

www.astesj.com 295

Arduino-Compatible Modular Kit Design and Implementation for Programming Education

Gyeongyong Heo*

Department of Electronic Engineering, Dong-eui University, Busan, 47340, Korea

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 22 July, 2020
Accepted: 11 August, 2020
Online: 17 September, 2020

 To cultivate creative talent, ways to learn creative problem-solving skills is needed, and
one of them is programming. Arduino is a well-known tool used for programming education
and the usefulness has been demonstrated in various case studies. However, there are
several problems in existing Arduino-compatible kits as education tools, including the need
for understanding hardware and the difficulty of expanding the kits with third-party
hardware. In this paper, the design of an Arduino-compatible modular kit, called as
FRUTO, is proposed that can be easily connected and conveniently programmed to
overcome the problems. The structure and features of the FRUTO kit that implements the
proposed design are also shown. The FRUTO kit consists of the FRUTO module that uses
a unified connector for easy and intuitive connection and the FRUTO library that abstracts
hardware-dependent code for easy programming. The FRUTO kit is easier to use and more
scalable than existing kits. Even more, it can be used in various ways depending on the
students’ familiarity with hardware and programming. These strengths will make the kit to
be an appropriate tool for various microcontroller-related education as well as
programming education.

Keywords:
Arduino
Programming Education
Modular Design
FRUTO Kit

1. Introduction

In modern society, programming goes beyond creating
programs that run on computers to include interacting with
everyday environments through computers. This concept of
programming is more important than ever in the context of the
fourth industrial revolution and the internet of things. The
importance of programming education is also evident in the
inclusion of programming in curriculum, beginning in the United
Kingdom in 2014. In Korea, programming education has been
implemented gradually since 2018 following the curriculum
revision in 2015 [1]. Accordingly, information course was
designated as compulsory and physical computing was included as
part of information course. Physical computing, designed to teach
interactive design at Interactive Telecommunications Program at
New York University, means building interactive physical systems
by the use of software and hardware that can sense and respond to
analog world [2], which can be extended to a creative framework
for understanding human beings’ relationship to digital world. The
introduction of physical computing, not just computer-based
programming, in information course reflects the assessment that
programming education helps to develop problem-solving skills

and improve logical thinking. The findings that hardware
education has a positive impact on students' interest, motivation
and learning attitudes also influenced this decision [3-4]. Physical
computing can be beneficial for students who are not necessarily
interested in pursuing computer programming but would like to
gain a better understanding of technology and how it is shaping our
world[5].

Arduino is one of the representative tools used for
programming education[6-8]. Arduino began as an open-source
microcontroller project for artists and has become one of the
leading microcontroller projects for its ease of use. Arduino has
been widely adopted as an educational tool in elementary, middle
and high schools as well as universities, and various educational
effects using Arduino have been reported [9-10]. In addition,
various studies on the development of Arduino-compatible
educational tools are also in progress [11-13]. However, one of the
problems in using Arduino as an educational tool is that it requires
knowledge of hardware. Besides, existing Arduino-compatible kits
are designed without consideration of various applications and are
limited in their use in ways that are not considered in design phase.
These problems are from the fact that existing kits were designed
for Arduino itself. The kit for programming education should be
considered as a tool.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Gyeongyong Heo, Department of Electronic Engineering,
Dong-eui University, Busan, 47340 Korea, +82-51-890-1673, hgycap@deu.ac.kr

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 295-301 (2020)

www.astesj.com

https://dx.doi.org/10.25046/aj050537

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050537

G. Heo / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 295-301 (2020)

www.astesj.com 296

In this paper, the design of a modular Arduino-compatible kit,
called as FRUTO, is proposed to overcome the problems
mentioned, and its structure and features are shown that implement
the proposed design. On the hardware side, the connection between
modules is made easy and intuitive with a unified connector, while
on the software side, the code for controlling modules uses
common abstract functions to facilitate easy programming, which
results in improved usability. The proposed design also improved
scalability by allowing anyone to produce hardware and software
modules using the proposed design. As a result, improved usability
and scalability make the FRUTO kit a learning tool for students of
various levels. The proposed design was recognized for its
differentiation through patent registration [14-15], and the FRUTO
kit that implements the design is undergoing a pre-launch test.

In the next section, Arduino-compatible kits used in
programming education and their limitations are presented.
Section 3 is devoted to propose a new kit design that solves the
problems of existing kits, and section 4 describes the FRUTO kit
that meets the proposed design. Conclusions and directions for
further improvements are discussed in section 5.

2. Arduino as a Tool for Programming Education

2.1. Programming Education using Arduino

As a leading physical computing platform, Arduino has been
widely used for programming education as well as physical
computing. In particular, Arduino is drawing attention as an
alternative to overcome the limitations of the traditional
programming education, as it places importance on the process of
‘thinking by hand’ through the prototyping process [16]. The use
of Arduino for physical computing and programming education
comes from the fact that it is highly accessible and usable as it is
designed as a platform for artists and designers. The fact that
Arduino is suitable for project-based learning (PBL) is another
reason why Arduino is used as a tool for programming education.
PBL has advantages such as getting structured and integrated
knowledge for problem-solving beyond fragmentary knowledge
and fostering active attitudes and confidence by searching for the
knowledge required in problem-solving. The usefulness of PBL
using Arduino in engineering subjects as well as programming
education has been demonstrated in various case studies [17-19].

2.2. Problems with Existing Kits in Hardware

There are several Arduino-compatible kits used for
programming education, which can be divided into three groups:
(1) Arduino kit using the original Arduino board, (2) Arduino-
compatible all-in-one board with built-in I/O devices, (3) Arduino-
compatible kit with modular I/O devices and a unified connector.

The fundamental problem in using the original Arduino board
as an educational tool is that students need to understand hardware.
Since most I/O devices use different numbers of I/O pins and
different data exchange methods, it is necessary to understand the
hardware specification of each I/O device to obtain the desired
operation. One way to solve the hardware dependency is to use an
all-in-one board that contains all the necessary I/O devices as
shown in Fig. 1-(b). All-in-one boards do not require a deep
understanding of hardware, which can be seen as an advantage. On
the other hand, it is difficult to use in ways that are not considered

in the design, that is, it is poor in scalability. Moreover,
programming education using an all-in-one board is almost the
same with the conventional computer-only education.

(a) Arduino kit

(b) Arduino-compatible all-in-one board with built-in I/O devices

(c) Arduino-compatible kit with modular I/O devices

Figure 1: Arduino-compatible kits for programming education

The modular kit in Fig. 1-(c) uses a unified connector to make
the connection easy. However, only simple I/O devices can be
made in modules, and the position where the module can be
connected to the main module is fixed. In addition, the control
method varies from module to module in spite of the unified
connector.

Table 1: Evaluation of existing Arduino-compatible kits
Type Diversity Connectivity Independency

Arduino kit ○ × ×
All-in-one board × △ ○

Modular kit △ △ △

Table 1 summarizes the evaluation of existing kits based on the
number of available I/O devices (Diversity), the degree of easy
connection (Connectivity), and the degree of hardware-related
knowledge required (Independency). Of the three types, modular
kits can be used reasonably in all respects. However, modularity in
software is not considered and hardware modularity is limited to
some simple I/O devices. Therefore, there is a need for a new
design that all modules can be connected easily and intuitively
using a unified connector.

2.3. Problems with Existing Kits in Software

Two programming tools are mostly used to make programs for
existing kits: Arduino and Scratch. Arduino uses C/C++ language
to write a program, while scratch uses drag-and-drop blocks to
build a program visually. It is not easy, however, to make complex
code with the blocks given and the assembled blocks should be
converted to C/C++ code before compilation. Therefore, only

http://www.astesj.com/

G. Heo / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 295-301 (2020)

www.astesj.com 297

C/C++ language under Arduino environment is considered in this
paper.

Writing a program using C/C++ language under Arduino
environment also has a similar problem with that on the hardware
side. Since different I/O devices have different I/O control methods,
it is also necessary to understand hardware to write the code for a
specific I/O device. Most existing kits are based on Arduino
environment. The Arduino library already provides an abstraction
of low-level functions for AVR microcontrollers in Arduino
boards, which makes it possible for different AVR
microcontrollers to control a specific I/O device in the same way.
That is, Arduino provides a microcontroller-independent library.
However, as I/O devices are still controlled in different ways, the
Arduino library is still hardware-dependent. Therefore, it is
necessary to ensure hardware independence through a library that
can control I/O devices with common abstract functions. This
library should be based on the Arduino library for compatibility
with Arduino.

Figure 2: Hierarchical library structure

3. Proposed Kit Design

3.1. Requirements

The most important problem to be solved in a new design is the
dependence on hardware. Most of the existing kits are for learning
Arduino, not for learning programming or physical computing. As
a kit for programming education should reduce hardware
dependency as much as possible, the kit design proposed here has
the following goals:

• a modular kit with easy and intuitive connection using a
unified connector

• hardware-independent abstract functions to exchange data
between modules

• scalability by adding third party or DIY(Do It Yourself)
modules and corresponding libraries

• applicability in various microcontroller-related education

To achieve these goals, the followings are applied to the
design.

• There are two kinds of modules: main module and expansion
module with an I/O device.

• The Modules form a cascading connection with I2C(Inter-
Integrated Circuit).

• The main module is compatible with Arduino and has one
dedicated I2C connector for connecting an expansion module.

• Each expansion module includes a microcontroller that
controls the I/O device and communicates with the main
module.

• The microcontroller in each expansion module is one of the
microcontrollers used in Arduino boards for compatibility.

• The expansion module has two dedicated I2C connectors to
support cascading connection.

• The program for the main module consists of the code for I2C
communication and system logic for overall system control.

• The program for the expansion module consists of the code
for I2C communication and the code for I/O device control.

• Hardware-dependent code for I2C communication and I/O
device control is provided through a dedicated library.

• I2C communication code in the main module uses common
abstract functions in the library across all expansion modules.

• The dedicated library is based on the Arduino library to
maintain the compatibility with Arduino.

• The module design is based on the published Arduino design
and the proposed design is also open source.

• The dedicated library is also open source.

The core of this design and implementation is in the
modularization of hardware and software. Hardware
modularization enables easy and intuitive connection and software
modularization allows students to focus on hardware-independent
system logic.

All modules are compatible with Arduino, so the kit can be
used in a variety of configurations, such as main and expansion
modules together, main module only, and expansion module only.
These configurations can be selected according to the student's
prior knowledge of hardware and software, and used in various
microcontroller-related education.

Figure 3: Cascading module connection

3.2. Hardware Design

The key in the proposed design is to enable cascading
connection using a unified connector. In order to enable cascading
connection, a communication method that can share a serial
connection line and a dedicated controller for communication are
required. There are many ways to share the serial connection line,
and one of them is I2C communication[20], which is supported by
Arduino by default. I2C communication allows cascading
connection with four lines. In I2C communication, the main
module acts as a master and the expansion modules act as slaves.

http://www.astesj.com/

G. Heo / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 295-301 (2020)

www.astesj.com 298

Fig. 3 shows an example of module cascading using I2C
connection.

The controller in the expansion module is responsible for
controlling I/O devices as well as I2C communication. The
proposed design adopts ATmega328 as the microcontroller for all
modules to maintain compatibility with Arduino UNO. Fig. 4
shows the basic configuration of the main and expansion module
in the proposed design. The main module has one I2C connector
as a starting point, and the expansion module has two I2C
connectors to support cascading connection.

(a) Main module

(b) Expansion module

Figure 4: Module design

3.3. Software Design

In the proposed design, the library is also modular. The
Arduino library is an abstraction of low-level microcontroller
functions. However, the Arduino library is hardware dependent as
it requires the understanding of I/O devices connected to an
Arduino board. Therefore, the proposed design reduces hardware
dependency by separating hardware-dependent and hardware-
independent code.

Consider a system that uses a main module, a button module,
and an LED module to represent button states to LEDs. In this
configuration, three ATmega328s are used, and three programs for
each ATmega328 are required. The button module requires a
program to read the status of the buttons and send it to the main
module through I2C communication, while the LED module
requires a program to represent the data received from the main
module to LEDs. That is, the program for the expansion module
includes hardware-dependent code for controlling I/O devices and
I2C communication. On the other hand, the program for the main
module contains the code for I2C communication with the
expansion modules and the hardware-independent code for
controlling the overall system, called system logic. The emphasis
in programming education should be on hardware-independent
system logic.

In the proposed design, the library consists of a main (or
master) library and expansion (or slave) libraries. The expansion
library has I2C communication and I/O device control functions,
and is pre-installed in the expansion module. The main library, on
the other hand, provides common abstract functions for
exchanging data through I2C communication with expansion
modules. The main library is compiled with system logic and
installed in the main module.

Figure 5: Program structure

In Fig. 5, each library contains hardware-dependent code, and

system logic is hardware-independent code that is the only one
students must write. Hardware-independent system logic allows
students to develop logical thinking and problem-solving skills
that are the goal of programming education.

4. FRUTO Kit

The FRUTO kit is a kit that satisfies the guide and consists of
the FRUTO modules corresponding to hardware and the FRUTO
library corresponding to software.

4.1. FRUTO Module

The FRUTO module can be a main module or an expansion
module, and ATmega328 is used as the controller for each module.
The main module follows the published design of Arduino UNO
and has an additional I2C connector for cascading connection. On
the other hand, an expansion module is composed of an expansion
controller, I/O devices, and I2C connectors.

Fig. 6 shows the circuit diagram of an LED module. Unlike the
main module, the expansion controller uses minimal circuit in the
Arduino UNO design. Therefore the expansion module cannot
fully operate as an Arduino UNO compatible board. However, in
most cases, the expansion module uses the pre-installed program,
and a custom program can be installed with an external
programmer.

The modules are connected directly to each other by default,
but a dedicated cable and a distribution module is also included in
the FRUTO kit to enable flexible connection. Fig. 7 shows an
example of connecting 4 modules using a distribution module and
a dedicated cable.

http://www.astesj.com/

G. Heo / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 295-301 (2020)

www.astesj.com 299

Figure 7: FRUTO module connection

4.2. FRUTO Library

As shown in Fig. 5 the programs needed for the FRUTO kit are
a library for a master, libraries for slaves, and a main Arduino
sketch. The master and slave libraries are provided as part of the
FRUTO library, and students only need to make a master sketch
for a main module. Fig. 8 shows a blink sketch that blinks the
LEDs on the LED module at 1-second intervals.

#include <FRUTO.h>
void setup() {
 FRUTO.begin();
}
void loop() {
 Module_LED.on(); // turn on 8 LEDs
 delay(1000);
 Module_LED.off(); // turn off 8 LEDs
 delay(1000);
}

Figure 8: Master sketch

Fig. 8 does not look very different from Arduino's blink sketch.
However, the FRUTO library is characterized by the fact that
hardware-independent ‘on’ and ‘off’ are used instead of hardware-
dependent ‘digitalWrite’, and that the ‘on’ and ‘off’ are based on
the common abstract function ‘write’.

#include "Module_LED.h"
void _Module_LED::on(void){ // turn on 8 LEDs
 write(0xFF);
}
void _Module_LED::off(void){ // turn off 8 LEDs
 write(0x00);
}
void _Module_LED::write(byte value){
 Wire.beginTransmission(MODULE_LED);
 Wire.write(value);
 Wire.endTransmission();
}

Figure 9: Master library for an LED module – Module_LED.cpp

#ifndef _MODULE_LED_
#define _MODULE_LED_
#include "Arduino.h"
#include <Wire.h>
#define MODULE_LED 11 // I2C address
class _Module_LED {
 public:
 void on(void); // turn on 8 LEDs
 void off(void); // turn off 8 LEDs
 void write(byte value); // send LED data
};
extern _Module_LED Module_LED; // LED module instance

#endif

Figure 10: Master library for an LED module – Module_LED.h

Figure 6: LED module circuit diagram

http://www.astesj.com/

G. Heo / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 295-301 (2020)

www.astesj.com 300

The master library in Fig. 9 and 10 is a library defined
differently according to each expansion module. Whereas the
operations common to all modules are defined in the system
library. Typical common operations included are to initiate I2C
communication and to initialize each expansion module.

#include "FRUTO.h"

void _FRUTO::begin(void){
 Wire.begin(); // start I2C as a master
}

Figure 11: FRUTO system library – FRUTO.cpp

#ifndef _FRUTO_
#define _FRUTO_

#include "Arduino.h"
#include <Module_LED.h> // initialize a module

class _FRUTO {
 public:
 void begin(void);
};

extern _FRUTO FRUTO;
#endif

Figure 12: FRUTO system library – FRUTO.h

Data sent to the expansion module using the master library is
received and processed by the LED module. Fig. 13 and 14 show
the slave library for an LED module, which receives one byte data
and controls 8 LEDs accordingly. Since the slave library is the
same as the sketch for Arduino, it is also possible to learn Arduino
through the slave library. This can also be seen from the fact that
the slave library has an INO extension.

#include <Wire.h>
#define MODULE_LED 11 // I2C address
int LED_pins[] = { 2, 3, 4, 5, 6, 7, 8, 9 };
byte LED_status = 0; // LED state

void setup() {
 for (int i = 0; i < 8; i++) {
 pinMode(LED_pins[i], OUTPUT);
 }
 Wire.begin(MODULE_LED); // start I2C as a slave
 // register data receive handler
 Wire.onReceive(receiveFromMaster);
 LED_control();
}
void loop() { }
// receive data from master
void receiveFromMaster(int bytes) {
 LED_status = Wire.read();
 LED_control();
}
void LED_control(void) {
 for (int i = 0; i < 8; i++){
 digitalWrite(LED_pins[i], ((LED_status >> i) & 0x01));
 }
}

Figure 13: Slave library for an LED module – Module_LED_slave.ino

Although the types of code presented seem diverse and
complex, students can start by writing a main Arduino sketch for
programming education. Table 2 summarizes the functions and
features of each code.

4.3. FRUTO Kit

The FRUTO kit consists of modular hardware compatible with
Arduino UNO and the FRUTO library for programming support.
The biggest advantage of the FRUTO kit in hardware is that it is
easy to add I/O devices. The hardware configuration is completed
by simply connecting the module having the I/O devices required
through a unified 4-pin connector. Observations of the course
using the FRUTO kit showed that the time required for hardware
configuration was less than one third compared to the course using
other Arduino-compatible kit. The rest of the time could be spent
on conceptual descriptions of the hardware and how it works.

The biggest advantage of the FRUTO kit in software is that the
hardware-dependent code is provided as a library. Low-level
hardware control tasks are handled in each expansion module,
which allows students to build and test a system by writing only
hardware-independent code for a main module. The hardware-
independent code can be made in the same manner with the
original sketch except that there is no hardware-controlling code.
The length of the code required when using the FRUTO library is
about 1/2 when controlling simple I/O device such as an LED
module, and about 1/4 when controlling a complex I/O device such
as an LED matrix module compared to the code using the Arduino
library. Overall, it was less than one third. The rest of the time can
be used to develop the logical procedures of the system.

In addition to simplifying hardware connection and
programming, one of the advantages of the FRUTO kit is that it
can be used as an educational tool for students of various levels.
Table 3 shows an example of how to use the FRUTO kit depending
on the students’ level. For beginners, the biggest advantage is that
it allows them to easily configure a system and write a program for
it with minimal hardware knowledge. Intermediates can use the
expansion modules and Arduino environment to learn Arduino
and/or microcontrollers. Module DIY allows advanced students to
design and implement an Arduino-compatible kit.

5. Conclusion

As the importance of programming education is being
emphasized more than ever, the demand for an appropriate
learning tool is also increasing. In addition, research findings that
using Arduino can improve problem-solving and team-level
collaboration, have led to various attempts to use Arduino for
programming education. However, existing Arduino-compatible
tools are limited in their use because of their hardware dependency.
In this paper, the design of a modular Arduino-compatible kit,
termed as FRUTO, that minimizes hardware dependency has been
proposed, and its configuration and features are examined that
implemented the proposed design. The FRUTO kit is easy to
connect and program, and expandable in many directions, which
makes it a versatile learning tool.

http://www.astesj.com/

G. Heo / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 295-301 (2020)

www.astesj.com 301

Currently, the FRUTO kit has 10 expansion modules and is
undergoing a pre-launch test in programming and microcontroller-
related education. Although the FRUTO kit satisfies the design
guide, developing a Scratch-like block programming tool is
expected to increase the number of users. Securing compatibility
with existing learning tools like Lego is also expected to contribute
to user growth. The feedback collected during the test including
the ones mentioned above might be incorporated into future
modifications and revisions.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] J. Choi, S. An, and Y. Lee, “Computing education in Korea-current issues and
endeavors”, ACM Transactions on Computing Education, 15(2), 1-8, 2015.
http://doi.org/10.1145/2716311

[2] D. O’Sullivan and T. Igoe, Physical Computing, Thomson, 2004.
[3] A. Khanlari, “Effects of educational robots on learning STEM and on

students’ attitude toward STEM,” in 2013 IEEE 5th Conference on
Engineering Education, Kuala Lumpur, Malaysia, 2013.
http://doi.org/10.1109/ICEED.2013.6908304

[4] H. Aoki, J. M. Kim, Y. Idosaka, T. Kamada, S. Kanemune, and W. G. Lee,
“Development of state-based squeak and an examination of its effect on robot
programming education,” KSII Transactions on Internet and Information
Systems, 6(11), 2880-2900, 2012. http://doi.org/10.3837/tiis.2012.11.008

[5] H. Bort, M. Czarnik, and D. Brylow, “Introducing computing concepts to non-
majors: a case study in gothic novels,” in the 46th ACM Technical
Symposium on Computer Science Education, Kansas City, Missouri, USA,
2015. http://doi.org/10.1145/2676723.2677308

[6] M. Banzi and M. Shiloh, Getting Started with Arduino: The Open Source
Electronics Prototyping Platform, Make Media, 2014.

[7] L. M. Herger and M. Bodarky, “Engaging students with open source
technologies and Arduino,” in 2015 IEEE Integrated STEM Education
Conference, Princeton, NJ, USA, 2015.
http://doi.org/10.1109/ISECon.2015.7119938

[8] Y. Jang, W. Lee, and J. Kim, “Assessing the usefulness of object-based
programming education using Arduino,” Indian Journal of Science and
Technology, 8(S1), 89-96, 2015.
http://doi.org/10.17485/ijst/2015/v8iS1/57701

[9] J. H. Park and S. H. Kim, “Case study on utilizing Arduino in programming
education of engineering,” The Journal of Institute of Korean Electrical and
Electronics Engineers, 19(2), 276-281, 2015.
http://doi.org/10.7471/ikeee.2015.19.2.276

[10] P. Mellodge and I. Russel, “Using the Arduino platform to enhance student
learning experiences,” in the 18th ACM Conference on Innovation and
Technology in Computer Science Education, Canterbury, England, UK, 2013.
http://doi.org/10.1145/2462476.2466530

[11] J. Sarik and I. Kymissis, “Lab kits using the Arduino prototyping platform,”
in 2010 IEEE Frontiers in Education Conference, Washington, DC, USA,
2010. http://doi.org/10.1109/FIE.2010.5673417

[12] K. Eom, Y. Jang, J. Kim, and W. Lee, “Development of a Board for Physical
Computing Education in Secondary Schools Informatics Education,” The
Journal of Korean Association of Computer Education, 19(2), 41-50, 2016.
http://doi.org/10.32431/kace.2016.19.2.005

[13] A. Garrigos, D. Marroqui, J. M. Blanes, R. Gutierrez, I. Blanquer, and M.
Canto, “Designing Arduino electronic shields: Experiences from secondary
and university courses,” in 2017 IEEE Global Engineering Education
Conference, Athens, Greece, 2017.
http://doi.org/10.1109/EDUCON.2017.7942960

[14] Tn1, Microcontroller Kit, Korean Patent 1017353010000 to Korean
Intellectual Property Office, 2017.

[15] G. Heo and J. Jung, “Arduino Compatible Modular Kit Design for
Educational Purpose”, Journal of the Korea Institute of Information and
Communication Engineering, 22(10), 1371-1378, 2018.
https://doi.org/10.6109/jkiice.2018.22.10.1371

[16] M. Rpzybylla and R. Romeike, “Physical computing and its scope – Towards
a constructionist Computer science curriculum with physical computing,”
Informatics in Education, 13(2), 241-254, 2014.
http://doi.org/10.15388/infedu.2014.05

[17] P. Plaza, E. Sancristobal, G. Fernandez, M. Castro, and C. Perez,
“Collaborative robotic educational tool based on programmable logic and
Arduino,” in 2016 Technologies Applied to Electronics Teaching, Seville,
Spain, 2016. http://doi.org/10.1109/TAEE.2016.7528380

[18] P. Martin-Ramos, M. J. Lopes, M. M. L. da Silva, P. E. B. Gomes, P. S. P. da
Silva, J. P. P. Domingues, and M. R. Silva, “First exposure to Arduino through
peer-coaching: Impact on students’ attitudes towards programming,”
Computers in Human Behavior, 76, 51-58, 2017.
http://doi.org/10.1016/j.chb.2017.07.007.

[19] S. J. Kim, “Project-based embedded system education using Arduino,” The
Journal of Korean Institute of Information Technology, 15(12), 173-180,
2017. http://doi.org/10.14801/jkiit.2017.15.12.173

[20] X. Righetti and D. Thalmann, “Proposition of a modular I2C-based wearable
architecture,” in 2010 15th IEEE Mediterranean Electrotechnical Conference,
Valletta, Malta, 2010. http://doi.org/10.1109/MELCON.2010.5475965

Table 2: Codes for the FRUTO kit

Name Code Sample Uploaded to Function Student Level Remarks
Master
Sketch Fig. 8 Main

Module
Control expansion modules with the

master library Beginner

FRUTO
Library

Master
Library Fig. 9, 10 (Main

Module)
Exchange data with expansion

modules Expert
Used in conjunction
with a master sketch System

Library Fig. 11, 12 (Main
Module) Initialize the system Expert

Slave
Library Fig. 13 (Expansion

 Module)
Exchange data with a main module
and control I/O devices accordingly Intermediate Pre-installed in each

expansion module

Table 3: FRUTO kit utilization by level

Level
Hardware Software

Remarks
Used hardware Hardware

dependency Programming area Used library

Beginner FRUTO kit LOW Master sketch FRUTO Useful for rapid prototyping

Intermediate Main or expansion
module alone MID Slave library,

Module test sketch Arduino Similar to using existing
Arduino-compatible kits

Expert Module DIY HIGH FRUTO library Arduino

http://www.astesj.com/

	2. Arduino as a Tool for Programming Education
	2.1. Programming Education using Arduino
	2.2. Problems with Existing Kits in Hardware
	2.3. Problems with Existing Kits in Software

	3. Proposed Kit Design
	3.1. Requirements
	3.2. Hardware Design
	3.3. Software Design

	4. FRUTO Kit
	4.1. FRUTO Module
	4.2. FRUTO Library
	4.3. FRUTO Kit

	5. Conclusion
	Conflict of Interest
	References

