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 Storage-Class Memory (SCM) like OptaneTM has advanced as a fast storage medium, and 
conventional memory management systems designed for the hard disk storage need to be 
reconsidered. In this article, we revisit the memory management system that adopts SCM 
as the underlying storage medium and discuss the issues in two layers: file caching and 
virtual memory paging. Our first observation shows that file caching in the SCM storage is 
profitable only if the cached data is referenced more than once, which is different from the 
file caching in hard disks, where a single hit is also beneficial. Our second observation in 
virtual memory paging shows that the page size in the SCM storage is sensitive to the 
memory system performance due to the influence of memory address translation and 
storage access cost. Our simulation studies show that the performance of paging systems 
can be improved by adjusting the page size appropriately considering application 
characteristics, storage types, and available memory capacities. However, the page size 
will not be a significant issue in mobile platforms like Android, where applications are 
killed before the memory space is exhausted, making situations simpler. We expect that the 
analysis shown in this article will be useful in configuring file caches and paging systems 
with the emerging SCM storage. 
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1. Introduction 

With the large performance gap between hard disk drive 
(HDD) and dynamic random-access memory (DRAM), the main 
purpose of memory management in computing systems has been 
the minimization of disk I/Os [1, 2]. The access latency of hard 
disks is more than tens of milliseconds, which is five to six orders 
of magnitude larger than DRAM’s access latency. Meanwhile, due 
to the rapid improvement of storage access time by the adoption of 
flash-based solid state drive (SSD) and storage-class memory 
(SCM), the extremely large performance gap has been decreased 
[3-5]. The access latency of the flash storage is less than fifty 
milliseconds, and hence the performance gap of storage and 
memory becomes less than 3 orders of magnitude. Such trends 
have been speeded up by the commercialization of SCM whose 
access latency is just 1 or 2 orders of magnitude slower than 
DRAM [6, 7].  

A lot of patents related to the detailed architectures and 
algorithms of SCM management have been suggested, and Intel 
manufactured the commercial product of SCM, called OptaneTM 
[8, 9]. Owing to its desirable features like high performance, low 

energy consumption, and long write endurance, SCM is 
anticipated to be adopted in the storage systems like flash SSD and 
hard disks [10-13]. 

SCM can also be adopted in the main memory system because 
it allows byte-accesses like DRAM but consumes less energy 
because it is a non-volatile medium [14]. However, the access 
latency of SCM is longer than that of DRAM, and hence it is now 
considered as high-end storage or additional memory that can be 
used together with DRAM. Although SCM may be used as either 
memory or storage, this article focuses on storage. Since the 
performance gap of storage and memory becomes small by 
adopting SCM, memory management systems targeting at slow 
hard disk storage need to be revisited.  

In this article, we quantify the performance of systems based 
on SCM storage and analyze a couple of issues in the management 
of main memory under the SCM-based storage. In particular, this 
article analyzes two memory management hierarchies affected by 
the acceleration of storage devices, file caching and virtual 
memory paging.  

File caching preserves file data read from the storage to the 
main memory area called the file cache and services requests for 
the same data from the cache without accessing storage. The 
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purpose of file caching is to minimize the storage access 
frequency. However, since the storage access latency is fast 
enough by making use of SCM, it is questionable whether file 
caching is still needed. To validate this, we investigate the 
condition that file caching is effective according as the storage 
access latency is varied. Our preliminary study exhibits that a 
storage access takes about 30% more latency than a cache access 
even though the same data is accessed and the access latency of 
storage and cache is identical. This is because there exists heavy 
software stack to passing through the storage media. By observing 
this result, our finding is that file caching is still needed for SCM-
based storage if the data in the cache is requested more than once 
after inserted into the cache. That is, since file caching needs 
additional time for inserting the requested data into the cache, more 
than a certain cache hits are necessary for caching to be profitable, 
and we show that this is at least twice for SCM storage. Note that 
low-end storage media like hard disks require only a single hit for 
caching to gain. 

 
Figure 1: Latency of accessing data from the file cache and the DRAM-based 

storage. 

Our second observation focuses on virtual memory paging if 
SCM is made use of as storage media. Similar to file caching, the 
purpose of virtual memory paging is the minimization of storage 
accesses, which is also called page faults, when storage is hard 
disk. Since the storage medium becomes fast enough, we observe 
that page fault handling may not be the main performance 
bottleneck of virtual memory paging. In particular, as the latency 
of storage access becomes small by adopting SCM, the bottleneck 
of the page access latency may be shifted to memory address 
translation. Note that to access a memory page, translating the 
address should be done first and then the data in the page is 
accessed from either memory or storage. As the data access is 
accelerated by the reduced storage access cost, the address 
translation process may be a new bottleneck by accessing page 
tables.  

This article quantifies what will be the main bottleneck of 
virtual memory paging as the storage performance and the page 
size are changed. Based on our analysis, we discover the following 
two phenomena. First, a small page is not efficient in terms of the 
page fault rate but it performs well in terms of the data access 
latency. The reason is that a page fault handling latency is strongly 
related to the page size when the storage is SCM, which does not 
need seek movement. Second, even though a small page is efficient 
with respect to the latency of data access, it degrades the latency 

of address translation by increasing TLB miss counts. Due to this 
reason, deciding a page size needs to consider the trade-off relation 
of the data access latency and the address translation latency.  

Our simulation results exhibit that the performance of virtual 
memory paging can be improved by adjusting the page size 
appropriately considering application characteristics, storage 
types, and available memory sizes. However, the page size will not 
be a significant issue in mobile platforms like Android, where 
applications are killed before memory space is exhausted, making 
situations simpler. We expect that the analysis shown in this article 
will be useful in configuring file caches and paging systems with 
the emerging SCM storage. 

The remaining part of this article is organized as follows. In 
Section 2, we quantify the performance implication of file caching 
as the storage medium changes from hard disk to SCM. Section 3 
anatomizes the virtual memory paging performances with high-
performance SCM storage particularly focusing on page sizes. 
Section 4 presents the experimental results through conducting 
simulation experiments to observe the implications of SCM 
storage based memory management systems. Section 5 discusses 
the adoption of our model to the mobile application environments. 
Finally, we present the conclusion of this article in Section 6. 

2. File Caching for SCM Storage 

This section quantifies the efficiency of file caching as the 
storage medium changes from hard disk to SCM. To this end, we 
measure the latency of file system operations when DRAM is used 
as storage. Note that DRAM is volatile, but we use a certain area 
of DRAM as a storage partition just to see the effect of fast storage 
media. Note also that this situation implies the optimistic 
performance of SCM storage. We added a profiler to Ext4 for 
measuring the latency of directly accessing data from the DRAM 
storage and the latency of accessing data in the DRAM file cache.  

Figure 1 depicts the access latency of DRAM storage and 
DRAM file cache as the size of data accesses changes. In this 
graph, we measure each case 10 times and plot their average. As 
can be seen in the graph, the access latency from DRAM storage 
is 30% longer than accessing the same data from DRAM file 
cache. Although the same DRAM is used for cache and storage, 
the performance gap occurs due to the existence of software I/O 
stack. When considering these results, file caching can be still 
necessary to buffer the latency gap between storage and memory 
although their access latencies are identical. However, as the gap 
is very small, some conditions need to be met for file caching to be 
beneficial.  

When we use file caching, the accessed data should be stored 
into the cache, which requires additional latency. The access 
latency of DRAM storage shown in Figure 1 does not include this 
latency, and hence the accessed data is delivered directly to the 
user memory. If we use file caching, the accessed data is firstly 
stored in the file cache and then transferred to the user memory. 
The overhead of this additional copy operation in memory is not 
negligible when SCM storage is used because the time overhead to 
perform a memory copy is similar to that of a storage access. Thus, 
the gain of file caching is small or there are no profits at all because 
of this trade-off. Due to this reason, file caching is beneficial only 
when the benefit of subsequent cache hits is larger than the cost of 
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the additional memory copy operation. That is, cache hits are 
important for a cached data to gain, which differs from low-end 
storage media like hard disk drives where a single hit of data is 
sufficient for caching to gain. To quantify this, we measure the data 
access time t from the file cache, storage access time T, and time 
to access storage including the file caching cost Tm. Then, we 
evaluate the condition of caching to be beneficial with respect to 
the cache hit counts. The following equations represent the latency 
to access data with file cache Tc and without file cache Tx, 
respectively.  

Tc = Tm + (n – 1) t                                  (1) 

Tx = n T                                          (2)  

where n is the total access count for the data. File caching gains 
when Tc is less than Tx as follows.  

n > (Tm – t) / (T – t)                                  (3) 

 
Figure 2: Hit counts necessary for a cached item to be beneficial as a function of 

the latency for accessing the storage media. 

Based on Expression (3), we estimate the cache hit counts 
needed for caching to be beneficial. Figure 2 depicts the required 
hit counts when the storage media is flash memory, hard disk, and 
SCM. As plotted in the figure, the cache hit count necessary for 
caching to be profitable increases significantly as the performance 
gap of storage and memory is small. In the case of SCM storage 
whose access latency is only 30% slower than memory, the cache 
hit count necessary for caching to be profitable is two while 
resident in the cache. Hence, if a storage data is requested now and 
it will not be reused at least twice in the future, it would be better 
not to store it in the cache for performance improvement. 

To quantify the influence of file caching in practical situations, 
we collect file request traces during the execution of two popular 
storage benchmarks, and replay them as the storage media is 
varied. The captured traces are web server and proxy server. We 
investigate the storage access latency with/without file caching 
under the two workload conditions. For the cache eviction 
algorithm, we use the least-recently-used (LRU), the most 
commonly adopted algorithm in file caching. LRU selects the data 
that was accessed the oldest among all data in the file cache and 
evicts it if there are no cache spaces to insert new data items. 

Figure 3 depicts the storage access time with/without file 
caching when hard disk storage is used as the size of cache 
changes. Note that the cache size of 100% means that the cache 
size is equal to the total footprint of workloads, implying that the 
eviction algorithm is not necessary. This is not a realistic situation 
and in practical environments, the cache size is less than 50%. As 
can be seen from this figure, the effectiveness of file caching is 

significant in case of the hard disk storage. Specifically, file 
caching accelerates the storage performance by 70%, which is 
possible because hard disk is very slower than the file cache, and 
hence decreasing the disk I/O access counts by file caching is 
effective. 

 
Figure 4 depicts the storage access time without/with file 

caching when the storage medium is SCM. As can be seen from 
this figure, the effectiveness of file caching is insignificant in case 
of the SCM storage. In particular, the performance improvement 
by using file caching is less than 3% with the SCM storage. This 
apparently exhibits that the effectiveness of file caching decreases 
significantly as the performance gap of storage and memory 
becomes small. However, we conducted some new experiments, 
and show that file caching can be still effective by judicious 
management.  

Figure 5 depicts the storage access time with file caching when 
the SCM storage is used, but we differentiate the result with two 
management policies. In particular, LRU-cache adopts the same 
configuration of Figure 4, which stores all data requested in the file 
cache and evicts the least-recently-used data if free cache space is 
necessary. The other graph, denoted by AC-cache (admission-
controlled cache), is plotted by allowing the insertion of data into 
the file cache only if it is used more than once. This allows only 

  
(a) Proxy                                            (b) Web  

Figure 3: Effectiveness of file caching under hard disk storage. 

    

(a) Proxy                                            (b) Web  

Figure 4: Effectiveness of file caching under SCM storage. 

   
(a) Proxy                                            (b) Web  

Figure 5: Performance of file caching with/without admission-controll (AC) 
under SCM. 
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data used multiple times to be cached, thereby filtering out useless 
single-accessing data. Even though this is a simple technique, the 
effectiveness of AC-cache is significant as shown in Figure 5. The 
performance improvement ranges 20-40%. The implication of this 
result is that file caching is still useful when SCM storage is used, 
but management policies should be appropriately devised in order 
to get effective results.  

3. Virtual Memory Paging for SCM Storage 

This section presents the simulation results of virtual memory 
paging when we use SCM as storage. 

3.1. Access Latency of a Virtual Memory Page 

To use a memory page in virtual memory systems, translation 
of memory addresses between logical address and physical address 
needs to be conducted. This is done by referencing the page table, 
which is located at main memory. To improve the address 
translation performances, a certain part of the page table is cached 
in the Translation Look-aside Buffer (TLB), which is faster than 
main memory [15]. When a memory page is requested, address 
translation by TLB is tried first. The page table is referenced if 
address translation by TLB misses. Then, the memory data is 
accessed with the translated physical address. However, if the data 
does not reside in memory, storage should be accessed, which is 
called a page fault. Assume that the cache miss rate of TLB is RT, 
and the page fault rate is RF. Then the memory access time TTOTAL 
can be denoted by  

TTOTAL = TADDR + TDATA                                                  (4) 

TADDR = (1 – RT)* tε + RT *( tε + tτ )                      (5) 

TDATA  = (1 – RF )* tτ + RF *(tτ + TPF)                    (6) 

where TADDR is the time required for performing address 
translation, TDATA is the latency required for data access, tε is the 
latency required for TLB access, tτ is the latency for accessing main 
memory, and TPF is the latency for page fault handling including 
storage access time. 

3.2. Eviction Policies 

Since the size of TLB entries is fixed, adding an address 
translation data to TLB requires the eviction of a certain entry 
when no TLB entry is available. To choose an eviction victim, we 
adopt the least-recently-used (LRU) eviction policy, which is a 
representative algorithm adopted in TLB entry eviction [15].  

Because the size of free pages in main memory is fixed, another 
eviction policy is necessary. Specifically, if the page requested is 
not in memory and should be loaded from storage, but there is no 
free page in memory, eviction of a page from memory is necessary. 
We use the second-chance algorithm, which is a popular eviction 
policy used in virtual memory systems, in our experiments [14]. 

The second-chance algorithm investigates if a page has been 
used recently or not by utilizing the reference bit of each page. 
When a page is used, the reference bit of that page becomes one. 
If a free page frame is needed, the second-chance algorithm 
investigates the reference bits of all pages in memory sequentially, 

and discards the page firstly found with its reference bit of zero. 
For each page whose reference bit is one while investigation 
processes, the second-chance algorithm resets the bit to zero, 
instead of discarding the page from memory. Thus, if a page is not 
accessed until the next investigation of the second-chance 
algorithm, it is evicted.  

With this basic configurations, we conduct our simulations to 
quantify the efficiency of memory management systems when we 
use SCM-based storage. 

3.3. Page Size and Prefetching 

The current operating systems usually manage virtual memory 
by the unit of page. The size of a page is commonly set to 4 
kilobytes, which is also the default page size of Linux. However, 
operating systems also allow the prefetching option, which loads 
maximum 128 pages together from the secondary storage when a 
page requested is not in memory. The rationale of this is to 
consider the characteristics of hard disk, which requires the basic 
cost for each access consisting of seek latency and rotational 
latency, accounting for the main part of storage access latency 
irrespective of the size of data loaded. This implies that loading 
large data in each request is efficient in case of hard disk based 
storage. Recent operating systems also support a huge page whose 
size is up to 4MB. This is also for hard disk storage systems, but it 
will not be efficient for SCM, in which the page size should be 
small because storage is fast and there are no seek time or 
rotational latency.  

Nevertheless, it is not feasible to decrease the page size because 
memory address translation will be efficient with a large page size. 
That is, TLB with a large page size covers more memory address 
spaces, leading to improved address translation latency. Then, we 
need to decide the page size for SCM-based storage by considering 
the overall effect of storage access and address translation.  

Also, the latency of SCM should be considered, which is 
optimistically as fast as DRAM, but can be up to 100 or 1000 times 
slower than DRAM. Due to the variance of performance gap 
between storage and memory, the relative impact of memory 
address translation compared to storage access is also varied. In 
particular, as the performance of SCM approaches that of DRAM, 
memory address translation incurs relatively more cost. On the 
contrary, as the performance gap of DRAM and SCM increases, 
the relative overhead of a storage access will be large. The relation 
of storage access and address translation will be analyzed in the 
next section as the performance of SCM is varied. 

4. Performance Analysis  

We conduct various simulations to investigate the efficiency of 
memory management subsystem as SCM storage is adopted. In 
particular, the impact of the page size on memory performance is 
investigated. The minimum page size is set to 512 bytes because 
the size of a page should be at least the block size of the last-level 
cache memory. We use the virtual memory reference traces 
captured by the Cachegrind tool of the Valgrind [16, 17]. We 
collect the virtual memory reference traces from five desktop 
workloads as listed in Table 1 [18-22].
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(a) freecell                                                                       (b) gedit                                                                         (c) gqview 

           

                                                                           (d) kghostview                                                                          (e) xmms 
Figure 6: Memory address translation time of desktop workloads as the page size changes. 

                 
(a) freecell                                                                       (b) gedit                                                                         (c) gqview 

           
(d) kghostview                                                                          (e) xmms 
Figure 7: Page fault rate of desktop workloads as the page size changes. 
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4.1. Memory Address Translation 

This section discusses the influence of the page size on the 
performance of memory address translation. Figure 6 depicts the 
memory address translation latency while running five desktop 
applications as the page size is changed. As the figure depicts, the 
latency of memory address translation decreases according as the 
page size grows. The reason is that the fixed TLB entries account 
for the address translations of wider memory spaces if the page 

size becomes large. An increased hit rate of TLB leads to the 
decreased latency of memory address translation by reducing the 
number of page table references. Nevertheless, it is known that 
the hit rate of TLB cannot increase any more when the page size 
is larger than a certain threshold [23]. Thus, the conclusion of this 
experiment is that a large page will perform well in terms of the 
memory address translation, but the page size does not need to be 
increased any longer after a certain large size. 

 
(a) freecell                                                                       (b) gedit                                                                         (c) gqview 

           
(d) kghostview                                                                          (e) xmms 

Figure 8: Memory access time of desktop workloads as the page size changes.  

 

 

(a) 1x of DRAM                             (b) 10x of DRAM                                                 (c) 100x of DRAM 
Figure 9: Total memory latency of desktop workloads as the page size and storage access latency change.  
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Table 1: Characteristics of desktop workload 

Application 
Memory 
footprint 

(MB) 

Memory access counts 

Write Read Total 

freecell [18] 9.84 60,040 430,135 490,175 

gedit [19] 14.12 132,822 1,600,941 1,733,763 

Gqview [20] 7.26 645,399 265,286 610,685 

kghostview [21] 16.98 103,540 1,442,595 1,546,135 

xmms [22] 7.86 978,242 190,697 1,168,939 

4.2. Storage Access Frequency  

This section discusses the impact of the page size on the storage 
access frequency. Figure 7 depicts the page fault rate of the five 
applications as the page size changes. As the figure shows, the best 
page size is not identical for different applications we considered. 
In most cases, a large page improves the page fault rate. In 
particular, the page size of 8 kilobytes exhibits the best results for 
gqview, kghostview, and xmms. On the contrary, the page size that 
exhibits the best result is 1 kilobytes for gedit and 4 kilobytes for 
freecell, respectively. The best page size relies not only on the 
application’s characteristics but also on the free memory situation 
of the total system. When the memory size is insufficient for the 
given workload environment, decreasing the page size will 
perform well to retrieve only the data requested at that time. In 
contrast, when the available memory is sufficient, increasing the 
page size will be a better choice in terms of the storage access 
frequency. Also, when the workload is composed of sequential 
reference patterns, increasing the page size can reduce the number 
of storage accesses by retrieving large successive data together. 

4.3. Total Memory access time 

As hard disk requires large seek overhead for each storage 
access irrespective of the data size, decreasing the storage access 
frequency can lead to the improvement of data access latency. 
However, in case of SCM storage, as the data size becomes large, 
a storage access requires more time to load data. Assume a storage 
reference stream that is composed of sequential patterns and let us 
think of the storage access frequency for virtual memory paging 
that makes use of a large page size and a small page size. It is clear 
that a large page size is efficient in terms of the storage access 
frequency, but it does not essentially lead to the enhancement of 
data access latency because the storage access time becomes large 
for each I/O with SCM. Hence, instead of improving the storage 
access frequency, our aim is to reduce the data access latency. In 
other words, the page fault rate is not a fair performance index for 
SCM-based virtual memory paging, but the data access latency can 
be an alternative metric for SCM-based storage.  

Unlike the page fault rate case, address translation latency has 
almost linear relation with the TLB miss rate because the access 
latency of a page table entry incurred by each TLB miss is identical 
though the page size is different.  

Figure 8 depicts the total memory access latency of the desktop 
applications we considered as the page size changes. As the figures 

show, the best page size is not the same for different applications, 
and is also different from the results of Figure 7 that plots the page 
fault rate. From this result, we can see that the storage access 
frequency is not the primary factor of performance in case of SCM 
storage media. Also, this figure shows that the address translation 
latency can be another significant factor that influences the 
memory access time in case of fast SCM storage even though the 
effectiveness of address translation is smaller than the actual data 
access. Because a trade-off relation exists between data access and 
address translation in deciding an appropriate page size, we cannot 
simply conclude the page size as small or large but a judicious 
management is necessary for deciding the page size with given 
environments. 

4.4. Relative Storage Performance 

Figure 9 depicts the total memory latency for each application 
as the access latency of storage media changes. Specifically, 
Figures 9(a), 9(b), and 9(c) represent the total memory latency 
when the relative access latency of SCM is identical to DRAM, 10 
times that of DRAM, and 100 times that of DRAM, respectively. 
As this figure shows, the page size that performs the best is not the 
same for each case as the access latency of storage media changes. 
If the performance of SCM is similar to DRAM as shown in Figure 
9(a), the address translation latency becomes important, and hence 
increasing the page size performs relatively well. In other words, 
the role of TLB becomes significant in such environments, and the 
memory access time is improved with the page size of 4KB or 
8KB. We cannot determine the best page size for all workloads as 
it depends on the total memory capacity as well as the workload 
characteristics. Figures 9(b) and 9(c) plot the total memory latency 
when the access latency of SCM media is 10 times and 100 times 
slower than DRAM, respectively. As these two figures show, the 
memory access time becomes better when we decrease the page 
size as small as possible. The reason is that the data access latency 
affects significantly if the storage becomes slow and thus the 
address translation procedure is less important. The best memory 
access time can be obtained if we set the page size to 512B for all 
cases.  

Table 2: Characteristics of mobile workload. 

Application 
Memory 
footprint 

(MB) 

Memory access counts 

Write Read Total 

facebook [24] 198.66 2,045,716 11,607,339 13,653,055 
angrybirds [25] 76.94 3,822,479 14,368,068 18,201,717 

youtube [26] 68.64 3,162,229 15,034,275 18,196,504 
farmstory [27] 53.74 2,101,818 13,122,852 15,224,670 
chrome [28] 259.86 4,104,436 16,895,563 20,999,999 
 

When considering these overall situations, we can obtain the 
best memory access time not by fixing the page size to a constant 
but by varying relying on the application and storage 
characteristics. Hence, the common page size of 4KB will not be a 
good choice for all cases and needs to be changed appropriately if 
we use the SCM-based fast storage media. 
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5. Adopting the Model to Android Mobile Applications 

In this section, we adopt our model to Android mobile 
applications to see the effect of the page size in SCM-based 
storage. To investigate a wide spectrum of Android applications, 
we collect virtual memory reference traces from five Android 
applications, namely, facebook a social network service [24], 
angrybirds a game [25], youtube an online streaming service [26], 
farmstory an online game [27], and chrome a web browser [28]. 
Table 2 lists the characteristics of the workloads. 

 
Figure 10: TLB hit rate of mobile workloads as the TLB size changes. 

With these memory reference traces, we conduct extensive 
simulations, and analyze them similar to the desktop system cases 
in the previous section. Figure 10 depicts the TLB hit rate while 
executing five mobile applications as a function of the TLB size. 
As can be seen from the figure, the TLB hit rate is improved 
significantly as the TLB entries increase. The five applications 
show similar curve trends. Specifically, the TLB performance is 
improved sharply when the number of TLB entries is less than 20 
and the slope of the curve becomes gradual after that point. Figure 
11 depicts the TLB hit ratio as the page size changes. As can be 
seen from this figure, the TLB hit rate improves according as the 
page size increases. The reason is that the fixed number of TLB 
entries account for address translations of more memory capacity 
as the page size becomes large. An increased hit rate of TLB 
eventually leads to the decreased latency of memory address 
translation by reducing the number of page table references. 
However, the improvement of the TLB hit rate slows down when 
the page size is larger than a certain threshold. Thus, increasing 
the page size will perform well in terms of the performance of 
memory address translation, but it is not sensitive after a certain 
large page size. 

Figure 12 depicts the page fault rate of the five Android 
applications as the page size changes. As can be seen from the 
figure, the page fault rate decreases as the page size increases for 
all applications we considered. Unlike desktop cases that do not 
exhibit the same trends for different applications, all mobile 

applications show similar results. The best page size relies on the 
application’s characteristics in desktop cases, but a large page 
commonly improves the page fault rate of all mobile applications 
we considered. If the memory space is not sufficient for the given 
workload environment, large pages will not perform well due to 
retrieving the data not requested now. However, our Android 
application experiments show that the memory space is not 
exhausted in any applications. This is because Android does not 
use swap but kills applications if free memory space becomes 
small.  

Figure 13 depicts the average memory access time (AMAT) 
of the five Android applications we considered as the page size 
changes. This graph separately represents the AMAT when the 
relative latency of SCM is identical to DRAM, 10 times that of 
DRAM, 100 times that of DRAM, and 1000 times that of DRAM, 
respectively. In the previous section, the page size that performs 
the best in desktop environments is not identical for each case as 
the performance of storage media is varied. If the performance of 
storage is similar to that of DRAM, increasing the page size 
performs relatively well, but if SCM becomes slow, decreasing 
the page size works well in desktop environments. However, as 
shown in Figure 13, the best results in mobile environments are 
obtained when the page size becomes large, and there are no 
significant differences in memory performances when the page 
size is larger than 1 kilobytes. This is also related to the memory 
management policies of Android, in which applications are killed 
before memory space is exhausted, and thus increasing the page 
size does not incur problems like desktop environments.  

In summary, our conclusion is that the page size will not be a 
significant issue in mobile environments although fast SCM is 
used as the storage media. 

 
Figure 11: TLB hit rate of mobile workloads as the page size changes. 

 
Figure 12: Page fault rate of mobile workloads as the page size changes. 
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Figure 13: Average memory access time (AMAT) of mobile workloads as the 
page size and storage latency change. 

6. Conclusion 

In this article, we considered the effectiveness of traditional 
memory management systems and configurations if fast storage 
such as SCM is used as the storage media. Our study discussed 
the implication of SCM storage with respect to the two important 
memory/storage subsystems, file caching and virtual memory 
paging. The analysis results with respect to the file caching 
showed that caching file blocks is effective if the blocks retrieved 
from SCM storage is used more than once after loading to 
memory. Thus, the admission of file blocks to the cache should be 
controlled for managing the file cache appropriately in SCM-
based storage media. In the case of virtual memory paging, our 
study showed that the number of storage accesses may not be the 
most important performance index, but the memory address 
translation process will also become important. In particular, our 
analysis showed that a common page size of 4 kilobytes is not a 
good choice for all cases when SCM storage is adopted, and 
determining the page size by decreasing or increasing it is needed 
because of the trade-off relation in storage access and memory 
address translation. However, we also showed that the page size 
is not a significant issue in mobile platforms like Android, where 
applications are killed before memory space is exhausted, making 
situations simpler. We expect that the findings in this article will 
be meaningful for emerging memory and storage management 
systems that make use of fast SCM media. In the future, we will 
perform the evaluation of our strategy with the complete system 
configurations consisting of the commercialized SCM products. 
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