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 In this industry 4.0 and digital era, we are more dependent on the use of communication 

and various transaction such as financial, exchange of information by various means. These 

transaction needs to be secure. Differentiation between the use of benign and malware is 

one way to make these transactions secure. We propose in this work a malware 

classification scheme that constructs a model using low-end computing resources and a 

very large balanced dataset for malware. To our knowledge, and search the complete 

dataset is used the first time with the XGBoost GBDT machine learning technique to build 

a classifier using low-end computing resources. The model is optimized for efficiency with 

the removal of noisy features by a reduction in features sets of the dataset by domain 

expertise in malware detection and feature importance functionality of XGboost and 

hyperparameter tuning. The model can be trained in low computation resources at less time 

in 1315 seconds with a reduction in feature set without affecting the performance for 

classification. The model gives improved performance for accuracy with the tuning of the 

hyperparameter and achieve higher accuracy of 98.5 and on par AUC of .9989. 
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1. Introduction 

Most of the cybersecurity issues are related to malware. 

Malware is malicious software. The first malware, “Morris worm” 

which is also a virus appeared in 1989-90. Malware is used to 

collect personal, financial data of a user and give control of ICT 

(Information Communication Technology) devices mobiles, 

computers, and systems to command and control centers managed 

by hacker groups. Malware is at the helm of the cybersecurity 

issue. The goal of hacker groups or hackers is to make the 

malware reach the system, network gear, and then use it for their 

ulterior motives. It may cost millions of dollars if one malware 

goes undetected [1]. As society becomes increasingly dependent 

on the computing system, it is important to detect malicious 

software (Malware). Specific code sequences, signature, executed 

by a virus are used by antivirus to detect the malware. Finding 

such code sequences is not matching with the speed at which new 

malware is being generated with greater use of ICT systems in 

varieties of areas ranging from individual, business, industrial. 

Nowadays with the Internet of Things (IoT), Industry 4.0, the use 

of ICT has grown at a very large rate and so has the attraction of 

hackers to hack them by use of malware, software with 

disingenuous intention, such as virus, worm, rootkit, key logger, 

Trojan horse, ransomware, spyware, etc. To detect this malware 

using traditional methods such as using a signature base [2] will 

leave much malware undetected, resulting in security issues. A 

signature-based approach is used in antivirus software. A 

signature is set with static and/or dynamic analysis manually to 

identify the malware. Malware authors keep the same 

functionality but polymorph the malware. Such polymorphed 

malware cannot be detected by antivirus as the signature is 

different. This problem is currently rampant. New polymorphed 

malware can be detected by a machine learning approach. The 

signature-based approach is insufficient as millions of new 

malware appear almost on an everyday basis. A technique needs 

to be developed that generalizes to new malware. Hence, 

detection of malware using machine learning is the right choice. 

Efficient automated malware detectors are required to classify 

software, application as malware, or benign.  

The dataset for malware research is not available publicly due 

to privacy concerns. Few online databases of malware [3] allow 

limited use of data. Many malware detection research is done using 

unbalanced data, the number of malware is very high compared to 

benign software. There may be discrepancies in malware data 

collected and that may be possible in a real environment. For 

effective malware research, one needs the large, balanced recent, 

and right mix of families of malware database [4]. With a large 

database with many attributes related to malware, one needs to use 
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expensive, complex, and high-end computing machines. In this 

research, we plan to use one such large database [5], which is 

shared publicly and low computing resources to build a matching 

or better malware detection system. Here we aim at extracting low 

dimension, effective features that contribute to learning and result 

in effective classifiers to detect malware. XGboost using Gradient 

Boost Decision Tree (GBDT) algorithm is used to extract few 

effective features from a large database with large attributes.  To 

our knowledge, the complete dataset is not used with the XGboost 

GDBT algorithm. We use this combination to extract the features, 

which can be used with low-end computing resource to build 

effective malware classifier.  This paper is organized with a 

background related to malware detection in section 2, the literature 

survey in section 3, methodology in section 4, experiments, and 

results in section 5, and conclusion in section 6. 

2. Background 

For malware, detection features may be extracted from the 

file format they are packed in. The executable, libraries, objects 

are packed using Common Object File Format (COFF). For the 

Windows operating system, it is Portable Executable 32/64 

(PE32/64) [6,7].  It may also be possible to find file agnostic 

features such as histogram of bytes in the program, byte entropy 

of various parts of a program [8], or strings available in the 

program [9]. The string may include URL accessed, registry 

accessed, deleted, modified, or files accessed, deleted or modified 

or IP address accessed, files accessed, created, deleted and 

modified, registry created, modified, and deleted. It may be 

possible to find a set of features for the detection of malware. A 

neural network can help achieve a higher-level representation of 

malware. The sequence classifier takes n bytes, n-gram, as input 

in [10]. However, it is limited to a few bytes or kilobytes. 

However, for malware, it may have to take millions of bytes, as 

the size of executable programs. The efficient extraction of 

features leads to efficient malware detection. Deep learning 

models use a complete executable without the need for features 

from domain knowledge [11]. It takes high-end computing 

resources and a large amount of time. 

2.1. Portable executable  

Windows binary consists of PE header [6], code, data, and 
resource part. The PE header has a COFF Header, optional header, 
and section tables. Each of these has subparts and further subparts. 
COFF header consists of 24 bytes and has signature 0x50450000, 
Machine, Number of sections, TimeDate. The Optional header 
has a standard COFF field of 28 bytes, windows specific field of 
68 bytes, and data directories of 144 bytes data directories. The 
standard COFF consists of magic, major, minor linker version, 
size of code, initialized data, uninitialized data, address of entry 
point, the base of code, data, etc. Windows-specific field consists 
of image base, section, file alignment, major, minor OS version, 
major, minor image version, major, minor subsystem version, 
win32 version value, size of image, header, checksum, subsystem, 
DLL characteristics, size of stack reserved, commit, size of heap 
reserve, commit, loader flags, number of RVA and sizes. The data 
directory consists of various table and size of tables such as 
location and size Export table, Import table, Resource table, 
Exception table, Certificate table, Base relocation table, Debug, 
architecture data, TLS table, Load Config, Bound Import, Import 
Address Table (IAT), Delay import descriptor, CLR runtime 

header, Global ptr. Each of the section tables consists of 40 bytes 
and contains information such as name, Virtual size, and address, 
location, and size of Raw data, Number of relocations, Number of 
line number, characteristics. There may be more than one section. 
Name of sections are .text, .rdata, .data, .idata, .rsro, .rsrc etc. 
There are several methods to extract these fields. The technique 
employed here is to use LIEF (Library for Instrumenting 
Executable Files) [12]. 

2.2. Techniques used for malware detection 

Malware can be detected using a static or dynamic detection 
method. The Static method [13,14] identifies the malware before 
the execution of the file and serves as a critical defense 
mechanism. Static malware detection does not execute the 
malware and uses the structural information as file format [6, 15] 
available in applications. One has to identify efficient features to 
be used to build malware detection systems. If we get information 
from a binary program using techniques such as Portable 
Executable 32/64 (PE32/64) header information for windows 
program. Polymorphic, Metamorphic malware is created by 
malware authors with minor changes to avoid detection by 
antiviruses, which uses signature-based detection. In 
Polymorphism, the malware authors use a combination of data 
prepend, data append, and encryption, decryption to generate 
malware in large numbers. In metamorphism, the malware 
themselves change code by a combination of dead code, code 
transposition, register reassignment, and instruction substitution 
can generate a large amount of malware. As the signature changes 
in polymorphic malware, the antivirus is unable to detect malware. 
As malware authors use various means to avoid detection such as 
obfuscated code [16], convoluted systems library calls, detection 
of malware has a limitation. At times, code is obfuscated by non-
standard, private methods [7,16] to make the detection more 
difficult even by domain experts. Such complexity in detection 
may be avoided by dynamic malware detection [17-19].  

In dynamic malware detection, the application is allowed to 
run in a protected virtual environment. The application unfolds all 
the obfuscation, convoluted means of making systems call, and 
the effects of malware can be observed. For dynamic analysis, the 
malware cannot be executed on a normal system, as it will infect 
the system. It has to be run in a sandbox or special customized 
virtual environment to restore the system to a previous state when 
the malware was not run. The computational needs are high in a 
virtual environment or machine. Malware author builds features 
in malware to detect such a virtual machine environment. Once 
the malware detects such a virtual environment, the malware 
changes its behavior and behaves as normal benign software. 
There have been efforts to avoid the detection of the virtual 
environment by malware [20, 21]. An expert may declare such 
malware as benign, which causes unprecedented destruction, loss 
in a real normal working environment. The dynamic malware 
detection uses effects caused by malware such as files created, 
modified, deleted, or registries created, modified, deleted, or 
network connection set up to specific IP addresses to command 
and control centers of malware authors or to download next set of 
malware. It is time-consuming to run the malware in a virtual 
environment and observe the effects of each malware. Doing this 
exercise for a large number of malware generated these days due 
to polymorphism and metamorphism requires a large time and a 
large number of domain experts. In addition to the challenge of 
changing the behavior of malware on detection of the virtual 
environment, both time and domain experts are not available. 
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Hence, it emphasizes the use of deep learning and machine 
learning techniques for malware detection.  

Deep learning [11, 22-25] and machine learning [5,10, 26-29] 
has been used to make automated detectors to identify the 
malware and the family of malware. In most cases dataset used 
[26] are not available, unbalanced or detectors work with an 
unavailable specific setting and specific datasets. A private 
emulation environment is required to overcome challenges 
imposed by dynamic analysis. It also makes it difficult, as a 
private, non-public environment is not available. As the data and 
the parameters used for building models are not available, it is not 
possible to compare the results, accuracies across the works. Our 
work uses the open dataset [5]. It is a balanced dataset with 300k 
malware, 300k benign applications with 2351 hashed features 
[28,30] derived using LIEF [12] and portable executable file 
format [6] for training and separate 100k malware and 100k 
benign software with the same number of hashed feature sets for 
testing. The statistical summary of benign files is used to reduce 
the privacy concern. SVM with nonlinear kernel needs O(N**2) 
multiplication for one iteration. N is the number of samples in the 
dataset. K-NN needs not only computation at the same level but 
also all the labels in memory. Hence, these methods are not 
scalable. Scalable alternatives are the neural network, ensemble 
decision tree. The ensemble algorithm has been effective with 
large samples and features. Gradient Boosting Decision Tree 
(GBDT) algorithm used in XGboost [31, 32], LightGBM [33,34] 
will be more effective for large dataset with large feature sets. 
There are multiple times, maybe twenty-plus, improvement in the 
training process. 

3. Literature survey 

In [17] author used a list of Dynamic Link Library (DLL) 

from the PE header and list of functions imported from those DLL 

as features. Besides, they used few more PE header features as 

well on a dataset of 4206 samples. It had 3265 malware. They 

achieved a 97.76 % detection rate. In [13], PE Miner framework, 

author used 189 features consisting of section size, features from 

the COFF section, resource table, and import of DLL as binary 

features. All the features were derived from the PE header. 

Specific DLL group's functions used for a specific purpose and 

import of DLL indicates the intent of the software. They achieved 

the Area Under Curve (AUC) of .991 and False Positive (FP) rate 

< 0.5% for on dataset of 15000 samples. In [35] author used a 

dataset of 116000 samples consisting of 100000 malware and 

remaining benign software. They started with 100 features from 

the PE header and iterated to finalize of 7 most influencing 

features. It is also termed as Adobe malware classifier. They 

achieved a TP rate of 98.56% and an FP rate of 5.68% on 1/5th of 

the dataset using tenfold cross-validation. The High FP rate is also 

reported in [5] by using the specified 7 features from the PE 

header. In [36], SAVE (Static Analyzer of Vicious Executables), 

author  use the API calling sequence of specific identified packed 

obfuscated malware to find similarity measures with other 

samples to detect malware. They use Euclidean distance to 

generate similarity report and detect new malware as one of the 

families of malware compared with. They use a 32-bit vector 

consisting of DLL name as 16 bit and each API in a DLL as 

another 16 bits. 

In [37] author extract the behavior attributes of 10 different 

families of ransomware aggregating to 150 samples. Three 

different machine learning algorithms J48 Decision tree, KNN, 

Naive Bayes are used for classification. They use Virustotal [3] to 

get the behavioral report of each ransomware sample. It is like 

getting features and their value using the dynamic analysis. They 

achieve a classification accuracy of 78% by reducing the number 

of attributes to 12 from 27. In [18] author extract API calls of 

malware by dynamic analysis method and use fours step 

methodology to determine suspicious behavior. The suspicious 

behavior is identified by copy, delete, search, move, read, write, 

and change attributes operations on a file. They use calling 

sequence and statistical analysis to identify the malware. 386 

samples are used of which 77% were packed using Armadilo, 

UPX, PE lock, Upack, KKrunchy. In [38] author use Hidden 

Markov Model using API calls and opcode. All combinations of 

static and dynamic analysis for the training phase and test phase 

are experimented such as static analysis data for training and static 

analysis data for testing, static analysis data for training, and 

dynamic analysis data for testing. They use 745 malware samples 

from 6 families of malware and report various AUC-ROC and 

AUC-PR (Area Under Curve - Precision-Recall) results. In [24], 

MtNet (A multi-task neural network), author use an anti-malware 

engine to extract the sequence of API and parameters used in 

those API and null-terminated objects from system memory. They 

believe the majority of null-terminated objects are unpacked 

strings and indicate a code fragment of malware. Many events to 

one event mapping are performed considering multiple API 

achieve the same results. Besides API trigram is made for three 

API calls. 50,000 feature sets are reduced to 4,000 and random 

projection is used to further reduce the training time of the neural 

network. Very large size database of 6.5 Million samples used in 

this project. It has a training data sample of 4.5 million consisting 

of 1.3 Million malware from 98 families, 1.55 Million generic 

malware, and 3.65 benign software. The test data is separate 2 

Million samples. They experiment with the effects of hidden 

layers on accuracy and report an accuracy of 99.51% and low FP 

and FN rate. In [39] author uses dynamic analysis and CNN to 

build classifiers using 9 families of malware, each with 1000 

malware. They achieve 99% Precision, Recall, and F1 score and 

FPR of 1%. Malware variants of one family have the same type 

of API calling sequence. Hence, feature image build using color-

coding resembles and this similarity of the image is detected using 

CNN. 

In [40] author  uses malware image fingerprints using the 

concept of GIST – Global Image Descriptor to compact image 

features and store malware in a large database of 4.3 million 

malware. New malware is pre-processed to compact image 

features as done with each of the malware in the database and 

search the database for in 3 seconds to find the matching image. 

In [41] author used 8 bits of a byte of executable a vector for 

building a greyscale image of fixed width. Image visualization of 

the binary value of executable gives more information about 

different sections and structures of malware. Even change in small 

code from polymorphed, meta morphed malware may also be 

identified as some pattern, change in the pattern of the image. 

They achieved 98% malware family classification accuracy using 

a dataset of 9,458 samples of 25 different malware families. 

Signal processing techniques are used to get noise-free signals in 

other areas of electronics. In [42] author use these techniques to 

get a noise-free signature of polymorphic malware to detect 

malware. They have used 1.2 Million samples consisting of 
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packed and unpacked malware and good ware. The trained model 

is used for recent daily malware. They can detect 50% malware 

with 99.5% accuracy. In [43] author observes the malware can be 

hidden by steganography in image or audio files. Such images, 

audio, maybe part of many websites. 2019 Symantec threat 

intelligence report identifies one in 10 websites as malicious. A 

Hybrid of image visualization and dynamic analysis feature is 

used in [44]. Features of images from packed malware are 

extracted using a pre-trained CNN model and visualized using t-

Distributed Stochastic Neighbor Embedding (t-SNE). Besides, 

API calls sequences derived from the deobfuscated program code 

of each sample are used to compute eight different distance 

metrics such as Manhattan, Cosine, Bray-Curtis, Canberra, 

Hamming, Euclidean, Correlation, and Chebyshev. SVM with 

four different kernels uses the distance computed between known 

and unknown samples to detect malware. They report 98.6% 

accuracy.  

In [25] author attempts deep learning for features extracted 

using dynamic analysis. The malware family is identified using 

60 kernel APIs and a sequence of calls as a feature from dynamic 

analysis. Convolution and LSTM were used for malware 

detection. 

A comparison with the n-gram model is a suboptimal 

approach [26] as the malware author may manipulate the n-grams 

and it will make the feature disappear. Just a single byte change 

can make the feature disappear from consideration in the model. 

The model is built on a PE header and there was a difference in 

performance. It is explained as a feature used across the model 

was different, resulting in a difference in performance. 

Whole program files as malware or benign are used as input 

in [11] and referred to as Malconv. Malware as an executable is 

very large data to feed in a deep learning model compared to other 

uses of deep learning. It does it to prove that the required features 

will be extracted using deep learning without domain expertise. 

The architecture of Malconv uses Convolution Neural Network 

architecture (CNN). The malware may have high positional 

variation at the PE32 header information, location variance due to 

macro-level reordering of function at code section leading to 

macro-level reordering in binary to polymorph the malware or to 

avoid detection of malware. The architecture of Malconv takes 

care of a high amount of positional variations and location 

variance in a file by a mandatory combination of CNN 

architecture and global max pooling. Global max pooling is an 

enhancer of CNN. For independent feature location, global max 

pooling is done before a fully connected convolution layer. It can 

make a model regardless of the location of features in the file. 

Hence, it addresses the activation of features irrespective of the 

location of features. Raff observed batch normalization made the 

model not to learn due to discontinuity at function level and 

missing correlation across large ranges. It uses a wider breadth of 

input patterns with embedding and shallow CNN. 

Deep learning has dramatically improved the state of art in 

object classification. It infers the most useful features 

representation for the task such as by raw images, text, or speech 

waveforms as input to the machine-learning model. However, 

image processing, signal processing techniques in machine 

learning cannot be applied to the malware domain. CNN is used 

to be in line with a high level of location in variations. The holes 

in dilated convolution can be interpolated for spatially consistent 

image processing, but does not apply to or can be interpolated for 

malware detection. This error signal is easily missed with the 

nature of malware available in real life.  

However, handcrafted features continue to give improved 

results for malware detection as per publish literature [5] and we 

also find the same. There is a constant emergence of new malware 

in large numbers by minor changes in existing malware. Besides, 

new techniques are discovered to use the vulnerabilities of 

hardware and software at different levels. These new techniques 

and vulnerability at different levels in hardware and software 

require the expertise of domain knowledge and difficult to fulfill 

by deep learning. The structured format of PE continues to make 

handcrafted features as relevant even if state or art shifts to end 

deep learning in the future. It will be good to combine the use of 

broad handcrafted features and deep learning

There is a lack of public datasets for comparison with other 

machine learning techniques used. Hence, the results obtained 

remain applicable to that study and cannot be extended to other 

datasets. A comparison has been done in [5] and the J48 adobe 

malware model [35] to get an 8% False Negative Rate (FNR) and 

53% False Positive Rate (FPR). 

4. Methodology 

We select XGBoost [32], a GBDT implementation, and a 

publicly available dataset [5] to build the classifier that can 

operate on a low complexity computation machine to give 

matching or better results. 

Ember dataset is large data with a separate training set and 

test set. Both the training and test set have balanced (equal) 

malware and benign software. Each sample in the dataset has a 

large number of features from PE header which are file form type. 

The data has file form agnostic features also. These file form 

agnostic features are derived from the whole file and non-PE 

header part. We use XGBoost to extract useful features that 

contribute to building an efficient model for malware 

classification. These selected, reduced feature sets bring down the 

complexity of computation. These reduced feature sets are used 

to build a classifier using the XGBoost algorithm. A comparison 

is performed to demonstrate the performance of such a classifier.  

4.1. Gradient Boosted Decision Tree (GBDT) 

Boosting is a process in which a weak learner can be modified 

to become better. It makes a poor hypothesis into a very good 

hypothesis. The focus is on developing new weak learner that can 

handle remaining difficult observations. New weak learner 

focusses on training difficult to classify instances, patterns and get 

added to the previous weak learner. Weak learners are used 

successively, equation (1) to get a series of hypotheses. Each 

hypothesis is focused on the sample examples that have not been 

covered by the previous hypothesis or have been misclassified the 

sample. Hence, a weak learner is better than a random choice. The 

boosting has it’s beginning in adaptive boosting that puts more 

weight on data points that are not classified, misclassified, or hard 

to predict. It puts less weight on instances already classified. The 

weak learners are sequentially added to classify the unclassified 

patterns. In other words, difficult instances keep on getting higher 

𝑧𝑖
(0)

= 0 

 𝑧𝑖
(1)

= 𝑓1(𝑥𝑖) = 𝑧𝑖
(0)

+ 𝑓1(𝑥𝑖) 
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𝑧𝑖
(2)

= 𝑓1(𝑥𝑖) + 𝑓2(𝑥𝑖) = 𝑧𝑖
(1)

+ 𝑓2(𝑥𝑖) 

𝑧𝑖
(𝑡)

= ∑ 𝑓𝑘(𝑥𝑖)

𝑡

𝑘=1

= 𝑧𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)                       (1) 

𝑜𝑏𝑗(𝑡) ≃ ∑ [𝑙(𝑦𝑖 , 𝑧𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ Ω(𝑓𝑡)

+ 𝑐                                                                        (2) 

where 

𝑔𝑖 = 𝜕𝑧(𝑡−1)𝑙(𝑦𝑖 , 𝑧𝑡−1), ℎ𝑖 = 𝜕𝑧(𝑡−1)
2 𝑙(𝑦𝑖 , 𝑧𝑡−1) 

  Ω(𝑓𝑡) + 𝑐                                                               (3) 

Ω(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2                                   (4)

𝑇

𝑗=1

 

weightage until it is classified. It follows an accurate prediction 
by using a moderately inaccurate rule of rough and moderate 
heuristics. Adaptive boosting is upgraded to Adaptive, 
Reweighing, and Combine (ARC) algorithm. It re-computes the 
classifier and weighted inputs. Next, this was put into a statistical 
framework for numerical optimization to minimize the loss model 
by adding the weak learner and using the gradient descent 
procedure to make a gradient boosting machine. As one weak 
learner is added at a time there are two approaches, Stage wise 
additive model and Stepwise additive model. In the stage-wise 
additive model, the weak learner remains unchanged, frozen as 
new weak learners are added.  

In the stepwise approach, the previous weak learners are 
readjusted on the entry of new weak learners. A decision tree is 
used as a weak learner in gradient boosting. It may have decision 
stumps or larger trees going up to 4 to 8 levels. The weak learners 
are constrained by the maximum layer, number of nodes, 
maximum number of splits, maximum number of leaf nodes. It 
follows a stage-wise additive approach in which existing trees are 
not changed and one tree is added at a time greedily. The best split 
points are divided on the gain index or to minimize the loss. A 
gradient descent model minimizes the loss while adding the trees. 
In general, the gradient descent is used to minimize a set of 
parameters e.g. the coefficient of a regression equation or weights 
in a neural network. The loss or error is computed and the weights 
are updated to minimize the error. Various differentiable loss 
functions such as classification error, an area under curve, 
logarithmic loss, mean square error, mean error, etc. may be used 
for binary or multiclass classification. Here we have the weak 
learner as sub-models in place of parameters. After calculating 
error or loss add a tree to reduce the error. This adds a tree to reduce 
error is like applying gradient descent boost procedure. This is 
done by parametrizing the tree. The parameters of the tree are 
modified to reduce the loss function. This is called gradient descent 
with function or functional gradient descent. 

Gradient descent in functional space is used to find the 

weighted combination of classifiers. The type of problem guides 

the use of a loss function. One can select a loss function depending 

on the problem under consideration.  

The function must be differentiable.  The loss functions 

selected for this problem are classification error, area under curve, 

logarithmic loss. A new boosting algorithm is not required for 

each loss function. The framework is generic such that any 

differentiable loss function can be used. Area Under Curve (AUC) 

[45] is a good parameter for comparison in machine learning 

performance and is used here. It is invariant to the classification 

threshold, giving quality of prediction irrespective of the 

threshold chosen. Besides, it is scale-invariant. Predictions are 

made by majority votes of weak learners and weighted by 

individual accuracy. Another parameter used for the performance 

efficiency of the classifier is logloss. Logloss is one of the 

performance parameters used in [27]. 
Gradient boosting is a greedy algorithm. The dataset can 

quickly overfit the model. Regularization method equation (3) 
penalizes various parts of the algorithm and improves performance 
by reducing overfitting. It makes the model more general. The 
weight of the leaf node may be regularized using regularization 
functions such as L1 (linear average), L2 (squared mse) 
regularization of weights. This additional regularization helps 
smooth the final learned weight to avoid overfitting. 

4.2. XGboost GBDT 

XGboost, Extreme Gradient boosting, uses a gradient 

boosting decision tree algorithm. XGboost is designed for speed 

and performance. It has an engineering goal to push the limits of 

computational resources, for boosted tree algorithms. There are a 

variety of interfaces to access XGboost such as C++, Python, R, 

Java, Scala, etc. In this work, we have used the python interface. 

Data structure and algorithms use cache optimization for better 

efficiency. The algorithm uses the efficiency of computation time 

and memory resources. It makes the best uses of resources to train 

the model. It automatically handles the missing values in the 

dataset but not applicable to the dataset used here. We can further 

boost the existing model with new data by further training. It is 

fast compared to other implementation of gradient boosting 

benchmarking random forest implementation. It is memory 

efficient, fast, and of high accuracy.  

Existing models are boosted with a new model to reduce the 

error made by the existing model. The sequence of addition 

continues until the error is reduced to the required level or the 

number of addition in the model has reached the constraint set. In 

gradient boosting machine, new models are added for using 

residual or error data points to make final predictions. 

In Equation (1) symbol zi is the prediction for i th input. In 

the beginning, round 0, there is no prediction.  In round 1 equation 

(1) prediction is by 𝑓1(𝑥𝑖) [32, 46]. More trees are required in a 

model if there are more constraints for trees. Similarly, less 

constraint on trees requires less number of trees. For a good model,  

𝑜𝑏𝑗(𝑡) ≃ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

1

+ 𝛾𝑇 +
1

2
𝜆 ∑ 𝜔𝑗 

2 (5)

𝑇

𝑗=1

 

𝑜𝑏𝑗(𝑡) ≃ ∑ [(∑ 𝑔𝑖

𝑖∈𝐼𝑗

) 𝜔𝑗 +
1

2
(∑ ℎ𝑖

𝑖∈𝐼𝑗

+ 𝜆) 𝜔𝑗
2] + 𝛾𝑇  

𝑇

𝑗=1

(6)  

 𝑜𝑏𝑗(𝑡) ≃ ∑ [𝐴𝑗  𝜔𝑗 +
1

2
(𝐵𝑗 + 𝜆)𝜔𝑗

2]𝑇
𝑗=1 + 𝛾𝑇,   (7) 
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ℎ𝑒𝑟𝑒 𝐴𝑗 = ∑ 𝑔𝑖   , 𝐵𝑗 = ∑ ℎ𝑖

𝑖∈𝐼𝑗

   

𝑖∈𝐼𝑗

 

there must be a weak learner with skills but should remain weak. 
The model over fits as more and more trees are added. Hence, trees 
should be added only until no further improvement in the model is 
there. Shorter trees in depth are preferred, as deeper trees make the 
weak leaner stronger and they are no weaker. Several nodes 
constraint the size of the tree. The tree is not symmetric if other 
constraints are used. Another constraint on adding a tree may be a 
minimal improvement to loss function at any split added to a tree. 
The learning rate of trees can be set by weight assignment to each 
tree which finally leads to predictions. The combination of each 
tree can be weighted and added for predictions. There is a trade-
off between the learning rate and the number of trees. If the 
learning rate is low, more trees need to be added, and take longer 
to train the model. The shrinkage, learning rate, reduce the 
influence of each tree so that in future better trees can be added. It 
gets name gradient boosting because it uses a gradient descent 
algorithm to reduce the loss to a minimum when adding a new 
model. With each addition of a new model, the prediction keeps on 
improving. From (1) using Taylor expansion the objective of the 
gradient descent model in a boosted tree is given in (2). (2) 
Includes the regularization (3) for generalization of the tree [36, 
49]. In XGboost, the regularization objective will select a model 
that has simple prediction functions. Equation (5) is derived from 
(3). Equation (6) is concerning the number of trees. Equation (8) 
gives the roots of (7). Using the roots solution of (7) is in (8). As 
we split the tree on the left and right side, it can be written as (10). 
AL, BL are weights of the leaves on the left side of the tree, and AR, 
BR is weights of the leaves in the right [46]. To optimize the cost 
of the final output of the model, the output of the new tree is added 
to the output of the existing sequence of trees. This process is 
followed until the loss reaches to required one or keeps adding the 
member of trees until the maximum number of add is reached. The 
loss keeps reducing as more and more trees are added and stops at 
the maximum number of trees are reached. It is also described in 
Algorithm1. 

𝜔𝑗
∗ = −

𝐴𝑗

𝐵𝑗 + 𝜆
                                                           (8) 

        

𝑓(𝑜𝑏𝑗) = −
1

2
∑

𝐴𝑗
2

𝐵𝑗 +  𝜆

𝑇

𝑗=1

+ 𝛾𝑇                               (9) 

𝐺𝑎𝑖𝑛 =
1

2
[

𝐴𝐿
2

𝐵𝐿 + 𝜆
+

𝐴𝑅
2

𝐵𝑅 + 𝜆
+

(𝐴𝐿 + 𝐴𝑅)2

𝐵𝐿 + 𝐵𝑅 + 𝜆
] − 𝛾(10) 

Algorithm1: XGBoost GBDT Algorithm 

Input: Dataset 

Output: XGBoost GBDT Model 

1. Each iteration adds a tree. Start with a tree of depth 0. 

2. Compute  gi, hi from (2) Aj, Bj from (7) 

3. Add a split for tree 

A. Rules for split finding and adding split 

B. Enumerate over all the features 

C. For each node, Enumerate over all the features 

D. For each feature, sort the instances by the feature value 

E. Use a linear scan to decide the best split along with the 

feature 

F. Take the best split solution along with all the features by 

Computing the gain as in (10) 

4. Stop if the gain is negative 

5. Continue the steps to max depth = 3 (default) 

6. 𝑧𝑖
(𝑡)

= 𝑧𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖) 

7. 𝑦𝑖
(𝑡)

= 𝑦𝑖
(𝑡−1)

+ 𝜀𝑓𝑡(𝑥𝑖) 

8. 𝜀 = .1 Learning rate or shrinkage by a tree, one weak learner 

Repeat the steps 1-6 for adding more tree until n_estimator = 
100 (default)  

4.3. Time Complexity  

For GBDT time complexity is O(nfd log n).  O(n log n) is time 
complexity to sort n samples. There are several features and levels 
of depth of the tree. This needs to be done for each feature and 
depth level. The default max_depth in XGBoost GBDT is 3. 
Using GBDT it can be further optimized using approximation or 
caching the sorted features. Hence, it can scale to a very large 
dataset and features. In machine learning, nonlinear SVM kernel 
needs O(N**2) multiplication during each iteration, and with a 
large dataset pursuing the method brings resource constraints in 
terms of computation, memory, and time taken to train the model. 
K-NN needs not only computation but storage of all the label 
samples during prediction and not scalable.  

5. Experiments and results 

5.1. Dataset 

We use the EMBER [5] dataset consisting of 1.1 million 
entries with a label for malware, benign, and some parts left as 
unknown. The Dataset has a training set for 900K samples and an 
exclusive separate test set for 200K samples. The training data set 
is balanced with 300K malware, 300k benign, and 300k entries 
left as unlabelled.  The test data set has 100k malware and 100k 
benign entries. The equal number of malware and benign in 
training and test makes this dataset a balanced dataset for building 
a good classifier to classify the malware. The balanced test set 
further adds to good testing. Many datasets used in malware 
classification are unbalanced and prone to erroneous results. Each 
of the entries has 2351 feature sets taken from software that may 
be malware or benign. The features are from PE header (General 

Table 1: Data Set Used 

Sl 

n. 

Label type Malware Benign Unknown/Un

labelled 

1 Training data 
set 

300K 300K 300K 

2 Test data set 300K 100K 0 

  

(COFF), Optional header, and sections), API called by them 
from various DLLs. Some of the features are from file agnostic 
such raw byte histogram, byte entropy, and strings embedded in 
the software. Table 1 summarizes the datasets. 
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Figure 1: Systems Block for selection data 

5.2. Experiment design 

The objective of the proposed work is to build a classifier with 
low computing resources and achieve improved or comparable 
accuracy, AUC using XGBoost classifier for the large data set. 
We tried to reduce the features in using the following four 
experiments. 

• Experiment Part1: Subdivide the feature sets based on a few 
parts of the PE header. 

• Experiment Part2: Subdivide the features sets based on file 
form agnostic part.  

• Experiment Part3: Use domain knowledge to eliminate a few 
features.  

• Experiment Part4: Feature importance associated with 
building the GBDT.  

Low-end compute machine with an i5 processor, 8 GB RAM 
with Windows 10 is used for various training and testing. 

Experiment design Part1, Part2 

Figure 1 shows the block diagram for this research. Feature 
sets can be derived from executable of any operating system in 
various formats using the LIEF library. The features sets include 
API calls, DLLs, and PE header fields. More file form agnostic 
features may be added. If the number of features for a part is very 
large in number. They can be hashed or one hot encoded as may 
be required. All these hashed, hot encoded make 2351 features in 
the dataset[1]. All the features are categorized and identified in 
many sets such as set#1, set#2, … set#n. The Dataset has 600K 
samples training sets and separates 200K samples in the test set. 
These samples are balanced for malware and benign software. For 
each sample in the training dataset and test, dataset identified 
features are used to make a sub dataset. These sub-datasets are 
used with the XGBoost algorithm to build a model and to build 
the knowledge base. Test sub-datasets are used for testing the 
model and compare the results.  

Table 2: datasets for selection set#1 to set#6 

Sl. 

no 

Description Train Test No. of 

feature

s 

1 Rawbyte histogram 300k Malware 

300K Benign 

100k Malware 

100K Benign 

256 

2 Byte entropy 300k Malware 

300K Benign 

100k Malware 

100K Benign 

256 

3 Strings,  300k Malware 

300K Benign 

100k Malware 

100K Benign 

104 

4 Strings, 

General(COFF),Opti
onal Header, Section 

300k Malware 

300K Benign 

100k Malware 

100K Benign 

431 

5 Imports_of_-API 

with DLL 

300k Malware 

300K Benign 

100k Malware 

100K Benign 

1280 

6 Exports_of API 300k Malware 

300K Benign 

100k Malware 

100K Benign 

128 

 
The feature sets in the dataset [5] are broadly divided into 

information from the file format of executable and file format 
agnostic features of executable. The file format for executable is 
from PE header [6-7, 15, 47]. They are having five groups General 
(COFF), Optional Header, Sections, API Imports, and API 
Exports. The file format agnostic features are in three groups such 
as raw byte histogram, byte entropy histogram, and string 
extraction. Each of the groups is hashed into a fixed number of 
bins. The groups have been identified to eliminate noisy features. 
A significant amount of domain expertise is required to perform 
the feature engineering. The contribution of various features in the 
detection of malware will be divided into six parts as per the PE 
header, and file form agnostic part. Three of these will be based 
on file form agnostic parts and three will be based on the PE 
header part. The regrouping is selected based on domain 
knowledge of malware. In [23] author has used entropy for 
building classifiers. Besides, [8] were the motivation to use group 
1 and 2. The strings features alone can give a better classifier. 
Hence, one, group#3 is made for strings alone. In [39] author had 
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used 7 features from the general and header part of the PE header. 
These features were used in [5] and did not give good 
performance in their experiment. Hence, another group of larger 
features is made of strings, General (COFF) part of PE header, 
optional header, and section part from PE header. Many 
researchers have used imports of API along with DLL [18, 26, 50]. 
The malware tends to export its API rather than using the API 
from standard DLL. This aspect prompted us to use group#6.   
Datasets will be reorganized as per groups identified. The 
regrouping is done to build an efficient classifier model for 
predictions considering the computation power, low memory. 
This will generate multiple datasets as a subgroup of original 
datasets. The model needs to be built for each selectionset# of a 
dataset for comparison. The datasets are reorganized as following 
and details in Table 2.  

1. Raw byte histogram 

2. Byte entropy 

3. Strings extracted 

4. Strings Extracted, General(COFF), Optional Header, 
Sections 

5. Imports of API with DLL 

6. Exports of API 

Each group identified above are selectionset#1, selectionset#2, 
selectionset#3, selectionset#4, selectionset#5, selectionset#6. This 
sub section covers the first two bullets identified in the 
methodology section. 

Experiment design Part3 

Each of the executable, applications has MZ as the signature in 
the first word of PE header as per PE format. There should be only 
one MZ in an executable. If there is more than one MZ string in an 
executable, it may indicate the executable has embedded more 
application or program as obfuscated code and indicate a malware. 
Hence, it was predicted that the feature that represents more than 
one “MZ” signature string in a dataset, the feature will contribute 
to efficient malware prediction. 

Experiment design Part 4 

XGboost gives feature importance while building the model. 
The relative importance of a feature is higher if it used more time 
to make key decisions in building a gradient boosted decision tree. 
This attribute can be ranked and compared with each other. There 
is an explicit calculation for each feature in the dataset for a model 
made using XGboost. There are more ways in which feature 
importance may be computed such as improvement in 
performance measure at each split point, and many rows, samples, 
covered at each split point. The performance measure is averaged 
for all the decision trees in the XGboost model. Figure 2 shows the 
block diagram for building a classifier model using the selected 
features that contribute to building the tree in previous experiment 
part 1, and 2. The selected features, contributing to building the 
model, will be used to make separate the train and test select 
datasets. The dataset will have only the important features 
identified while building the XGBoost model in the previous 
experiment. This updated dataset will be used to build the 
XGBoost GBDT model again and the performance will be 
compared. It is expected that this updated model build using 

selected features should be more efficient in terms of computation 
resources, faster and yield higher performance results.  

The feature importance of the model made using the base data 
set was compared and it was found that only 276 features among 
2351 hashed features contribute to making the model. The rest of 
the hashed feature 2351 – 276 = 2075 features do not contribute to 
making the model. A new select dataset was constructed using the 
276 hashed feature that contributes to the building model. The 
remaining 2075 hashed features with zero contribution, 
representing noise, were excluded from the select dataset. Table 3 
shows the dataset built using block model as in Figure 2 and used 
for experiment part 4. 

Table 3: Datasets for Selected Important Features 

Description Train Test Number of 

features 

Selected 

Important 

Features 

300k Malware 

300K Benign 

100k Malware 

100K Benign 

276 

 
Table 4 lists all the 276 important features derived from 

experiment part 1 and experiment part2. The file form agnostic 
features Histogram of bytes in the executable, 2-dimensional byte 
entropy for executable, and the string are hashed. Hence the index 
of these three features is listed in the table. The COFF features, 
Optional header features that could be identified along with their 
indexes had been identified and named in the table. Few of the PE 
header section features are identified which are not hashed. The 
API imported and API exported are hashed and specific API and 
DLL cannot be identified. Among the 276 features that contribute 
to making an efficient model, there were features from all groups. 
But there was no feature from the export group of feature sets.  

All the 128 hashed features derived from the export group of 
features were noisy. It also confirms the observation as in Table 2 
for Set #6 feature which represents export system call features in a 
hash bin. 

5.3. Experimental results 

Results Experiment part1, part2 

Models are built using XGboost for each regrouped datasets 
and compared for prediction efficiency. The prediction efficiency 
is measured in terms of accuracy, area under curve, and logloss. 
The results are tabulated in Table 5. 

 It was expected that group4 with strings extracted, 
general(COFF), header, and section regrouped dataset will be 
highly efficient as these parameters contribute more to the 
identification of malware in manual static analysis. This proved to 
be true with the experimental results is given in Table 2. The AUC 
is very close to the overall AUC of the base dataset and the 
accuracy part is less than 3% down from the base dataset with the 
number of features reduced to 431 from 2351. With all 2351 
features with XGBoost, the accuracy was 97.09. Compare this with 
431 selected features the accuracy is down <2%. It demonstrates 
the subgroup of features was nearly equal to the full features of the 
dataset. The performance of the model using the exports part of the 
regrouped dataset was very poor and was excluded from further 
experiments. Group#4 with Strings, General(COFF), Optional 
Header, and Sections have the highest accuracy among all the 
groups of regrouped feature sets.  
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Figure 2: Model Block diagram using XGBoost feature importance 

Table 4: Index of Selected 276 Import Features 

Description Number of 

features 

Index number of features 

Raw byte 

histogram 

66 1, 2, 3, 6, 10, 15, 19, 21, 22, 27, 29, 31, 32, 33, 35, 37, 40, 41, 43, 45, 46, 50, 54, 63, 64, 65,   66, 68, 69, 74, 76, 88, 89, 90, 93, 

95, 105, 106, 107, 111, 112, 113, 116, 123, 125, 128, 131,  133,  135,  181,  182,  196,  198,  199,  204, 209, 214, 217, 218, 219, 
223, 231, 239, 245, 253,  255 

Byte Entropy 46 256, 303, 312, 318, 326, 328, 335, 338, 357, 360, 362, 372, 373, 375, 377, 378, 385, 386, 388, 389, 392, 396, 399, 401, 410, 411, 

413, 417, 426, 431, 447, 456, 457, 464,  466, 470, 472, 494, 498, 499, 502, 504, 508, 509, 510, 511 

Strings 34 512, 515, 521, 529, 530, 531, 532, 533, 534, 543, 551, 552, 553, 554, 558, 562,  570,  578,  583,  588, 589, 596, 597, 600, 601, 
602, 604, 605, 606, 611, 612, 613, 614, 615 

General 

(COFF) 

6 616(size),  617(v size),  618(has debug),  619(exports),  620(imports),  623(has signature) 

Optional 
Header, 

16 626(Time Stamp),632(Machine), 637(characteristics),  640,  654(subsystem),  655,  658(DLL characteristics),  660,  677,  678,  
679,  680,  681, 682,  683,  685,   

Sections 27 688(name of section),689(size),  691(v size),  692(properties),  693(section size),  707,  712,  734, 736,  748(section entropy hash),  

770,  771,  775,  784,  785,  786,  797(section v size hash),  798,  803, 825,  827,  834,  836,  843,  906,  930,  940 

Imports of API 

with DLL 

81 951,  954,  986, 994, 1011, 1043, 1060, 1073, 1162, 1190, 1197, 1225, 1254, 1263, 1303, 1309, 1312, 1316, 1342, 1343, 1360, 

1362, 1366, 1377, 1387, 1388, 1396, 1399, 1404, 1445, 1451, 1455, 1476, 1482, 1484, 1505, 1526, 1545, 1546, 1597, 1629, 1656, 

1663, 1685, 1689, 1693, 1704, 1712, 1724, 1756, 1773, 1775, 1799, 1807, 1815, 1836, 1886, 1892, 1901, 1949, 1969, 1973, 1991, 

2004, 2006, 2018, 2034, 2047, 2052, 2078, 2083, 2097, 2110, 2114, 2125, 2140, 2159, 2180, 2184, 2188, 2210 

Exports of API 0  

It was used for further enhancement by hyperparameter 
tuning of n_estimator. n_estimator hyperparameter in XGboost is 
cunt of trees to fit. It is also number epochs the algorithm is run to 
add a tree until the number of trees reaches n_estimator count to 
further improve the accuracy[14,36] of the model. The default 
value of n_estimators is 100. For group 4, Figure 3 shows 
classification error, Figure 4 shows area under the curve for 
n_estimator =100 and Figure 5 log loss with n_estimator=100. It 
shows that the model is not overfitting and has room for 
improvement. Hence, further hyperparameter tuning is done for 
group4, selectionset#4, with n_estimators = 200, 300, and 
thereafter with 400. 

Table 5: Comparison of Prediction Efficiency for Regrouped Data 

Sl 

no. 

Name of datasets Accuracy AUC 

1 Raw byte histogram 93.28% .978743 

2 Byte Entropy 90.69% .967944 

3 Strings 92.2845% .97618 

4 Strings, General, Optional 

Header, Sections 

95.4405% .992099 

5 Imports of API with DLL 92.05% .977229 

6 Exports of API 58.8985 .597902 

7 Base dataset with LightGBM[1] 98.162% .999112 

8 With All features as in Base 

dataset 

97.09 .99571 

Table 6: Group 4 Performance Parameter 

Sl 

n. 

n_es

tima

tor 

Accuracy AUC logloss Classificatio

n error 

1 200 96.537% .995015 .10523 .03462 

2 300 97.07% .996472 .08768 .02713 

3 400 97.49% .997261 .07675 .02445 

Table 6 shows the improvement in performance parameters for 
accuracy, AUC, and logloss. The accuracy and AUC for group4 
with merely 431 features are comparable to the performance of the 
base dataset with 2351features. Figure 6 shows classification error, 
Figure 7 shows AUC, and Figure 8 shows log loss for 
n_estimator=400. Table 6 shows the accuracy and AUC for 
n_estimator 200, 300, 400. The accuracy for just 431 features is 
97.495 higher than the accuracy with all the 2351 features 97.09 % 

Sl no. Name of datasets Accuracy AUC 

1 Raw byte histogram 93.28% .978743 

2 Byte Entropy 90.69% .967944 

3 Strings 92.2845% .97618 
4 Strings, General, 

Optional Header, 

Sections 

95.4405% .992099 

5 Imports of API with 

DLL 

92.05% .977229 

6 Exports of API 58.8985 .597902 

7 Base dataset with 
LightGBM[1] 

98.162% .999112 

8 With All features as in 

Base dataset 

97.09 .99571 
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using XGBoost with n_estimator = 400. Further feature selection 
has been done that matches the performance of the base dataset or 
improves in some performance parameters for classification. 

 

Figure 3: XGBoost classification Error  for n_estimator = 100 

 

Figure 4: XGBoost AUC for n_estimator = 100 

 

Figure 5: XGBoost Logloss for n_estimator = 100 

Results Experiment part3 

Inclusion or exclusion of features representing more than one 
MZ had no effects on prediction efficiency. On further 

investigation using the SHA-256 signature at virustotal [3], it was 
found that benign application may package up to 32 executable for 
software upgrade purposes 

 

Figure 6: XGBoost classification Error for n_estimator = 400 

 

Figure 7: XGBoost AUC for n_estimator = 400 

 

Figure 8: XGBoost logloss for n_estimator = 400 

Results Experiment part4 

A model was built with these selected 276 features and 
prediction efficiency were explored. The accuracy, AUC, and 
logloss parameters for the n_estimators  600 are tabulated in Table 
5 and compared with base datasets. The accuracy has given a 1% 
increase compared with only subset#4  in Table 7. It has exceeded 
the accuracy of all the features in the base dataset by 1.41% (98.5% 
vs 97.09%). It has also exceeded the accuracy compared to the base 
set at 98.2% as reported by author in [5]. The AUC value is 
marginally less .999112 vs .99872. 
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Figure 9:Feature importance selected 276 features, number times called 

Table 7: Accuracy, Auc for Base Dataset and 276 Features as Per Feature 

Importance 

Sl 

no. 

n_estimator Accuracy AUC logloss Classification 

error 

1 Base dataset [1] 

using 
LightGBM 

98.162% .999112 NA NA 

2 With All 

features as in 
Base dataset 

97.09 .99571 NA NA 

3 Select 276 

feature sets, 

n_estimator=600 

98.5% .998972 .046314 .014157 

4 Group4 feature 

sets, 

n_estimator=600 

97.49% .997261 .076753 .024453 

 

5.4. Further reduction in important features 

The feature importance of these selected 276 is further studied. 
It was found that all the selected features contributed to building 
the classifier model. Unlike with base dataset, in which there were 
2075 features were noisy and did not contribute to building the 
model. None of the selected 276 falls into the category which does 
not contribute to building the model using XGboost. 

Figure 9 gives how many times a feature is used for generating 
the GDBT model using the XGboost method. The actual figure is 
not legible due to the 276 feature. Hence, the only top part of the 
results of the feature is shown in each figure. 

5.5. Hyperparameter tuning with learning rate 

We tried to optimize the model with a change in the learning 
rate. The default learning rate in XGBoost is 0.1. We tried with a 
learning rate of 0.01 and n_estimator=600. The model build gave 
slow movement to performance parameters as in the default 
learning rate. We used learning rate of 0.15 and .2 with 
n_estimators = 600. It indicates that the model gives the same 
efficiency but at a different rate. Hence, performance parameters 

are not affected at n_estimator = 600 for various learning rates.  
There was no improvement in performance parameters. 

Table 8: Performance of XGBoost with other classification algorithm 

Models Accuracy 

(%) 

Precision Recall F-

score 

Time in 

Second 

Gaussian Naïve 

Bayes 

51.82 0.43 0.10 0.17 470.37 

KNN 56.38 0.52 0.88 0.65 307.66 

Linear SVC 49.98 0.48 0.99 0.65 115.62 

Decision Tree 89.62 0.85 0.94 0.89 177.43 

AdaBoost 89.24 0.87 0.91 0.89 105.06 

Random Forest 93.6 0.9 0.98 0.93 141.54 

ExtraTrees 94.68 0.92 0.98 0.94 47.62 

GradientBoosting 93.16 0.89 0.98 0.93 72.83 

XGBoost 93.04 0.89 0.98 0.93 106.89 

XGB with trained 

model  1 

97.72 0.98 0.97 0.98 63.24 

XGB with trained 

model  2 

98.22 0.99 0.98 0.98 61.44 

5.6. Comparison with other classification algorithm 

Eight other classification algorithms were compared with the 
XGBoost classification algorithm on a sub dataset of 5000K 
Training and 5000k test datasets with selected 276 features. The 
performance of these algorithms is listed in table 8. XGBoost 
indicates classification performance without hyperparameter 
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tuning, XGB with trained model 1 is the tuned model with 
n_estimator = 400 and XGB with trained model 2 is the tuned 
model with n_estimator = 600. It indicated the performance score 
of XGB with trained model 2 is best among all the classification 
algorithm. XGBoost is better than Gaussian naïve Bayes, K-
Nearest Neighbour (KNN), Linear SVC, Random forest, and 
Decision tree in terms of the time to make model and test for sub 
dataset. Extratrees, GradientBoosting, Adaboosts are better than 
XGBoost in terms of time to train and test the model for the 
identified sub dataset. 

 

Figure 10: Algorithm comparison with Accuracy with 10-fold cross validation 

5.7. K-fold Cross-validation of algorithms 

Cross-validation is a statistical method to validate the 
classification algorithm. 10 fold cross-validation was done with the 
same sub data set as above with 5000 K training data set with 
selected 276 features and eight different classification algorithms. 
Figure 6 displays a whisker and box plot for the accuracy of eight 
different classification algorithms and a trained XGBoost model. 
The XGBT is the label for the trained XGBoost model. The cross-
validation for the model makes the smallest box in the Figure 10. 
It means the model does not have much variation for the accuracy 
while performing the 10 fold cross-validation. It indicates the 
model is optimized well with hyperparameter tuning. 

5.8. Comparison with other works 

Table 9 compares the result of this research with other similar 
work, identified with reference in the column, which have used 
either the dataset given in [5] in part or full or other very large 
datasets for building malware classifier. The accuracy is 
marginally low compared to [48] as they have used 1/3 of the 
samples. It is also low compared to author using deep convolution 
malware classifier in [49, 50]. They have used high-end computing 
resources with 1711 features. In [50] author saves computation 
time by detecting malware during the static analysis and prevent 
dynamic analysis of malware in the Security Operation Center. 
Such work to use the large dataset with low-end computing is not 
available at this time and is one of the contributions. We have 
achieved higher accuracy using low computing resource of intel i5 
processor and reduced 276 number of features compared other 
works which use high-end computing. 

Table 9: Comparison with Other Works 
 Robust 

intelligent 

MWD using 

DL[48] 

Ember 

[5] 

Malconv[11] The Need for 

speed, 

Brazillian 

MWC[26] 

DEEP 

CONVOLUTIONAL 

MALWARE 

CLASSIFIERS [49] 

Static PE 

Malware 

Detection[50] 

XGBoost A hybrid static 

tool for dynamic 

detection of MW 

[51] 

Size of 

Data 

70148 
Benign,  

69860 

malware 
Static 

Analysis part 

800K 2 Million 21116 Benign 
29704 

Malware 

20 Million 800K 800K 195,255 Benign, 
223,352 malware 

Results - 

Accuracy 

98.9 highest 
by DNN 

98.2 92.2 98 97.1 99.394 98.5 98.73% 

AUC Not Specified 0.99911 0.99821 Not Specified 76.1 for  interval 0-

.001 

0.999678 0.998972 Not Specified 

Processor 

Used 

Intel Xeon  Intel i7 Not 

Specified 

Not Specified Not Specified 24 v CPU 

Google Compute 

Engine 

Intel i5 Not Specified 

No of 

features 

Not Specified 2351 not 

applicable 

25 PE header 

+ 2 hash 

538, 192 1711 2351, (276) 4002 features 

from static 
analysis. 4594 

features from 

dynamic analysis 

GPU Yes,  NO 8 x DGX-1 Not Specified Not specified NO NO Not specified 

Train Data 42140 Benign 

41860 

Malware 

300K 

Benign 

300K 
Malware 

2 Million .5x21116 

Benign 

.5x29704 
Malware 

20 Million 300K Benign 

300K Malware 

300K Benign 

300K Malware 

Not specified 

Time Not available 20 Hours 25 hours 

/Epoch 

250 Hours 

Not available Not available 5 minutes 1315 seconds 

without hyper 

parameter 
tunning 

Not specified 
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6. Conclusion 

Dataset had been regrouped into various groups with domain 
expertise in malware detection to build efficient models with low 
computational resources without GPUs. The regrouped data with 
strings extraction, general, header, section with just 431 feature 
sets compared to 2351 gives comparable efficiency in prediction 
performance at n_estimator=400. The model is further improved 
considering the feature importance as given by XGBoost and 
selected 276 features from 2351 features in base original data. 
Selected features are used to generate models using XGboost, with 
low-end computing resources compared to other similar work. The 
model with the selected feature gives improved prediction 
performance. The features learned can be widely useful if the 
performance parameters are the same across datasets. All the 
hashed feature derived from the export function group did not 
contribute to build an efficient model and to predict the malware. 

Although the open base dataset is very large and balanced, the 
malware in datasets may not be exporting the API Calls or private 
APIs for malware activities. Hence, the export part of the features 
of the dataset did not contribute to building the model. However, 
this may not be always true. Shared biases are minimized if the 
data is from different sources. The sources of data for base datasets 
are not known. It also gives an upper and lower bound of accuracy. 

Ember dataset is for windows executable. Using LIEF 
methodology in [12], we can generate datasets for other operating 
systems such as Linux, Mac os Android, etc. The challenge 
remains to get the malware samples for other OS. The techniques 
described here can be used to generate a model using low 
computational resources that can predict malware efficiently. 
Further, the study may be possible to determine which exact 
features from the PE format of application or file agnostic features 
are part of the selected feature. 

To our knowledge, this research is one of its kind that uses a 
full dataset with the XGBoost GBDT algorithm to get matching or 
higher accuracy with a low computing resource. The basic model 
using the XGBoost classification algorithm was trained using low 
computation resources in 1315 seconds with a reduction in the 
feature set. The hyperparameter tuned model gives improved 
performance for accuracy of 98.5 and on par  AUC of .9989.  
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