

www.astesj.com 660

Issues in File Caching and Virtual Memory Paging with Fast SCM Storage

Yunjoo Park, Hyokyung Bahn*

Department of Computer Science & Engineering, Ewha Womans University, 03760, South Korea

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 09 August, 2020
Accepted: 21 September, 2020
Online: 05 October, 2020

 Storage-Class Memory (SCM) like OptaneTM has advanced as a fast storage medium, and
conventional memory management systems designed for the hard disk storage need to be
reconsidered. In this article, we revisit the memory management system that adopts SCM
as the underlying storage medium and discuss the issues in two layers: file caching and
virtual memory paging. Our first observation shows that file caching in the SCM storage is
profitable only if the cached data is referenced more than once, which is different from the
file caching in hard disks, where a single hit is also beneficial. Our second observation in
virtual memory paging shows that the page size in the SCM storage is sensitive to the
memory system performance due to the influence of memory address translation and
storage access cost. Our simulation studies show that the performance of paging systems
can be improved by adjusting the page size appropriately considering application
characteristics, storage types, and available memory capacities. However, the page size
will not be a significant issue in mobile platforms like Android, where applications are
killed before the memory space is exhausted, making situations simpler. We expect that the
analysis shown in this article will be useful in configuring file caches and paging systems
with the emerging SCM storage.

Keywords:
Storage-Class Memory (SCM)
File Caching
Virtual Memory Paging

1. Introduction

With the large performance gap between hard disk drive
(HDD) and dynamic random-access memory (DRAM), the main
purpose of memory management in computing systems has been
the minimization of disk I/Os [1, 2]. The access latency of hard
disks is more than tens of milliseconds, which is five to six orders
of magnitude larger than DRAM’s access latency. Meanwhile, due
to the rapid improvement of storage access time by the adoption of
flash-based solid state drive (SSD) and storage-class memory
(SCM), the extremely large performance gap has been decreased
[3-5]. The access latency of the flash storage is less than fifty
milliseconds, and hence the performance gap of storage and
memory becomes less than 3 orders of magnitude. Such trends
have been speeded up by the commercialization of SCM whose
access latency is just 1 or 2 orders of magnitude slower than
DRAM [6, 7].

A lot of patents related to the detailed architectures and
algorithms of SCM management have been suggested, and Intel
manufactured the commercial product of SCM, called OptaneTM
[8, 9]. Owing to its desirable features like high performance, low

energy consumption, and long write endurance, SCM is
anticipated to be adopted in the storage systems like flash SSD and
hard disks [10-13].

SCM can also be adopted in the main memory system because
it allows byte-accesses like DRAM but consumes less energy
because it is a non-volatile medium [14]. However, the access
latency of SCM is longer than that of DRAM, and hence it is now
considered as high-end storage or additional memory that can be
used together with DRAM. Although SCM may be used as either
memory or storage, this article focuses on storage. Since the
performance gap of storage and memory becomes small by
adopting SCM, memory management systems targeting at slow
hard disk storage need to be revisited.

In this article, we quantify the performance of systems based
on SCM storage and analyze a couple of issues in the management
of main memory under the SCM-based storage. In particular, this
article analyzes two memory management hierarchies affected by
the acceleration of storage devices, file caching and virtual
memory paging.

File caching preserves file data read from the storage to the
main memory area called the file cache and services requests for
the same data from the cache without accessing storage. The

ASTESJ

ISSN: 2415-6698

*Corresponding Author: H. Bahn, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul
03760, Republic of Korea, +82-2-3277-4247, bahn@ewha.ac.kr.

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 660-668 (2020)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj050581

http://www.astesj.com/
mailto:bahn@ewha.ac.kr
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050581

Y. Park et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 660-668 (2020)

www.astesj.com 661

purpose of file caching is to minimize the storage access
frequency. However, since the storage access latency is fast
enough by making use of SCM, it is questionable whether file
caching is still needed. To validate this, we investigate the
condition that file caching is effective according as the storage
access latency is varied. Our preliminary study exhibits that a
storage access takes about 30% more latency than a cache access
even though the same data is accessed and the access latency of
storage and cache is identical. This is because there exists heavy
software stack to passing through the storage media. By observing
this result, our finding is that file caching is still needed for SCM-
based storage if the data in the cache is requested more than once
after inserted into the cache. That is, since file caching needs
additional time for inserting the requested data into the cache, more
than a certain cache hits are necessary for caching to be profitable,
and we show that this is at least twice for SCM storage. Note that
low-end storage media like hard disks require only a single hit for
caching to gain.

Figure 1: Latency of accessing data from the file cache and the DRAM-based

storage.

Our second observation focuses on virtual memory paging if
SCM is made use of as storage media. Similar to file caching, the
purpose of virtual memory paging is the minimization of storage
accesses, which is also called page faults, when storage is hard
disk. Since the storage medium becomes fast enough, we observe
that page fault handling may not be the main performance
bottleneck of virtual memory paging. In particular, as the latency
of storage access becomes small by adopting SCM, the bottleneck
of the page access latency may be shifted to memory address
translation. Note that to access a memory page, translating the
address should be done first and then the data in the page is
accessed from either memory or storage. As the data access is
accelerated by the reduced storage access cost, the address
translation process may be a new bottleneck by accessing page
tables.

This article quantifies what will be the main bottleneck of
virtual memory paging as the storage performance and the page
size are changed. Based on our analysis, we discover the following
two phenomena. First, a small page is not efficient in terms of the
page fault rate but it performs well in terms of the data access
latency. The reason is that a page fault handling latency is strongly
related to the page size when the storage is SCM, which does not
need seek movement. Second, even though a small page is efficient
with respect to the latency of data access, it degrades the latency

of address translation by increasing TLB miss counts. Due to this
reason, deciding a page size needs to consider the trade-off relation
of the data access latency and the address translation latency.

Our simulation results exhibit that the performance of virtual
memory paging can be improved by adjusting the page size
appropriately considering application characteristics, storage
types, and available memory sizes. However, the page size will not
be a significant issue in mobile platforms like Android, where
applications are killed before memory space is exhausted, making
situations simpler. We expect that the analysis shown in this article
will be useful in configuring file caches and paging systems with
the emerging SCM storage.

The remaining part of this article is organized as follows. In
Section 2, we quantify the performance implication of file caching
as the storage medium changes from hard disk to SCM. Section 3
anatomizes the virtual memory paging performances with high-
performance SCM storage particularly focusing on page sizes.
Section 4 presents the experimental results through conducting
simulation experiments to observe the implications of SCM
storage based memory management systems. Section 5 discusses
the adoption of our model to the mobile application environments.
Finally, we present the conclusion of this article in Section 6.

2. File Caching for SCM Storage

This section quantifies the efficiency of file caching as the
storage medium changes from hard disk to SCM. To this end, we
measure the latency of file system operations when DRAM is used
as storage. Note that DRAM is volatile, but we use a certain area
of DRAM as a storage partition just to see the effect of fast storage
media. Note also that this situation implies the optimistic
performance of SCM storage. We added a profiler to Ext4 for
measuring the latency of directly accessing data from the DRAM
storage and the latency of accessing data in the DRAM file cache.

Figure 1 depicts the access latency of DRAM storage and
DRAM file cache as the size of data accesses changes. In this
graph, we measure each case 10 times and plot their average. As
can be seen in the graph, the access latency from DRAM storage
is 30% longer than accessing the same data from DRAM file
cache. Although the same DRAM is used for cache and storage,
the performance gap occurs due to the existence of software I/O
stack. When considering these results, file caching can be still
necessary to buffer the latency gap between storage and memory
although their access latencies are identical. However, as the gap
is very small, some conditions need to be met for file caching to be
beneficial.

When we use file caching, the accessed data should be stored
into the cache, which requires additional latency. The access
latency of DRAM storage shown in Figure 1 does not include this
latency, and hence the accessed data is delivered directly to the
user memory. If we use file caching, the accessed data is firstly
stored in the file cache and then transferred to the user memory.
The overhead of this additional copy operation in memory is not
negligible when SCM storage is used because the time overhead to
perform a memory copy is similar to that of a storage access. Thus,
the gain of file caching is small or there are no profits at all because
of this trade-off. Due to this reason, file caching is beneficial only
when the benefit of subsequent cache hits is larger than the cost of

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4 8 12 16 20 24 28 32

N
or

m
al

iz
ed

 a
cc

es
s

tim
e

I/O size (KB)

DRAM file cache

DRAM storage

http://www.astesj.com/

Y. Park et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 660-668 (2020)

www.astesj.com 662

the additional memory copy operation. That is, cache hits are
important for a cached data to gain, which differs from low-end
storage media like hard disk drives where a single hit of data is
sufficient for caching to gain. To quantify this, we measure the data
access time t from the file cache, storage access time T, and time
to access storage including the file caching cost Tm. Then, we
evaluate the condition of caching to be beneficial with respect to
the cache hit counts. The following equations represent the latency
to access data with file cache Tc and without file cache Tx,
respectively.

Tc = Tm + (n – 1) t (1)

Tx = n T (2)

where n is the total access count for the data. File caching gains
when Tc is less than Tx as follows.

n > (Tm – t) / (T – t) (3)

Figure 2: Hit counts necessary for a cached item to be beneficial as a function of

the latency for accessing the storage media.

Based on Expression (3), we estimate the cache hit counts
needed for caching to be beneficial. Figure 2 depicts the required
hit counts when the storage media is flash memory, hard disk, and
SCM. As plotted in the figure, the cache hit count necessary for
caching to be profitable increases significantly as the performance
gap of storage and memory is small. In the case of SCM storage
whose access latency is only 30% slower than memory, the cache
hit count necessary for caching to be profitable is two while
resident in the cache. Hence, if a storage data is requested now and
it will not be reused at least twice in the future, it would be better
not to store it in the cache for performance improvement.

To quantify the influence of file caching in practical situations,
we collect file request traces during the execution of two popular
storage benchmarks, and replay them as the storage media is
varied. The captured traces are web server and proxy server. We
investigate the storage access latency with/without file caching
under the two workload conditions. For the cache eviction
algorithm, we use the least-recently-used (LRU), the most
commonly adopted algorithm in file caching. LRU selects the data
that was accessed the oldest among all data in the file cache and
evicts it if there are no cache spaces to insert new data items.

Figure 3 depicts the storage access time with/without file
caching when hard disk storage is used as the size of cache
changes. Note that the cache size of 100% means that the cache
size is equal to the total footprint of workloads, implying that the
eviction algorithm is not necessary. This is not a realistic situation
and in practical environments, the cache size is less than 50%. As
can be seen from this figure, the effectiveness of file caching is

significant in case of the hard disk storage. Specifically, file
caching accelerates the storage performance by 70%, which is
possible because hard disk is very slower than the file cache, and
hence decreasing the disk I/O access counts by file caching is
effective.

Figure 4 depicts the storage access time without/with file

caching when the storage medium is SCM. As can be seen from
this figure, the effectiveness of file caching is insignificant in case
of the SCM storage. In particular, the performance improvement
by using file caching is less than 3% with the SCM storage. This
apparently exhibits that the effectiveness of file caching decreases
significantly as the performance gap of storage and memory
becomes small. However, we conducted some new experiments,
and show that file caching can be still effective by judicious
management.

Figure 5 depicts the storage access time with file caching when
the SCM storage is used, but we differentiate the result with two
management policies. In particular, LRU-cache adopts the same
configuration of Figure 4, which stores all data requested in the file
cache and evicts the least-recently-used data if free cache space is
necessary. The other graph, denoted by AC-cache (admission-
controlled cache), is plotted by allowing the insertion of data into
the file cache only if it is used more than once. This allows only

(a) Proxy (b) Web

Figure 3: Effectiveness of file caching under hard disk storage.

(a) Proxy (b) Web

Figure 4: Effectiveness of file caching under SCM storage.

(a) Proxy (b) Web

Figure 5: Performance of file caching with/without admission-controll (AC)
under SCM.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15 20 25 30 35 40 45 50

st
or

ag
e

ac
ce

ss
 ti

m
e

(n
or

m
al

iz
ed

)

cache size (%)

No-cache Buffer cache

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15 20 25 30 35 40 45 50

st
or

ag
e

ac
ce

ss
 ti

m
e

(n
or

m
al

iz
ed

)

cache size (%)

No-cache Buffer cache

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15 20 25 30 35 40 45 50
st

or
ag

e
ac

ce
ss

 ti
m

e
(n

or
m

al
iz

ed
)

cache size (%)

No-cache Buffer cache

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15 20 25 30 35 40 45 50

st
or

ag
e

ac
ce

ss
 ti

m
e

(n
or

m
al

iz
ed

)

cache size (%)

No-cache Buffer cache

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15 20 25 30 35 40 45 50

st
or

ag
e

ac
ce

ss
 ti

m
e

(n
or

m
al

iz
ed

)

cache size (%)

LRU-cache AC-cache

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15 20 25 30 35 40 45 50

st
or

ag
e

ac
ce

ss
 ti

m
e

(n
or

m
al

iz
ed

)

cache size (%)

LRU-cache AC-cache

http://www.astesj.com/

Y. Park et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 660-668 (2020)

www.astesj.com 663

data used multiple times to be cached, thereby filtering out useless
single-accessing data. Even though this is a simple technique, the
effectiveness of AC-cache is significant as shown in Figure 5. The
performance improvement ranges 20-40%. The implication of this
result is that file caching is still useful when SCM storage is used,
but management policies should be appropriately devised in order
to get effective results.

3. Virtual Memory Paging for SCM Storage

This section presents the simulation results of virtual memory
paging when we use SCM as storage.

3.1. Access Latency of a Virtual Memory Page

To use a memory page in virtual memory systems, translation
of memory addresses between logical address and physical address
needs to be conducted. This is done by referencing the page table,
which is located at main memory. To improve the address
translation performances, a certain part of the page table is cached
in the Translation Look-aside Buffer (TLB), which is faster than
main memory [15]. When a memory page is requested, address
translation by TLB is tried first. The page table is referenced if
address translation by TLB misses. Then, the memory data is
accessed with the translated physical address. However, if the data
does not reside in memory, storage should be accessed, which is
called a page fault. Assume that the cache miss rate of TLB is RT,
and the page fault rate is RF. Then the memory access time TTOTAL
can be denoted by

TTOTAL = TADDR + TDATA (4)

TADDR = (1 – RT)* tε + RT *(tε + tτ) (5)

TDATA = (1 – RF)* tτ + RF *(tτ + TPF) (6)

where TADDR is the time required for performing address
translation, TDATA is the latency required for data access, tε is the
latency required for TLB access, tτ is the latency for accessing main
memory, and TPF is the latency for page fault handling including
storage access time.

3.2. Eviction Policies

Since the size of TLB entries is fixed, adding an address
translation data to TLB requires the eviction of a certain entry
when no TLB entry is available. To choose an eviction victim, we
adopt the least-recently-used (LRU) eviction policy, which is a
representative algorithm adopted in TLB entry eviction [15].

Because the size of free pages in main memory is fixed, another
eviction policy is necessary. Specifically, if the page requested is
not in memory and should be loaded from storage, but there is no
free page in memory, eviction of a page from memory is necessary.
We use the second-chance algorithm, which is a popular eviction
policy used in virtual memory systems, in our experiments [14].

The second-chance algorithm investigates if a page has been
used recently or not by utilizing the reference bit of each page.
When a page is used, the reference bit of that page becomes one.
If a free page frame is needed, the second-chance algorithm
investigates the reference bits of all pages in memory sequentially,

and discards the page firstly found with its reference bit of zero.
For each page whose reference bit is one while investigation
processes, the second-chance algorithm resets the bit to zero,
instead of discarding the page from memory. Thus, if a page is not
accessed until the next investigation of the second-chance
algorithm, it is evicted.

With this basic configurations, we conduct our simulations to
quantify the efficiency of memory management systems when we
use SCM-based storage.

3.3. Page Size and Prefetching

The current operating systems usually manage virtual memory
by the unit of page. The size of a page is commonly set to 4
kilobytes, which is also the default page size of Linux. However,
operating systems also allow the prefetching option, which loads
maximum 128 pages together from the secondary storage when a
page requested is not in memory. The rationale of this is to
consider the characteristics of hard disk, which requires the basic
cost for each access consisting of seek latency and rotational
latency, accounting for the main part of storage access latency
irrespective of the size of data loaded. This implies that loading
large data in each request is efficient in case of hard disk based
storage. Recent operating systems also support a huge page whose
size is up to 4MB. This is also for hard disk storage systems, but it
will not be efficient for SCM, in which the page size should be
small because storage is fast and there are no seek time or
rotational latency.

Nevertheless, it is not feasible to decrease the page size because
memory address translation will be efficient with a large page size.
That is, TLB with a large page size covers more memory address
spaces, leading to improved address translation latency. Then, we
need to decide the page size for SCM-based storage by considering
the overall effect of storage access and address translation.

Also, the latency of SCM should be considered, which is
optimistically as fast as DRAM, but can be up to 100 or 1000 times
slower than DRAM. Due to the variance of performance gap
between storage and memory, the relative impact of memory
address translation compared to storage access is also varied. In
particular, as the performance of SCM approaches that of DRAM,
memory address translation incurs relatively more cost. On the
contrary, as the performance gap of DRAM and SCM increases,
the relative overhead of a storage access will be large. The relation
of storage access and address translation will be analyzed in the
next section as the performance of SCM is varied.

4. Performance Analysis

We conduct various simulations to investigate the efficiency of
memory management subsystem as SCM storage is adopted. In
particular, the impact of the page size on memory performance is
investigated. The minimum page size is set to 512 bytes because
the size of a page should be at least the block size of the last-level
cache memory. We use the virtual memory reference traces
captured by the Cachegrind tool of the Valgrind [16, 17]. We
collect the virtual memory reference traces from five desktop
workloads as listed in Table 1 [18-22].

http://www.astesj.com/

Y. Park et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 660-668 (2020)

www.astesj.com 664

(a) freecell (b) gedit (c) gqview

 (d) kghostview (e) xmms
Figure 6: Memory address translation time of desktop workloads as the page size changes.

(a) freecell (b) gedit (c) gqview

(d) kghostview (e) xmms
Figure 7: Page fault rate of desktop workloads as the page size changes.

http://www.astesj.com/

Y. Park et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 660-668 (2020)

www.astesj.com 665

4.1. Memory Address Translation

This section discusses the influence of the page size on the
performance of memory address translation. Figure 6 depicts the
memory address translation latency while running five desktop
applications as the page size is changed. As the figure depicts, the
latency of memory address translation decreases according as the
page size grows. The reason is that the fixed TLB entries account
for the address translations of wider memory spaces if the page

size becomes large. An increased hit rate of TLB leads to the
decreased latency of memory address translation by reducing the
number of page table references. Nevertheless, it is known that
the hit rate of TLB cannot increase any more when the page size
is larger than a certain threshold [23]. Thus, the conclusion of this
experiment is that a large page will perform well in terms of the
memory address translation, but the page size does not need to be
increased any longer after a certain large size.

(a) freecell (b) gedit (c) gqview

(d) kghostview (e) xmms

Figure 8: Memory access time of desktop workloads as the page size changes.

(a) 1x of DRAM (b) 10x of DRAM (c) 100x of DRAM
Figure 9: Total memory latency of desktop workloads as the page size and storage access latency change.

http://www.astesj.com/

Y. Park et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 660-668 (2020)

www.astesj.com 666

Table 1: Characteristics of desktop workload

Application
Memory
footprint

(MB)

Memory access counts

Write Read Total

freecell [18] 9.84 60,040 430,135 490,175

gedit [19] 14.12 132,822 1,600,941 1,733,763

Gqview [20] 7.26 645,399 265,286 610,685

kghostview [21] 16.98 103,540 1,442,595 1,546,135

xmms [22] 7.86 978,242 190,697 1,168,939

4.2. Storage Access Frequency

This section discusses the impact of the page size on the storage
access frequency. Figure 7 depicts the page fault rate of the five
applications as the page size changes. As the figure shows, the best
page size is not identical for different applications we considered.
In most cases, a large page improves the page fault rate. In
particular, the page size of 8 kilobytes exhibits the best results for
gqview, kghostview, and xmms. On the contrary, the page size that
exhibits the best result is 1 kilobytes for gedit and 4 kilobytes for
freecell, respectively. The best page size relies not only on the
application’s characteristics but also on the free memory situation
of the total system. When the memory size is insufficient for the
given workload environment, decreasing the page size will
perform well to retrieve only the data requested at that time. In
contrast, when the available memory is sufficient, increasing the
page size will be a better choice in terms of the storage access
frequency. Also, when the workload is composed of sequential
reference patterns, increasing the page size can reduce the number
of storage accesses by retrieving large successive data together.

4.3. Total Memory access time

As hard disk requires large seek overhead for each storage
access irrespective of the data size, decreasing the storage access
frequency can lead to the improvement of data access latency.
However, in case of SCM storage, as the data size becomes large,
a storage access requires more time to load data. Assume a storage
reference stream that is composed of sequential patterns and let us
think of the storage access frequency for virtual memory paging
that makes use of a large page size and a small page size. It is clear
that a large page size is efficient in terms of the storage access
frequency, but it does not essentially lead to the enhancement of
data access latency because the storage access time becomes large
for each I/O with SCM. Hence, instead of improving the storage
access frequency, our aim is to reduce the data access latency. In
other words, the page fault rate is not a fair performance index for
SCM-based virtual memory paging, but the data access latency can
be an alternative metric for SCM-based storage.

Unlike the page fault rate case, address translation latency has
almost linear relation with the TLB miss rate because the access
latency of a page table entry incurred by each TLB miss is identical
though the page size is different.

Figure 8 depicts the total memory access latency of the desktop
applications we considered as the page size changes. As the figures

show, the best page size is not the same for different applications,
and is also different from the results of Figure 7 that plots the page
fault rate. From this result, we can see that the storage access
frequency is not the primary factor of performance in case of SCM
storage media. Also, this figure shows that the address translation
latency can be another significant factor that influences the
memory access time in case of fast SCM storage even though the
effectiveness of address translation is smaller than the actual data
access. Because a trade-off relation exists between data access and
address translation in deciding an appropriate page size, we cannot
simply conclude the page size as small or large but a judicious
management is necessary for deciding the page size with given
environments.

4.4. Relative Storage Performance

Figure 9 depicts the total memory latency for each application
as the access latency of storage media changes. Specifically,
Figures 9(a), 9(b), and 9(c) represent the total memory latency
when the relative access latency of SCM is identical to DRAM, 10
times that of DRAM, and 100 times that of DRAM, respectively.
As this figure shows, the page size that performs the best is not the
same for each case as the access latency of storage media changes.
If the performance of SCM is similar to DRAM as shown in Figure
9(a), the address translation latency becomes important, and hence
increasing the page size performs relatively well. In other words,
the role of TLB becomes significant in such environments, and the
memory access time is improved with the page size of 4KB or
8KB. We cannot determine the best page size for all workloads as
it depends on the total memory capacity as well as the workload
characteristics. Figures 9(b) and 9(c) plot the total memory latency
when the access latency of SCM media is 10 times and 100 times
slower than DRAM, respectively. As these two figures show, the
memory access time becomes better when we decrease the page
size as small as possible. The reason is that the data access latency
affects significantly if the storage becomes slow and thus the
address translation procedure is less important. The best memory
access time can be obtained if we set the page size to 512B for all
cases.

Table 2: Characteristics of mobile workload.

Application
Memory
footprint

(MB)

Memory access counts

Write Read Total

facebook [24] 198.66 2,045,716 11,607,339 13,653,055
angrybirds [25] 76.94 3,822,479 14,368,068 18,201,717

youtube [26] 68.64 3,162,229 15,034,275 18,196,504
farmstory [27] 53.74 2,101,818 13,122,852 15,224,670
chrome [28] 259.86 4,104,436 16,895,563 20,999,999

When considering these overall situations, we can obtain the
best memory access time not by fixing the page size to a constant
but by varying relying on the application and storage
characteristics. Hence, the common page size of 4KB will not be a
good choice for all cases and needs to be changed appropriately if
we use the SCM-based fast storage media.

http://www.astesj.com/

Y. Park et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 660-668 (2020)

www.astesj.com 667

5. Adopting the Model to Android Mobile Applications

In this section, we adopt our model to Android mobile
applications to see the effect of the page size in SCM-based
storage. To investigate a wide spectrum of Android applications,
we collect virtual memory reference traces from five Android
applications, namely, facebook a social network service [24],
angrybirds a game [25], youtube an online streaming service [26],
farmstory an online game [27], and chrome a web browser [28].
Table 2 lists the characteristics of the workloads.

Figure 10: TLB hit rate of mobile workloads as the TLB size changes.

With these memory reference traces, we conduct extensive
simulations, and analyze them similar to the desktop system cases
in the previous section. Figure 10 depicts the TLB hit rate while
executing five mobile applications as a function of the TLB size.
As can be seen from the figure, the TLB hit rate is improved
significantly as the TLB entries increase. The five applications
show similar curve trends. Specifically, the TLB performance is
improved sharply when the number of TLB entries is less than 20
and the slope of the curve becomes gradual after that point. Figure
11 depicts the TLB hit ratio as the page size changes. As can be
seen from this figure, the TLB hit rate improves according as the
page size increases. The reason is that the fixed number of TLB
entries account for address translations of more memory capacity
as the page size becomes large. An increased hit rate of TLB
eventually leads to the decreased latency of memory address
translation by reducing the number of page table references.
However, the improvement of the TLB hit rate slows down when
the page size is larger than a certain threshold. Thus, increasing
the page size will perform well in terms of the performance of
memory address translation, but it is not sensitive after a certain
large page size.

Figure 12 depicts the page fault rate of the five Android
applications as the page size changes. As can be seen from the
figure, the page fault rate decreases as the page size increases for
all applications we considered. Unlike desktop cases that do not
exhibit the same trends for different applications, all mobile

applications show similar results. The best page size relies on the
application’s characteristics in desktop cases, but a large page
commonly improves the page fault rate of all mobile applications
we considered. If the memory space is not sufficient for the given
workload environment, large pages will not perform well due to
retrieving the data not requested now. However, our Android
application experiments show that the memory space is not
exhausted in any applications. This is because Android does not
use swap but kills applications if free memory space becomes
small.

Figure 13 depicts the average memory access time (AMAT)
of the five Android applications we considered as the page size
changes. This graph separately represents the AMAT when the
relative latency of SCM is identical to DRAM, 10 times that of
DRAM, 100 times that of DRAM, and 1000 times that of DRAM,
respectively. In the previous section, the page size that performs
the best in desktop environments is not identical for each case as
the performance of storage media is varied. If the performance of
storage is similar to that of DRAM, increasing the page size
performs relatively well, but if SCM becomes slow, decreasing
the page size works well in desktop environments. However, as
shown in Figure 13, the best results in mobile environments are
obtained when the page size becomes large, and there are no
significant differences in memory performances when the page
size is larger than 1 kilobytes. This is also related to the memory
management policies of Android, in which applications are killed
before memory space is exhausted, and thus increasing the page
size does not incur problems like desktop environments.

In summary, our conclusion is that the page size will not be a
significant issue in mobile environments although fast SCM is
used as the storage media.

Figure 11: TLB hit rate of mobile workloads as the page size changes.

Figure 12: Page fault rate of mobile workloads as the page size changes.

http://www.astesj.com/

Y. Park et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 660-668 (2020)

www.astesj.com 668

Figure 13: Average memory access time (AMAT) of mobile workloads as the
page size and storage latency change.

6. Conclusion

In this article, we considered the effectiveness of traditional
memory management systems and configurations if fast storage
such as SCM is used as the storage media. Our study discussed
the implication of SCM storage with respect to the two important
memory/storage subsystems, file caching and virtual memory
paging. The analysis results with respect to the file caching
showed that caching file blocks is effective if the blocks retrieved
from SCM storage is used more than once after loading to
memory. Thus, the admission of file blocks to the cache should be
controlled for managing the file cache appropriately in SCM-
based storage media. In the case of virtual memory paging, our
study showed that the number of storage accesses may not be the
most important performance index, but the memory address
translation process will also become important. In particular, our
analysis showed that a common page size of 4 kilobytes is not a
good choice for all cases when SCM storage is adopted, and
determining the page size by decreasing or increasing it is needed
because of the trade-off relation in storage access and memory
address translation. However, we also showed that the page size
is not a significant issue in mobile platforms like Android, where
applications are killed before memory space is exhausted, making
situations simpler. We expect that the findings in this article will
be meaningful for emerging memory and storage management
systems that make use of fast SCM media. In the future, we will
perform the evaluation of our strategy with the complete system
configurations consisting of the commercialized SCM products.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This paper is an extension of work originally presented in the 6th
IEEE Int’l Conf. on Information Science and Control Engineering
[1]. This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2019R1A2C1009275) and also by the
ICT R&D program of MSIP/IITP (2019-0-00074, developing
system software technologies for emerging new memory that
adaptively learn workload characteristics).

References

[1] Y. Park, K. Cho, and H. Bahn, “Challenges and Implications of Memory
Management Systems under Fast SCM Storage,” in 2019 IEEE International
Conference on Information Science and Control Engineering, 190-194, 2019.
https://doi.org/10.1109/ICISCE48695.2019.00046

[2] S. Ng, “Advances in disk technology: performance issues,” Computer, 31(5),
75-81, 1998. http://doi.org/10.1109/2.675641

[3] C. Evans, “Flash vs 3D Xpoint vs storage-class memory: which ones go
where?” Computer Weekly, 3(9), 23-26, 2018.

[4] M. Stanisavljevic et al., “Demonstration of Reliable Triple-Level-Cell (TLC)
Phase-Change Memory,” in 2016 IEEE International Memory Workshop,
2016. https://doi.org/10.1109/IMW.2016.7495263

[5] S. Hyun, H. Bahn, and K. Koh, “LeCramFS: an efficient compressed file
system for flash-based portable consumer devices,” IEEE Trans. Consumer
Electron., 53(2), 481-488, 2007. https://doi.org/10.1109/TCE.2007.381719

[6] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance
main memory system using phase-change memory technology,” ACM
SIGARCH Computer Architecture News, 37(3), 24-33, 2009.
https://doi.org/10.1145/1555815.1555760

[7] E. Lee, J. Jang, T. Kim, and H. Bahn, “On-demand snapshot: an efficient
versioning file system for phase-change memory,” IEEE Trans. Knowledge
Data Engineering, 25(12), 2841-2853, 2013.
https://doi.org/10.1109/TKDE.2013.35

[8] R. K. Ramanujan, R. Agarwal, and G. J. Hinton, “Apparatus and Method for
Implementing a Multi-level Memory Hierarchy Having Different Operating
Modes,” US Patent 20130268728 A1, Intel Corporation, 2013.

[9] B. Nale, R. Ramanujan, M. Swaminathan, and T. Thomas, “Memory channel
that supports near memory and far memory access,” PCT/US2011/054421,
Intel Corporation, 2013.

[10] E. Lee, S. Yoo, and H. Bahn, “Design and implementation of a journaling file
system for phase-change memory,” IEEE Trans. Comput., 64(5), 1349-1360,
2015. https://doi.org/10.1109/TC.2014.2329674

[11] S. Eilert, M. Leinwander, and G. Crisenza, “Phase change memory: A new
memory enables new memory usage models,” in 2009 IEEE International
Memory Workshop, 2009.

[12] E. Lee, J. Kim, H. Bahn, S. Lee, and S. Noh, “Reducing Write Amplification
of Flash Storage through Cooperative Data Management with NVM,” ACM
Transactions on Storage, 13(2), 2017. https://doi.org/10.1145/3060146

[13] E. Lee, H. Bahn, S. Yoo, S. H. Noh, “Empirical study of NVM storage: an
operating system’s perspective and implications,” in 2014 IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 405-410, 2014.
https://doi.org/10.1109/MASCOTS.2014.56

[14] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: a write-history-aware page
replacement algorithm for hybrid PCM and DRAM memory architectures,”
IEEE Trans. Comput., 63(9), 2187-2200, 2014.
https://doi.org/10.1109/TC.2013.98

[15] B. Anita, J. B. Chen, and N. P. Jouppi, “A simulation based study of TLB
performance,” in 1992 Int. Symp. Computer Architecture, 114-123, 1992.

[16] Valgrind, http://valgrind.org/
[17] N. Nethercote and J. Seward, “Valgrind: a program supervision framework,”

Electronic Notes in Theoretical Computer Science, 89(2), 2003.
https://doi.org/10.1016/S1571-0661(04)81042-9

[18] Freecell, https://en.wikipedia.org/wiki/FreeCell
[19] Gedit, https://wiki.gnome.org/Apps/Gedit
[20] Gqview, http://gqview.sourceforge.net
[21] Kghostview, https://linuxappfinder.com/package/kghostview
[22] Xmms, https://www.xmms.org/
[23] P. Weisberg and Y. Wiseman, “Using 4KB page size for virtual memory is

obsolete,” in 2009 IEEE International Conference on Information Reuse &
Integration, 262-265, 2009.
http://doi.org/10.1109/IRI.2009.5211562

[24] Facebook, https://www.facebook.com/
[25] Angrybirds, https://www.angrybirds.com/
[26] Youtube, https://www.youtube.com/
[27] Farmstory,

https://play.google.com/store/apps/details?id=com.teamlava.farmstory
[28] Chrome, https://www.google.com/chrome/

http://www.astesj.com/

	2. File Caching for SCM Storage
	3. Virtual Memory Paging for SCM Storage
	3.1. Access Latency of a Virtual Memory Page
	3.2. Eviction Policies
	3.3. Page Size and Prefetching

	4. Performance Analysis
	4.1. Memory Address Translation
	4.2. Storage Access Frequency
	4.3. Total Memory access time
	4.4. Relative Storage Performance

	5. Adopting the Model to Android Mobile Applications
	6. Conclusion
	Conflict of Interest
	Acknowledgment
	References

