its name evokes) for exposing a tunable tradeoff between its batch
size and the convergence rate that is theoretically guaranteed. The
authors of [45] propose a novel MH to provide large proposal tran-
sitions accepted with a high probability due to a significant increase
in the complexity and in the dimension of the interference problems.
The authors of [46] address the incipient fault detection problem,
which is solved by the proposed two-step technique. In the second
step, MH is used to perform the change point detection. In [47],
the authors present a received signal strength-based inter-network
cooperative localization approach utilizing MH. At the end of this
section, as mentioned above, Schwarz et al. define the generalized
variant of MH and analyze its convergence in [26].

Thus, it can be seen that our contribution is an analysis of GMH
for estimating three aggregation functions with the fully-distributed
stopping criterion from [27]. In none of the provided papers, such a
deep analysis of GMH for data aggregation with a stopping criterion
proposed primarily for WSNs is carried out.

3 Theoretical Background

3.1 Model of GMH for Estimating Average/Sum/Graph
Order in WSNs

In this paper, WSNs are modeled as undirected simple finite graphs
(with the graph order n) formed by two time-invariant sets, namely
the vertex set V and the edge set E (G = (V, E)), and so the graph
order and the graph size are constant [1]. The vertex set V gathers
all the graph vertices, which represent the sensor nodes in WSN and
are distinguishable from each other by the unique index number,
i.e., V = {vi : i = 1,2,...n}. The edge set E is formed by all the graph
edges representing the direct connection between two vertices (vi

and v j are linked by ei j). Subsequently, the neighbor set of vi, which
is a set consisting of all the neighbors of the corresponding node,
can be defined as follows [1]:

Ni = {v j : ei j ∈ E} (1)
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From a global view, GMH can be modeled as follows [26]:

x(k + 1) = W × x(k) (2)

From a local view, the formula (2) can be cast as follows [1]:

xi(k + 1) = [W]ii · xi(k) +
∑
j∈Ni

[W]i j · x j(k), i = {1, 2, ...n} (3)

Here, x(k)1 is a variant column vector containing the inner states of
all the sensor nodes in WSN at the corresponding iteration, and W
is the weight matrix defined for GMH as follows [26]:

[W]i j =


1

max{di+d j}+ε
, if ei j ∈ E

1 −
∑

i,l[W]il, if i = j
0, otherwise

(4)

Here, di poses the degree of vi, and ε represents the mixing param-
eter, which has to take a value from the following interval for the
convergence achievement [26]:

ε ∈ [0, 1] (5)

Note that the convergence is obtained for ε = 0 only unless the
underlying graph is bipartite regular [26]. As stated in [26], the
adjacency matrix A of a bipartite graph has a block structure with
zero diagonal in the case of ε = 0, which implies:

W =
1
d
· A =

1
d
·

(
0 A0

AT
0 0

)
(6)

Thus, the sensor nodes are divided into two groups, and their inner
states oscillate between two values equal to the arithmetic means
determined by the inner states of the sensors nodes in these groups.
The mixing parameter ε = 0 causes the equality in ρ(L̃)2 ≤ 2 in the
case of the bipartite regular graphs, resulting in the divergence of
the algorithm:

ρ(L̃) = 2 =⇒ ρ(W −
1
n
· 1 × 1T) = 1 (7)

In Figure 14, we show the evolution of the inner states over a ran-
dom bipartite regular graph for four values of the mixing parameter
ε, including ε = 0. From the figures, it can be seen that the inner
states converge to the arithmetic mean except for ε = 0, when the
algorithm diverges.

Properly configured GMH operates in such a way that the inner
state of each sensor node asymptotically converge to the value of
the estimated aggregated function (which determines the value of
the steady-state), i.e. [1]:

lim
k→∞

x(k) = lim
k→∞

Wk × x(0) =
1
n
.1 × 1T × x(0) (8)

Here, 1 poses an all-ones vector formed by n elements, and 1T is its
transpose. In the following part, examples of how the inner states
evolve with an increase in the iteration number for each analyzed
functionality of GMH are shown.

Figure 2: Inner states as function of number of iterations over line topology with
graph order n = 6 - distributed averaging, mixing parameter ε = 1

Figure 3: Inner states as function of number of iterations over line topology with
graph order n = 6 - distributed summing, mixing parameter ε = 1

Figure 4: Inner states as function of number of iterations over line topology with
graph order n = 6 - distributed graph order estimation, mixing parameter ε = 1

The existence of the limit (8) is essential for GMH to operate
correctly and is ensured, provided that these three convergence
conditions are met [26]:

1T ×W = 1T (9)

W × 1 = 1, (10)

ρ(W −
1
n
· 1 × 1T) < 1 (11)

1Here, k is the label of an iteration, and x(k = 0) represents the initial inner states
2L̃ is the weighted Laplacian matrix
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Here, ρ(·) is the spectral radius of the corresponding vector/matrix,
and its value is equal to the largest eigenvalue in the absolute value
from the corresponding spectrum, i.e.:

ρ(·) = max
i
{| λi(·) |} (12)

Here, λi(·) is the ith largest eigenvalue from the corresponding spec-
trum.

As mentioned earlier, GMH can estimate three various aggregate
functions, namely the arithmetic mean, the sum, and the graph order.
The values of the initial inner states are affected by the estimated
aggregate function as follows:

• Distributed averaging: the initial inner states are equal to (for
example) independent local measurements.

• Distributed summing: the initial inner states are equal to (for
example) independent local measurements and multiplied by
the graph order n - this multiplication is carried out either
before the algorithm begins or after completing the algorithm.

• Distributed graph order estimation: one of the sensor nodes
is selected as the leader, and its initial inner state is equal to
”1”. The other sensor nodes initiate their inner state with ”0”.
Once the consensus is achieved, the sensor nodes determine
the inverted value from the final estimates, which is equal to
an estimate of the graph order n.

3.2 Distributed Stopping Criterion for WSNs

In this section, we introduce the implemented stopping criterion for
bounding the execution of GMH. As mentioned earlier, an effec-
tively stopped execution may significantly optimize the algorithm in
terms of many aspects such as the overall energy consumption, the
communication amount, etc., and therefore, a proper initial configu-
ration of the implemented stopping criterion is essential especially
in energy-constrained technologies such as WSNs. In this paper, we
analyze the fully-distributed stopping criterion from [27], which is
determined by two constants:

• accuracy

• counter threshold

Both constants are the same at each sensor node and have to be
set before the algorithm begins. Also, each sensor node has its
own counter, which is a variable initiated by ”0” at each sensor
node. The principle of the stopping criterion lies in a comparison
of the finite difference between two subsequent inner states at each
sensor node with pre-set accuracy. If the finite difference is smaller
than accuracy counter threshold-times in the array, the algorithm is
locally completed at the corresponding nodes, and this node does
not participate in the algorithm anymore. If not, the value of counter
is reset regardless of its current state. See Algorithm 1 for the
formalization of GMH with the stopping criterion from [27].

Algorithm 1 GMH for distributed averaging/summing/graph order estimation with bounded execution

At the beginning of the algorithm (i.e., k = 0), every sensor node vi ∈ V initiates its inner state (i.e., xi(0)) with a scalar value according to
the estimated aggregate function:

• Distributed averaging: the initial inner states are equal to (for example) independent local measurements.

• Distributed summing: the initial inner states are equal to (for example) independent local measurements and multiplied by the graph
order n - this multiplication is carried out either before the algorithm begins or after completing the algorithm.

• Distributed graph order estimation: one of the sensor nodes is selected as the leader, and its initial inner state is equal to ”1”. The
other sensor nodes initiate their inner state with ”0”. Once the consensus is achieved, the sensor nodes determine the inverted value
from the final estimates.

Also, each sensor node vi ∈ V sets its counter to ”0”. The parameters counter threshold and accuracy are constant during the algorithm
execution and set to the same value at each sensor node. Each sensor node is considered to be active until it locally completes the
algorithm.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
At the next iterations (i.e., k = 1, 2, ...), every active sensor node repeats the following steps as long as it is active:

1. sends a broadcast message containing its current inner state to (1) as well as collecting the inner states from (1).

2. updates its inner state for the next iteration by applying the update rule (2)/(3).

3. verifies whether the finite difference between two subsequent inner states is smaller than accuracy, i.e., |∆xi(k)| < accuracy. If it is
true, it increments its counter by ”1”, otherwise, sets it to ”0”.

4. verifies the condition: counter = counter threshold. If it is valid, the corresponding sensor node considers GMH to be locally
completed, and this sensor node becomes inactive. If it is invalid, the sensor node repeats the previous steps.
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4 Research Methodology
This section is concerned with the applied research methodology
and the metrics for performance evaluation.

As already mentioned in this paper, the weight matrix of GMH
is modifiable by changing the value of the mixing parameter ε. As
stated in [26], the convergence is ensured for ε taking value from
(5) unless the underlying graph is bipartite regular. As it is not too
likely that WSNs are bipartite regular [26], we do not include them
in the experimental section - GMH diverges over these topologies,
which may significantly skew the presented results. Therefore, we
separately analyze these critical topologies in Section 3.1. In the
experimental section, the mixing parameter ε takes the following
four values:

• ε = {1, 2/3, 1/3, 0}

As mentioned above, we apply the stopping criterion from [27]
to bound the algorithm. In our experiments, its configuration is
selected as follows:

• accuracy = {10−2, 10−4, 10−5, 10−6}

• counter threshold = {3, 5, 7, 10, 20, 40, 60, 80, 100}

As mentioned earlier, the performance of GMH with various initial
configurations is tested over RGGs with the graph order n = 200 -
see Figure 5 for their representatives. For the sake of high research
credibility, we generate 100 graphs each with a unique topology
where the algorithm is examined.

Figure 5: Representative of random geometric graphs

In the experimental part, we analyze GMH estimating three
different aggregate functions, and therefore we partition the content
of the experimental part into four scenarios as follows:

� Scenario 1 - GMH estimates the arithmetic mean from all the
initial inner states, which are independent and identically dis-
tributed random values of the standard Gaussian distribution,
i.e.:

xi(0) ∼ N(0, 1), i = {1, 2, ...n} (13)

� Scenario 2 - the algorithm determines estimates of the sum
calculated from all the initial inner states, which are IDD

random values of the same distribution as in the previous
scenario. The inner states are multiplied by the graph order n
before GMH begins.

� Scenario 3 - in this scenario, GMH also estimates the sum
from all the initial inner states like in Scenario 2, compared
to which the inner states are multiplied by the graph order n
after the consensus is achieved.

� Scenario 4 - the graph order n, i.e., the size of a network, is
estimated in this scenario. One of the vertices is selected as
the leader, whose initial inner state is equal to ”1”, meanwhile,
the other ones initiate their initial inner state with ”0” (in our
analyses, the best-connected node is the leader), i.e.:

xi(0) =

 1, i f vi is the leader
0, i f vi is not the leader

(14)

The inverted value of the inner states is determined after the
consensus is achieved.

To evaluate the performance of the algorithm, we apply two metrics:

• Mean Square Error (MSE): is used to quantify the precision
of the final estimates and defined as follows [48, 49]:

MSE =
1
n
.

n∑
i=1

(
xi(kl) − 1T ×

x(0)
n

)2

(15)

Here, kl is the iteration when the consensus is achieved.

• Convergence rate: quantifies the algorithm speed (labeled as
kl) and is expressed as the number of the iterations for the
consensus achievement among all the sensor nodes in WSN.

In all the shown figures, we depict and analyze the average of both
metrics over 100 graphs for each accuracy, counter threshold, and
the mixing parameter ε.

5 Experimental Section
In this section, we provide and discuss numerical experiments exe-
cuted in Matlab2018b. As mentioned above, we extend the analysis
of bounded GMH from [1], where this algorithm for distributed
averaging is analyzed in terms of the estimation precision and the
convergence rate. In this work, the extension lies in an analysis
of GMH for distributed summing (either the initial inner states or
the final estimates are multiplied by the graph order n) and GMH
for graph order estimation. Also, GMH is compared to the average
consensus algorithm. The experimental section consists of:

Table 1: List of figures provided in experimental section

Figure Applied Metric Scenario Note
No. 6 MSE No. 1 Cited from [1]
No. 7 Convergence rate No. 1 Cited from [1]
No. 8 MSE No. 2
No. 9 Convergence rate No. 2

No. 10 MSE No. 3
No. 11 Convergence rate No. 3
No. 12 MSE No. 4
No. 13 Convergence rate No. 4
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The first part is concerned with an MSE analysis of all the
functionalities of GMH. From Figure 6, Figure 8, Figure 10, and
Figure 12, it is seen that an increase in counter threshold and a
decrease in accuracy result in a decrease in MSE, whereby the preci-
sion of the final estimates is increased in each scenario. Also, lower
values of the mixing parameter ε ensure that the value of MSE is

lower regardless of the estimated aggregate function. Furthermore,
we can see that the algorithm achieves the highest precision in the
case of estimating the graph order (i.e., in Scenario 4). The values
of MSE, in this case, are from the range [−110.7,−43.2]3. The
second highest precision is obtained when the arithmetic mean is
estimated (Scenario 1). In this case, the values of MSE are from

3only MSE for ε = 0 are provided - see Table 2 for the results obtained for the other values of the mixing parameter ε

Figure 6: Estimation precision quantified by mean square error for various configurations of implemented stopping criterion and different mixing parameter – generalized
Metropolis-Hastings for distributed averaging – Scenario 1

Figure 7: Convergence rate expressed as iteration number required for consensus achievement for various configurations of implemented stopping criterion and different
mixing parameter – generalized Metropolis-Hastings for distributed averaging – Scenario 1
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the range [−110.4,−20.88]3. The worst estimation precision is
observed in the case of sum estimation. Here, Scenario 2 (MSE
is from [−109.9, 4.288]3) outperforms Scenario 3 (MSE is from
[−64.36, 25.14]3), proving that multiplying the initial inner states
with the graph order n ensures higher precision of the algorithm than
multiplying the final estimates. As mentioned earlier, we analyze
the average consensus algorithm for distributed summing and dis-

tributed graph order estimation in our previous work [8]. Compared
to those results, it can be seen that GMH outperforms the average
consensus algorithms for estimating both examined aggregate func-
tions. For counter threshold = 100, accuracy = 10−6, and ε ensuring
the highest performance, GMH outperforms the average consensus
algorithm by 12.78 dB in Scenario 2, by 77.31 dB in Scenario 3,
and by 104.469 dB in Scenario 4. Moreover, an important fact

Figure 8: Estimation precision quantified by mean square error for various configurations of implemented stopping criterion and different mixing parameter – generalized
Metropolis-Hastings for distributed summing – Scenario 2

Figure 9: Convergence rate expressed as iteration number required for consensus achievement for various configurations of implemented stopping criterion and different
mixing parameter – generalized Metropolis-Hastings for distributed summing – Scenario 2
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identified in [8] is that the average consensus achieves a very low es-
timation precision for lower values of counter threshold and higher
values of accuracy in the case of graph order estimation, making
the algorithm unusable with these configurations of the stopping
criterion. However, in this paper, we identify that this phenomenon
is not visible in the case of GMH; therefore, this algorithm is much
more appropriate for graph order estimation than the average con-

sensus algorithm when the stopping criterion [27] is implemented.
In addition, the value of the mixing parameter ε has a less inten-
sive impact on MSE compared to the average consensus algorithm
for distributed summing/distributed graph order estimation. In the
following part, we turn our attention to the convergence rate of
GMH expressed as the iteration number for the consensus achieve-
ment. From Figure 7, Figure 9, Figure 11, and Figure 13, we can

Figure 10: Estimation precision quantified by mean square error for various configurations of implemented stopping criterion and different mixing parameter – generalized
Metropolis-Hastings for distributed summing – Scenario 3

Figure 11: Convergence rate expressed as iteration number required for consensus achievement for various configurations of implemented stopping criterion and different
mixing parameter – generalized Metropolis-Hastings for distributed summing – Scenario 3
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see that an increase in counter threshold and a decrease in accuracy
result in an increase in the number of the iterations required for the
consensus; therefore, the convergence rate is decreased in each ana-
lyzed scenario. Again, a higher convergence rate in each scenario
is obtained for lower values of the mixing parameter ε. Like in the
previous analysis, Scenario 4 outperforms all three other scenarios
also in terms of the convergence rate, and the convergence rate in
this scenario is from the interval [5, 240.5]3. As furthermore seen,

the second-highest convergence rate is achieved by both Scenario
1 and Scenario 3 ([11.55, 295.80]3); therefore, the number of the
iterations for the consensus achievement is the same (with a few
exceptions) in both scenarios. In contrast to the previous analysis,
Scenario 2 ([95.78, 420.9]3) is outperformed by Scenario 3, mean-
ing that multiplying the final estimates ensures a higher convergence
rate than multiplying the initial inner states. Compared to our pre-

Figure 12: Estimation precision quantified by mean square error for various configurations of implemented stopping criterion and different mixing parameter – generalized
Metropolis-Hastings for distributed graph order estimation – Scenario 4

Figure 13: Convergence rate expressed as iteration number required for consensus achievement for various configurations of implemented stopping criterion and different
mixing parameter – generalized Metropolis-Hastings for distributed graph order estimation – Scenario 4
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vious work, GMH outperforms the average consensus algorithm
also in terms of the convergence rate in both distributed summing
and distributed graph order estimation. For counter threshold =

100, accuracy = 10−6, and ε ensuring the highest performance, the
convergence rate of GMH is greater than the convergence rate of
the average consensus algorithm by 139.5 iterations in Scenario 2,
by 87.3 iterations in Scenario 3, and by 52.5 iterations in Scenario 4.
Also, like in the previous analysis, the value of the mixing parameter
ε has only a marginal impact on the convergence rate in contrast to
the average consensus algorithm examined in [8].

6 Conclusion

In this paper, we provide an extension of the analysis of GMH for
distributed averaging over WSNs published in the conference pro-
ceedings of IEEE Eurocon 2019. The extension presented in this
paper lies in an analysis of GMH for estimating also other aggre-
gate functions, i.e., distributed summing and distributed graph order
estimation. In our analyses, the algorithm with a different mixing pa-
rameter ε is bounded by a distributed stopping criterion with varied
initial configurations (i.e., counter threshold takes the values (10−2,
10−4, 10−5, 10−6), and accuracy takes the values (3, 5, 7, 10, 20, 40,
60, 80, 100)). The experimental part consists of four scenarios (i.e.,
these functionalities are analyzed: distributed averaging, distributed
summing - the initial inner states are multiplied by the graph order n,
distributed summing - the final estimates are multiplied by the graph
order n, a distributed graph order estimation). From the presented
results, it is seen that an increase in counter threshold and a decrease
in accuracy result in higher precision of the algorithm, however, the
convergence rate expressed as the iteration number of the consensus
achievement is decreased as a consequence. Thus, regardless of
the estimated aggregate function, the highest precision of the final
estimates and the lowest convergence rate is ensured for the configu-
ration accuracy = 10−6 and counter threshold = 100, and vice versa
the configuration accuracy = 10−2 and counter threshold = 3 results
in the highest convergence rate and the lowest precision. Also, we
identify that the optimal performance in terms of the estimation
precision and the convergence rate is achieved for ε = 0 (i.e., the
lower bound of the mixing parameter ε), and an increase in ε causes
lower precision and lower convergence rate. However, the value of
the mixing parameter ε does not have an essential impact on the
algorithm performance according to both applied metrics. In the ex-
perimental section, also the performances of GMH for estimating the
arithmetic mean, the sum, and the graph order are compared to each
other. The best performance is achieved in the case of graph order
estimation in terms of both the estimation precision and the con-
vergence rate (for ε = 0, the values of MSE lie in [−43.2,−110.7],
and the convergence rate in [5, 240.5]). The second-best perfor-
mance is achieved when the arithmetic mean is estimated (for ε =

0, MSE is from [−20.88,−110.4], and the convergence rate from
[11.55, 295.8]). Thus, the lowest precision and convergence rate are
achieved in the case of sum estimation. Here, multiplying the initial
inner states instead of the final estimates ensures higher precision of
the algorithm (for ε = 0, MSE [−109.9, 4.29], the convergence rate
[95.78, 420.9]), meanwhile, multiplying the final estimates results
in a higher convergence rate (for ε = 0, MSE [−64.36, 25.14], the

convergence rate [11.55, 295.8]). The most important fact identi-
fied in this paper is that GMH achieves a high estimation precision
regardless of the estimated aggregation function; therefore, this
research identifies its applicability to estimating also two other ag-
gregate functions in WSNs. In addition, we also compare GMH
for distributed summing and distributed graph order estimation to
the average consensus algorithm, thereby identifying that GMH is
more appropriate for data aggregation over WSNs with the imple-
mented stopping criterion than the average consensus algorithm in
both applied metrics - the estimation precision and the convergence
rate expressed as the iteration number necessary for the consensus
achievement. GMH outperforms the average consensus (in the case
that the performances of the most precise configurations are com-
pared) by 12.78 dB and 139.5 iterations in Scenario 2, by 77.31 dB
and 87.3 iterations in Scenario 3, and by 104.469 and 52.5 iterations
in Scenario 4.

Thus, the final conclusion of the presented research is that the
lower bound of mixing parameter ε ensures the highest performance
in both the estimation precision and the convergence rate - so, in
real-world implementations, ε = 0 is recommended for use. Also,
an increase in counter threshold and a decrease in accuracy cause
the algorithm to be more precise but, on the other hand, decelerated
regardless of the estimated aggregate function, meaning that the
initial configuration of the stopping criterion has to be affected by
the fact whether a WSN-based application requires more precise
or faster data aggregation. The most important identified fact is
that GMH is applicable to estimating all three examined aggregate
functions in WSNs.
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Appendix

Figure 14: Evolution of inner states over bipartite regular graph for four values of mixing parameter ε

Table 2: Tables summarizing presented experimental results

Maximal and minimal precision of GMH quantified by MSE
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Max Min Max Min Max Min Max Min
ε = 1 -108.7 dB -20.69 dB -108.3 dB 4.89 dB -62.68 dB 25.33 dB -109.1 dB -43.03 dB
ε = 2/3 -109.2 dB -20.73 dB -108.8 dB 4.68 dB -63.22 dB 25.29 dB -109.6 dB -43.08 dB
ε = 1/3 -109.8 dB -20.8 dB -109.4 dB 4.52 dB -63.78 dB 25.22 dB -110.2 dB -43.14 dB
ε = 0 -110.4 dB -20.88 dB -109.9 dB 4.29 dB -64.36 dB 25.14 dB -110.7 dB -43.2 dB

Maximal and minimal convergence rate of GMH quantified by iteration number
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Max Min Max Min Max Min Max Min
ε = 1 11.66 ite. 302.8 ite. 100.2 ite. 433.6 ite. 11.66 ite. 302.8 ite. 5.13 ite. 246 ite.
ε = 2/3 11.61 ite. 300.5 ite. 99.87 ite. 429.6 ite. 11.61 ite. 300.5 ite. 5.09 ite. 244.5 ite.
ε = 1/3 11.57 ite. 298.1 ite. 96.68 ite. 425.4 ite. 11.57 ite. 298.1 ite. 5.02 ite. 242.5 ite.
ε = 0 11.55 ite. 295.8 ite. 95.78 ite. 420.9 ite. 11.55 ite. 295.8 ite. 5 ite. 240.5 ite.
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