
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 5, 237-244 (2020)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

FPGA Acceleration of Tree-based Learning Algorithms
Haytham Azmi*

Microelectronics Department, Electronics Research Institute, Cairo, Egypt

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 21 June, 2020
Accepted: 02 September, 2020
Online: 14 September, 2020

Keywords:
Acceleration
Machine learning
Decision tree
FPGA

Machine learning classifiers provide many promising solutions for data classification in
different disciplines. However, data classification at run time is still a very challenging task
for real-time applications. Acceleration of machine-learning hardware solutions is needed to
meet the requirements of real-time applications. This paper proposes a new implementation
of a machine learning classifier on Field Programmable Gate Arrays (FPGA). The proposed
implementation utilizes the MicroBlaze soft-core processor on FPGA and uses the Advanced
eXtensible Interface (AXI) bus to integrate the MicroBlaze with hardware peripherals.
Experimental results shows that hardware-software co-design is a promising solution as it
saves silicon area and provides a flexible configuration of decision tree algorithms at run
time.

1 Introduction

The continuous growth of Internet of Things (IoT) applications that
need real-time data analysis, such as video cameras in surveillance
applications, live streaming videos on social media networks and
sensor data from smart cities, is driving the demand for an efficient
platform that can process this huge amount of data and discover
hidden patterns.

When designers explore hardware options for big-data analysis,
Graphics Processing Units (GPUs) and Field Programmable Gate
Arrays (FPGAs) appear as two promising solutions for the imple-
mentation of machine learning applications. GPUs have been domi-
nating the parallel computing market for a long time and their hard-
ware solutions have been thoroughly tested in different industrial
domains. However, FPGA solutions have been recently considered
in many high performance Artificial Intelligence (AI) applications
and showed an improved power consumption, compared to GPUs.

To choose the optimum implementation, designers need to an-
swer several design questions and explore possible solutions at early
design phases. Examples of these questions are: what is the max-
imum clock frequency that can be reached in the target hardware
platform? How many General Purpose Input/Output (GPIO) pins
that can be utilized by the target hardware platform? Does the target
hardware platform support parallel processing and concurrency or
not? what is the average power consumption of similar implemen-
tations on the target platform? etc. Designers must study these
questions carefully at early deign phases. The choice of the hard-
ware platform has a significant impact on the performance of the

target applications.
FPGA-based implementations of machine learning classifiers

provide an efficient solution for real-time applications that use deep
learning algorithms for classification [1]. FPGA-based implemen-
tation helps system engineers design modular systems and execute
several tasks concurrently, which helps in processing real-time data
more efficiently. The implementation of machine learning classifiers
on FPGA can be done in many different ways. This paper discusses
these alternative implementation options and presents a case study
of hardware implementation of a machine learning algorithm on
FGPA.

This paper has two main contributions.

• First, we present a comparative analysis of different design ap-
proaches of machine learning classifiers in the literature. The
paper discusses technical implementation challenges and pro-
poses practical solutions that help designers better implement
efficient classifiers.

• Second, we propose a hybrid implementation of a machine
learning, tree-based classifier. The proposed implementation
utilizes hardware-software co-design approach that integrates
a soft-core microprocessor on FPGA. The soft-core is used
along with other digital blocks to build an area-efficient ma-
chine learning classifier. As a proof of concept, we use a
MicroBlaze Xilinx IP core on Virtex-UltraScale FPGA to run
the main tree-based algorithm and report its implementation
details.

The novelty of the proposed implementation is that it bridges the
*Corresponding Author: Haytham Azmi, Microelectronics Department, Electronics Research Institute, Cairo, Egypt, haitham@eri.sci.eg

www.astesj.com
https://dx.doi.org/10.25046/aj050529

237

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050529


Table 1: Some of the proposed work in the literature that discusses the hardware implementation of machine learning classifiers.

N Dataset Classification Target Platform Performance Reference
1 IBM DataQuest Decision Tree PowerPC 5.58 [2]

Generator (Gini calculation) times
2 UCI Adaboost VHDL 5 to 10 ns [3]

repository algorithm Generator per decision
3 Spambase Decision Trees Xilinx Virtex 5 N/A [4]

UCI repository Majority voting XC5VLX110T
4 EEG data Soft Xilinx 98.1% [5]

in house Decision Tree Spartan 3
5 From [6] Decision Tree software 75 million samples [7]

(image-based) tool per second
6 From [8] C4.5 classifier Xilinx 97.92% [9]

Virtex-6 XC6LX670 accuracy

gap between hardware and software when dealing with machine
learning classifier implementation. Our solution addresses several
challenges related to creating a customized machine learning classi-
fier on FPGA from a raw dataset file. We discuss these challenges
in detail in this paper and explain how researchers can use our pro-
posed implementation to build low-cost, high-performance classifier
on FPGA.

The rest of this paper is organized as follows. Section 2 presents
the related work in the literature. Section 3 discusses the hardware
implementation of the decision tree algorithm. Section 4 presents
the results of the experimental work. Section 5 draws our conclu-
sions and suggests new directions for future work.

2 Related Work

Utilizing hardware solutions for machine learning classification has
been a challenging task for many researchers and system engineers.
Researchers targeted different platforms, such as microprocessor-
based systems, FPGA-based designs and parallel computing tech-
niques to design efficient hardware classifiers for real-time applica-
tions. Table 1 highlights some of the proposed work in the literature
that discusses the hardware implementation of machine learning
classifiers. In this section, we highlight examples of the related
work in more details.

In [2], the authors used Gini score calculation to develop a de-
cision tree model. Authors went through two phases to build a
decision tree model. First, they chose the splitting attribute and a
split index for the root. Then, they split the children records based
on the the first phase’s decision. The proposed implementation in [2]
recursively repeated this process until a stopping criterion is met [2].
In practical applications, Conventional Neural Networks (CNN) are
trained off-line using training datasets through the back-propagation
process. Following that, the trained CNN models are used to recog-
nize images using the feed-forward process. Since there is currently
a trending approach in recognizing images in real-time applications,
the execution time of the feed-forward process is the most signifi-
cant factor when it comes to performance evaluation [10]. In [11],
the authors presented a software tool that can automatically gener-
ate a tree classifier Verilog code from python scripts. Authors used
SciKit-Learn machine learning library to build the trained model

and calculate the threshold values for the tree nodes. Following that,
the tool is used to generate a Verilog code for decision trees and
random forests [11].

In [12], the authors presented an implementation of Q-learning
with Artificial Neural Networks (ANN) on FPGA for real-time ap-
plications that have latency and power constraints. The proposed
implementation reduced processing time by utilizing the parallel
structure of FPGA logic units. In [12], the authors demonstrated
the implementation of a single neuron Q-learning accelerator as
well as Multilayer Perception (MLP) Q-learning accelerator on a
Virtex 7 FPGA. The authors discussed the architecture of the im-
plementation in their paper [12]. However, when they evaluated
the performance, it was compared to a CPU-based implementation.
The speedup in performance was completely expected because of
the concurrency achieved by FPGA. The paper did not provide any
information about the speedup in performance when compared to
GPU implementation [12].

In [13], the authors proposed a method to optimize CNN by
utilizing four techniques: 1) fixed-point quantization to minimize
calculations, 2) approximation of activation function to reduce the
complex mathematical operations, 3) pipelining and parallelization
of loops and tasks to speedup execution time, and 4) memory re-
organization to enhance fetch time. Authors targeted the LeNet-5
architecture, which is a neural network architecture for handwritten
and machine-printed character recognition [14]. They implemented
their proposed accelerator on a Xilinx FPGA and used Zynq-7000
platform. The paper reported an operating frequency at 166MHz,
which is not a useful measure for high performance applications.
However, the paper reported that the proposed implementation can
reduce the consumed energy by 93.7% compared to a GPU im-
plementation [13]. The authors in [15] designed a decision tree
classifier to recognize letters and digits. Xilinx Zynq SoC is used by
the authors as a target hardware platform and Vivado high level syn-
thesis is used as a development tool with C/C++ synthesis. Authors
verified the correctness of the generated HDL code using C/RTL
co-simulation [15].

In [16], the authors proposed a pipelined design that is par-
titioned into two stages. The first stage of the proposed design
determines the conditions of the decision tree for which the classifi-
cation can be done. The second phase of the proposed design used
a pipelined data path for parallel execution.

www.astesj.com
https://dx.doi.org/10.25046/aj050529

238

https://www.astesj.com
https://dx.doi.org/10.25046/aj050529


H. Azmi / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 237-244 (2020)

Other implementations have been also proposed in the literature.
In [17], the authors presented an automatic modulation classifier
to identify the signal modulation format for electronic applications.
In [18], the authors presented a hybrid classification engine using
CPU and FPGA shared memory.

Although there are several proposed solutions in the literature
for the hardware implementation of machine learning classifiers,
the FPGA design and implementation of such classifiers were not
discussed in proper details. We try to address this gap in our pa-
per to present a hardware-software co-design implementation of a
machine learning classifier on FPGA.

3 Hardware Implementation of Decision
Trees

Designers explored various ways to implement decision tree algo-
rithms on hardware platforms. In this section, we first highlights
the basic concepts of implementing a single node on FPGA and
how the synthesis tool interprets the HDL model and convert it into
logic gates. Then, we discuss the common methodologies used in
hardware implementation of such algorithms.

Classifying instances based on a training dataset has been used
extensively to mine hidden patterns within detests [19]. One of the
most popular classification algorithms is the tree-based classifier,
where the main goal is to construct a tree from a labeled training
dataset. The decision tree consists of a root node and children nodes.
Each node represents a test on a feature, whereas each branch rep-
resents the outcome of a test, and each leaf node represents a class
label. Figure 1 shows an example of a decision tree.

Figure 1: An example of a decision tree.

Decision trees can be constructed using different algorithms.
The most critical design parameter is how to choose the feature at
each node that best splits the dataset. The classification algorithms
in the literature use different evaluation metrics to perform two
design decisions.

1. Which feature should be used to split the dataset records at
each node?

2. What is the the threshold value that should be used to split
the dataset records at each node?

Examples of these evaluation metrics include using Gini index [20]
and information gain, which is based on the concept of entropy [21].

Examples of decision tree algorithms include ID3, C4.5, CART,
CHAID, and MARS [22]. ID3 is used in this paper as an example
of a decision tree implementation. Other algorithms, such as C4.5
and CART, can be implemented using the same approach

A node in a decision tree algorithm represents a branching con-
dition. If the input meets the condition, the flow of the tree goes
through a certain path. Otherwise, a different path is selected. The
tree can have a binary node or a multi-threshold node. Binary nodes
branch out into two paths only, whereas multi-threshold nodes can
branch out into more than two paths.

Figure 2 shows an example of the internal structure of a simple
binary node. Figure 2a shows a block diagram of a branching circuit
for a single node. The node first checks the input value and com-
pares it to a given threshold value. The comparator then sends the
result to a demultiplixer circuit that directs the flow of the control
signals into one of two branches. A simple implementation of a
one-bit comparator circuit is shown in Figure 2b. The comparator is
usually designed to deal with n-bit values but Figure 2 is used here
to simplify the concept.

(a) A block diagram of a branching circuit for a binary node

(b) Equivalent schematic of a branching circuit of a binary node

Figure 2: An example of a branching circuit of a binary node.

Since we are targeting Xilinx UltraScale architecture, we con-
ducted an extensive study of the Configurable Logic Block (CLB)
architecture of Xilinx UltraScale family. The CLB is the main build-
ing block that is used to implement all combinational and sequential
logic of our proposed tree-base classifier. Each CLB unit consists
of a group of logic elements along with an interconnect resource
to connect all logic units. We followed the UltraScale Architec-
ture Configurable Logic Block user guide in [23] to make sure that
the synthesis tool will interpret the HDL code correctly and will
generate an optimum logic design for the target application.

www.astesj.com 239

http://www.astesj.com


H. Azmi / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 237-244 (2020)

Figure 3: An example of a MicroBlaze interface circuit.

3.1 Implementation Challenges

Researchers utilized different techniques to implement machine
learning algorithms on FPGA. Two common approaches are mostly
cited in the literature. The first approach is writing the machine
learning algorithm in a high level language, such as C, and then
using a synthesis tool to convert from a high level language to a
hardware description language. The second approach is targeting a
structure-based design. Then, building all components in hardware
and connecting these modules using port mapping. Each one of
these two techniques has its advantages and disadvantages. More-
over, there are different implementation challenges associated with
each approach. In this section, we discuss these challenges in details
and explore different solutions to address them.

High Level synthesis (HLS) tools provide a mechanism to auto-
generate HDL codes from high level languages, such as C, C++ and
SystemC. HLS tools can save development time when implementing
complex algorithms that can be easily represented in C language, for
example. However, the majority of these tools do not provide com-
plete support to generate recursion function in hardware description
languages. Recursion comes with a difficult synthesis challenge
by nature because the synthesis tool does not know when the exit
condition will happen and hence can not predict the complexity
of the hardware circuit that should be generated to implement the
recursion function. For example, to generate a tree-based classifier,
it is important that the synthesis tool knows the maximum depth of
the tree. Otherwise, the tool can’t support the generation process of
the tree hardware logic at run time if the depth is unknown.

This limitation is blocking the usage of HLS tools in such scenar-
ios. Researchers created various techniques to address this problem
by developing recursive functions as an Embedded Domain Spe-
cific Language (EDSL) in C++ [24]. Authors in [24] addressed
the recursion limitation by utilizing the C++ front-end of an HLS
compiler [24]. However, this approach is not easy to integrate with
HLS tools, such as Vivado, as the library needs to be re-customized
every time the tool is used. This limitation makes it difficult to rely
on this approach as a permanent solution, especially for real-time
applications that require recursions to operate at run-time. Another
proposed solution is having a maximum estimated depth of the tree
and generating the digital logic for any tree-based classifier based on
that maximum depth. However, this solution might fail if the target
application requirements exceed the maximum depth. Moreover, if

the requirements were within the maximum depth, the generated
logic will have extra gates that are not used in the design, which
causes an overhead area cost.

Another approach is utilizing structural implementation by divid-
ing up the machine learning classifiers into separate blocks. These
blocks are designed to deal with data-input, feature engineering,
dataset training, and classification or prediction. For each block,
designers write the hardware description code that implements the
functionality of the intended block. The design is then connected
together through port mapping as one complete design and used to
process input data and solve machine learning problems.

This approach is proven to provide an optimized design for the
target problem. However, the design process forces engineers to
make very rigid design decisions to handle the target training set.
For example, when generating a tree, designers can build a simple
tree design and then re-instantiate this block through a pipeline
structure. The challenge with this design method is that it causes
a significant delay during the training phase because it executes
the learning tasks sequentially. On the same context, designers can
expand the tree to the required depth using hardware generators.
This approach has a technology-based limitation as the maximum
tree depth must be defined based on the target available silicon area.

3.2 Proposed Hardware/Software Co-design

Our proposed design aims at addressing the limitations of previous
designs that are discussed earlier. We utilize the hardware-software
co-design approach which gives designers the ability to execute
several tasks in parallel while benefiting from the conventional
implementation of complex recursive functions. This approach
has been adopted previously by several researchers. The authors
in [25] presented various implementations of decision trees using a
sequence of universal nodes.

We explored soft and hard cores offered by Xilinx technology
and we chose to use the the MicroBlaze IP core as our main pro-
cessor [26]. MicroBlaze is built as a soft processor, RISC-based
architecture, with a rich set of instructions that are optimized for em-
bedded applications [27]. The MicroBlaze solution offers complete
flexibility to select the needed peripheral, bus interfaces for memory
and GPIO, and the ability to implement complex recursive functions
that are needed in the machine learning training phase [27].

www.astesj.com 240

http://www.astesj.com


H. Azmi / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 237-244 (2020)

To complete the machine learning system design, we utilized
other IPs to be able to train the network using different types of
datasets. The soft-core is wrapped up by a Verilog code so that it
can interact with the other components in the system. The soft-core
is configurable in terms of number of ports, interrupt vectors, pro-
grammable timers, size of memory, and the maximum operating
frequency.

Figure 3 shows a schematic diagram of the MicroBlaze interface
circuit. The IP comes with default ports for interrupt, debug, clock ,
reset, DLMB, ILMB and AXI interfaces. Designers have several op-
tions when it comes to the configuration of the MicroBlaze interface.
Designers can choose to integrate AXI or ACE bus and can also
enable or disable the debug interface. To speed up the performance,
designers can use instruction and data caches. The MicroBlaze is
connected to its peripherals through an AXI interconnect.

Figure 4 shows that AXI interconnect can be configured in two
different ways. First, the number of master/slave connections can
be programmed to generate the required interfaces. Second, the
interconnect optimization strategy can be set to minimize the area
or maximize the performance, which gives the designer the ability
to choose various strategies based on the application requirements.

Having a standard interface like AXI bus allows designers to
easily integrate other hardware peripherals/IPs to the design easily.
Since AXI is part of the Advanced Microcontroller Bus Architecture
(AMBA) family, it will also easy to integrate any peripheral/IP that
can be connected to AXI through bridges, such as APB, ACE, etc.

We conducted an extensive study of the architecture of the target
FPGA to analyze the propagation delay through each LUT regard-
less of the function implemented, which is done for all classification
functions.

Figure 4: A programmable AXI interconnect control window from Xilinx.

To implement a hardware/software co-design on Virtex Ultra-
Scale, we use Vivado software tool. After completing the software
programming in the Software Development Kit tool, we had to gen-
erate the .elf file and associate it with the MicroBlaze IP in Vivado
to complete the integration process. The association process had
several technical challenges. For example, the default block RAM
size was one big limitation. We addressed this issue by allocating
extra memory for the MicroBlaze software code.

The integration between hardware logic design and software
code that runs on a microprocessor achieved several performance

enhancement goals. First, the hardware logic of the entropy cal-
culation and tree splitting is done using combinational logic gates
that execute in parallel, which speeds up the processing of the tree
generation during training and the classification during testing. The
software code that runs on the MicroBlaze soft-core addressed the
recursion task during the generation of the tree structure. There-
fore, this integration was a major factor in improving the overall
performance of the proposed design.

4 Experimental Work
The proposed system is designed to deal with different types of
datasets that might need further processing. Figure 5 shows various
data types that need to be considered before reading dataset for
processing. Data can be qualitative or quantitative. Qualitative data
includes

• nominal data, such as variables with no ranking sequence or
inherent order like race and gender, etc.

• ordinal data, such as variable with an order like blood group,
etc.

• binary data that has only two options, such as yes and no.

On the other hand, quantitative data includes

• discrete data, such as finite numbers of values that can not be
classified meaningfully, etc.

• continuous data is information that can be measured on a
scale and can be classified meaningfully, etc.

Figure 5: An explanation of the different data types that should be handled by the
proposed design.

A pre-processing step must be executed first in order to convert
the input data, into a standard format that is easy to process by the
machine learning engine. One possible solution is to convert all
various data types into binary format. This conversion is a very
significant step to ensure that all input data types are converted to a
machine-friendly format.

Figure 6 shows an example of the conversion process from nom-
inal and numerical types of data to binary data type. The conversion

www.astesj.com 241

http://www.astesj.com


H. Azmi / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 237-244 (2020)

process is done as follows. First, each feature is examined to ex-
tract its list of all possible values. For example, the first column
in Figure 6 (i.e. currency) can take three values: 1A, 5A and 6A.
For each one of these values, we create a separate feature in the
dataset in binary format. The new feature indicates whether each
specific instance in the dataset has the currency set to that value or
not. Since the currency feature has three values. Then, three new
binary features are created to replace it. As shown in the example in
Figure 6, the currency feature is replaced in the conversion by three
binary features: currency(1), currency(5), and currency(6).

Figure 6: An example of converting nominal to binary format.

The number of features in Figure 6 for the output set will most
likely increase based on how many nominal values are found in
each feature. This conversion process helps researchers get an early
estimation of the required memory blocks that should be allocated
to host and process the training set.

4.1 Choosing the most significant feature

The most important decision in building a decision tree is choosing
the root element that best distinguishes different patterns base on a
certain threshold. The tree structure helps in building a model that
classifies instances by navigating through various nodes in the tree
until reaching one of the leaf nodes [28]. We use the information
gain in this paper as our target evaluation metric so that the feature
with the highest information gain is selected as the root element.
The children nodes are then generated recursively. We continue to
split the tree until we reach the decision nodes. The information
gain calculations are based on the impurity level calculations in a
set of samples. The formula used to calculate the entropy is given
by [28]:

Entropy = −
∑

i

Pilog2Pi (1)

Where Pi is a probability of the class i relative to the total number
of samples in the dataset.

The MicroBlaze processor is used to complete the calculations
of the information gain as part of the software implementation of the
target classifier. Feature selection plays a major role in improving
the success rate of the decision tree classification. We conducted a
comparative analysis to check which features are highly correlated
and which features are causing overlaps that reduces the classifica-
tion accuracy.

4.2 FPGA Implementation

FPGA implementation goes through various steps. First, we compile
the code, then we simulate the design to make sure that the design
functions correctly. Following that, we perform design synthesis to
convert the design into equivalent logic gates. After synthesis, we

perform post-synthesis simulation to ensure that the setup, hold, and
propagation delays of the used gates don’t affect the functionality
of the design. Then, we perform the translation, mapping, place and
route steps. Finally, we perform post-layout simulation and generate
the bitstream file that is used to program the target FPGA.

Table 2 summarizes the results of the FPGA implementation
of the proposed design. Due to the utilization of the MicroBlaze
soft-core, we used limited resources from the target FPGA. Figure 7
presents a snapshot of the software tool that shows the placement
and layout of the generated cells on the target FPGA. Figure 7
highlights the layout utilization percentage when implementing the
proposed design in the target FPGA. The layout confirms the syn-
thesis results that such a design doesn’t require a lot of silicon area
when implemented using the proposed SW/HW co-design approach.
This is due to the utilization of the MicroBlaze software core, which
saves a lot of silicon area during the implementation process. Fig-
ure 8 shows the statistics of on-chip components used from slice
logic to implement the interface circuit with the MicroBlaze soft-
core. It is clear from the figure that look-up-tables and registers
constitute the majority components used from the slice logic in the
FPGA.

Table 2: Implementation results

N Item Measure
1 Total On-Chip Power (W) 0.232
2 Dynamic (W) 0.154
3 Device Static (W) 0.151
4 Effective TJA (C/W) 1.7
5 Max Ambient (C) 84.5
6 Junction Temperature (C) 25.5
7 Slice Logic 3542
8 Block RAM 9
9 MMCM 2
10 I/O 14

We studied several implementations in the literature to compare
the implementation of our proposed solution to previous implemen-
tations in the literature. We found out that it is difficult to make a
one-to-one comparison due to three reasons. First, the target FPGA
in the published work in the literature is different from ours. There-
fore, the hardware utilization and used resources will not use the
same base-reference to report the results, which makes it difficult to
compare one implementation to another.

Second, there is no standard benchmark for dataset/classifier
pair that is used across different implementations in the literature.
Therefore, we could not implement a reference dataset/classifier
pair to make a fair comparison. Third, the results are reported in dif-
ferent formats in the published papers. Few authors used utilization
ratios, whereas others created their own cost unit formulas. Hence,
the performance evaluation criteria are not the same across different
publications. Although these factors affect the correctness and acc-

www.astesj.com 242

http://www.astesj.com


H. Azmi / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 237-244 (2020)

Table 3: Comparison with other implementation in the literature.

N Implementation Used Hardware Implementation Main Finding Reference
1 Gini-based decision tree Xilinx Virtex-II Pro-based 31% minimum utilization [29]
2 Hyper-rectangle hardware implementation Xilinx Virtex (unknown version) minimum 18 custom cost unit [30]
3 Various architectures Xilinx Virtex 5 SMpL needs 56% less resources [31]
4 Multiple classifier systems, Xilinx Virtex 5 95.8% accuracy - custom performance [32]
5 Random Forest GPU GeForce GTX 280 GPU implementation evaluates [33]

the forest in about 1% of
the time compared to CPU

6 Random Forest NVIDIA Tesla C2050 speed increases at least 300x [34]
compared to CPU

7 Proposed HW-SW co-design Xilinx UltraScale Less than 1% utilization of resources This paper

Figure 7: A snapshot of the FPGA placement and routing of the target design.

Figure 8: On-chip components used from slice logic.

curacy of the comparison, we reported the implementation results of
various published work in Table 3. We presented these findings in
Table 3 to show the different ways authors reported their implemen-
tation results of tree-based classifiers on FPGA. We also added GPU
implementation results as examples of alternative hardware imple-
mentations. Experimental results show that the proposed design
utilized less than 1% of the FPGA resources when implemented on
Xilinx Virtex UltrScale FPGA.

5 Conclusion and Future Work
This paper presented a promising software-hardware co-design ar-
chitecture for the implementation of machine learning algorithms.
As a proof of concept, the paper discussed the implementation of
a decision-tree algorithm based on ID3 implementation. The main
functions of the ID3 algorithm ran on a MicroBlaze soft-core IP
from Xilinx to utilize the processing units that are already available
in the FPGA design flow. The integration of peripherals with the
MicroBlaze is done through an AXI AMBA bus using a light weight
version. Choosing AXI bus is an important design decision to make
sure that the soft-core IP has a standard interface that simplifies the
integration with other peripherals.

References
[1] A. Shawahna, S. M. Sait, A. El-Maleh, “FPGA-based Accelerators of Deep

Learning Networks for Learning and Classification: A Review,” CoRR,
abs/1901.00121, 2019.

[2] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, J. Zambreno, “An FPGA
Implementation of Decision Tree Classification,” in 2007 Design, Automation
Test in Europe Conference Exhibition, 1–6, 2007, doi:10.1109/DATE.2007.
364589.

[3] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, J. Zambreno, “An FPGA
Implementation of Decision Tree Classification,” in 2007 Design, Automation
Test in Europe Conference Exhibition, 1 – 6, 2007, doi:10.1109/DATE.2007.
364589.

[4] M. Barbareschi, S. D. Prete, F. Gargiulo, A. Mazzeo, C. Sansone, “Decision
Tree-Based Multiple Classifier Systems: An FPGA Perspective,” International
Workshop on Multiple Classifier Systems, 194–205, 2015.

[5] R.Harikumar, M.Balasubramani, “FPGA Synthesis Of Soft Decision Tree
(SDT) For Classification Of Epilepsy Risk Level From Fuzzy Based Classifier
Using EEG Signals,” International Journal of Soft Computing and Engineering,
1, 206–211, 2011.

www.astesj.com 243

http://www.astesj.com


H. Azmi / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 237-244 (2020)

[6] N. Dalal, B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, 886–893 vol. 1, 2005, doi:
10.1109/CVPR.2005.177.

[7] M. FULARZ, M. KRAFT, “Hardware implementation of a decision tree classi-
fier for object recognition applications,” Measurement Automation Monitoring,
61, 379–381, 2015.

[8] T. Traces, “TCP Statistic and Analysis Tool,” http://tstat.tlc.polito.it/, accessed:
2019-08-06.

[9] K. K. M. Da Tong, Lu Sun, V. Prasanna, “High Throughput and Programmable
Online Traffic Classifier on FPGA,” Proceedings of the ACM/SIGDA interna-
tional symposium on Field programmable gate arrays, 255–264, 2013.

[10] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, “Optimizing FPGA-based
Accelerator Design for Deep Convolutional Neural Networks,” in Proceedings
of the 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’15, 161–170, ACM, New York, NY, USA, 2015, doi:
10.1145/2684746.2689060.

[11] T. Bhaaskar, K. Vishal, “Automatic generation of hardware Tree Classifiers,”
https://open.bu.edu/handle/2144/23688, 2017, accessed: 2020-09-07.

[12] P. R. Gankidi, J. Thangavelautham, “FPGA architecture for deep learning and
its application to planetary robotics,” in 2017 IEEE Aerospace Conference,
1–9, 2017, doi:10.1109/AERO.2017.7943929.

[13] Gan Feng, Zuyi Hu, Song Chen, Feng Wu, “Energy-efficient and high-
throughput FPGA-based accelerator for Convolutional Neural Networks,” in
2016 13th IEEE International Conference on Solid-State and Integrated Circuit
Technology (ICSICT), 624–626, 2016, doi:10.1109/ICSICT.2016.7998996.

[14] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, 86(11), 2278–2324, 1998.

[15] R. Kulaga, M. Gorgon, “FPGA Implementation of Decision Trees and Tree
Ensembles for Character Recognition in Vivado HLS,” Image Processing and
Communication, 19, 71–82, 2015.

[16] F. Saqib, A. Dutta, J. Plusquellic, P. Ortiz, M. S. Pattichis, “Pipelined Decision
Tree Classification Accelerator Implementation in FPGA,” IEEE Transactions
on Computers, 64, 280–285, 2015.

[17] J. Grajal, O. Yeste-Ojeda, M. Sanchez, M. Garrido, M. Lopez-Vallejo, “Real-
time FPGA Implementation of an Automatic Modulation Classifier for Elec-
tronic Warfare Applications,” The 19th European Signal Processing Conference
(EUSIPCO), 1514–1518, 2011.

[18] M. Owaida, H. Zhang, C. Zhang, G. Alonso, “Scalable Inference of Decision
Tree Ensembles: Flexible Design for CPU-FPGA Platforms,” 27th Interna-
tional Conference on Field Programmable Logic and Applications (FPL), 1–8,
2017.

[19] S. Surekha, “A Comparative Study of Rough Set Theoretic Decision Tree
Induction Algorithms,” in 2018 International Conference on Current Trends
towards Converging Technologies (ICCTCT), 1–6, 2018, doi:10.1109/ICCTCT.
2018.8550978.

[20] H. Liu, M. Zhou, X. S. Lu, C. Yao, “Weighted Gini index feature selec-
tion method for imbalanced data,” in 2018 IEEE 15th International Con-
ference on Networking, Sensing and Control (ICNSC), 1–6, 2018, doi:
10.1109/ICNSC.2018.8361371.

[21] B. Chen, L. Xing, B. Xu, H. Zhao, J. C. Príncipe, “Insights Into the Robust-
ness of Minimum Error Entropy Estimation,” IEEE Transactions on Neural
Networks and Learning Systems, 29(3), 731–737, 2018, doi:10.1109/TNNLS.
2016.2636160.

[22] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho, A. A. Freitas, “A
Survey of Evolutionary Algorithms for Decision-Tree Induction,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(3), 291–312, 2012, doi:10.1109/TSMCC.2011.2157494.

[23] “UltraScale Architecture Configurable Logic Block User Guide,” https :
//www.xilinx.com/support/documentation/userguides/ug574−ultrascale−
clb.pd f , accessed: 2019-08-06.

[24] D. B. Thomas, “Synthesisable recursion for C++ HLS tools,” in 2016 IEEE
27th International Conference on Application-specific Systems, Architectures
and Processors (ASAP), 91–98, 2016, doi:10.1109/ASAP.2016.7760777.

[25] J. R. Struharik, “Implementing decision trees in hardware,” in 2011 IEEE 9th
International Symposium on Intelligent Systems and Informatics, 41–46, 2011,
doi:10.1109/SISY.2011.6034358.

[26] H. Azmi, R. Sayed, “FPGA-based Implementation of a Tree-based Classifier
using HW-SW Co-design,” 2019 6th International Conference on Advanced
Control Circuits and Systems (ACCS) & 2019 5th International Conference on
New Paradigms in Electronics & information Technology (PEIT), 224–228,
2019.

[27] “Xilinx MicroBlaze Processor,” https :
//www.xilinx.com/products/intellectual − property/microblazecore.html,
accessed: 2020-08-26.

[28] Y. Zhong, “The analysis of cases based on decision tree,” in 2016 7th IEEE
International Conference on Software Engineering and Service Science (IC-
SESS), 142–147, 2016, doi:10.1109/ICSESS.2016.7883035.

[29] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, J. Zambreno, “An FPGA
Implementation of Decision Tree Classification,” in 2007 Design, Automation
Test in Europe Conference Exhibition, 1–6, 2007.

[30] J. Mitéran, J. Matas, J. Dubois, E. Bourennane, “Automatic FPGA based imple-
mentation of a classification tree,” in SCS 2004 Signaux, Circuits et Systèmes
Application to Informations Systems, IT 03, Workshop on Information Systems,
2004.

[31] J. R. Struharik, “Implementing decision trees in hardware,” in 2011 IEEE 9th
International Symposium on Intelligent Systems and Informatics, 41–46, 2011.

[32] M. Barbareschi, S. Del Prete, F. Gargiulo, A. Mazzeo, C. Sansone, “De-
cision Tree-Based Multiple Classifier Systems: An FPGA Perspective,” in
F. Schwenker, F. Roli, J. Kittler, editors, Multiple Classifier Systems, 194–205,
Springer International Publishing, Cham, 2015.

[33] T. Sharp, “Implementing Decision Trees and Forests on a GPU,” in D. Forsyth,
P. Torr, A. Zisserman, editors, Computer Vision – ECCV 2008, 595–608,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[34] D. Marron, A. Bifet, G. D. F. Morales, “Random Forests of Very Fast Decision
Trees on GPU for Mining Evolving Big Data Streams,” in Proceedings of
the Twenty-First European Conference on Artificial Intelligence, ECAI’14,
615–620, IOS Press, NLD, 2014.

www.astesj.com 244

http://www.astesj.com

	Introduction
	Related Work
	Hardware Implementation of Decision Trees
	Implementation Challenges
	Proposed Hardware/Software Co-design

	Experimental Work
	Choosing the most significant feature
	FPGA Implementation

	Conclusion and Future Work

