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Dynamic modeling has been a crucial study in many areas of the engineering field. In this paper,
we apply the Newton-Euler equation of motion to a two-DOF parallel mechanism solar tracker
which is a close loop mechanism. The aim of this study is to show a simulation of the dynamical
model with feedback control using a PD controller to orientate the solar panel perpendicular
to the sun rays. The mechanism is modeled in the form of a system of algebraic differential
equations. First, kinematic constraint equations were constructed in the form of algebraic
equations to specify the dynamic interactions at joints. We use the Baumgarte stabilization
method, a constraint violation method to eliminate computational error incurred by numerical
approximation. Then, the dynamic equations of the system were formulated using the Newton-
Euler equation of motion. To describe the translation and rotation motions, we apply Cartesian
coordinates and Euler parameters. Simulation of driving the solar panel to reach the desired
configuration is made, and the result shows that the PD controller provides good performance
of the mechanism regardless of the complexity of the dynamic behavior of the mechanism.

1 Introduction

This paper is an extension of work originally presented in 2019
IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM). IEEE, 2019 [1]. Solar energy has been a
major current research in the electricity generation field because of
its unlimited resource and environmental friendly behavior. The effi-
ciency of solar energy can be improved by implementing a tracking
mechanism which keeps the solar panel perpendicular to the sun
rays. There exists two main types of tracking mechanism, a single
and dual axis solar tracker [2]. Energy gain from a single axis solar
tracker was reported to be 20% [3] while energy gain from a dual
axis solar tracker was 30-40% [4].

Dual axis solar tracker has been of an interest research topic for
many researchers, [3], [5]–[7], because of its outperformance over
single axis solar tracker. Many researches on energy gain from solar
tracking systems compared to the tilted fixed panel had been done
both theoretically and experimentally [5]. In [7], the author pro-
posed a two-axis decoupled solar tracking system based on parallel
mechanism and showed that the tracker requires less driving torque,

thus less power dissipation than the conventional serial tracker does.
Furthermore, the tracking system does not need reducer with large
reduction ratio. Therefore, complexity and weight of the system
are also reduced. The parallel mechanism solar tracker can be im-
plemented by mounting on either a fixed or moving platform to
produce electrical energy. For instance, aerial vehicles, boats, land
vehicles are considered as moving platform. Assuming that the
parallel mechanism solar tracker is attached to an aerial vehicle, the
dynamic effect must be taken into account. The scope of this study
is limited to a fixed platform.

Various methods for dynamic modeling for mechanical systems
have been widely developed, and each one has its own advantages
and disadvantages. In general, dynamic modeling using generalized
coordinate (e.g. Lagrange’s dynamic equation) yields the smallest
number of differential equations and, therefore, computational
efficient. However, the order of nonlinearity is high, and derivation
of equation in expanded form of multibody system with loops of
connected links is very tedious. For parallel mechanism, derivation
can be done by virtually decomposing the system as open loop
mechanism with some kinematic constraint forces by the other

*Corresponding Author: Sarot Srang, Department of Industrial and Mechanical Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O.Box
86, Sangkat Tuek L’ak 1, Khan Tuol Kouk, Phnom Penh, Cambodia. srangsarot@itc.edu.kh

www.astesj.com
https://dx.doi.org/10.25046/aj050587

709

http://www.astesj.com
mailto:srangsarot@itc.edu.kh
https://www.astesj.com
https://dx.doi.org/10.25046/aj050587


S. Srang et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 709-716 (2020)

parts of the system. For a system with more than one loop like the
tracker we are considering, the derivation is even more difficult, and
only partial reaction (or constraint) forces can be determined. With
cartesian coordinates in global and body-fixed frames and Euler pa-
rameters for describing rotation, dynamic modeling using Newton’s
method is much simpler, and systematic generation of kinematic
constraints at all joints and dynamic equations can be derived easily
[8]. The method yields system equations of algebraic-differential
equations. Reaction forces and the coordinates describing motion
of a system are obtained from solving the equations. The reac-
tion force has an advantage for mechanical structure design. A
high-performance computer can realize the simulation modeled in
detail including the reaction force effect in this case. However, the
analysis of reaction forces is not reported in this work.

The remaining contents of this paper are organized as follows.
In section 2, the parallel mechanism is explained on configuration,
and its kinematic is described by using Cartesian coordinate. Dy-
namic equations for unconstrained and constrained body which are
described in Cartesian coordinate and using Euler parameters are
given in section 3. For constrained body, the resulted equation is
in the form of system algebraic-differential equations. In section
4, the controller design is covered by using PD controller. Section
5 presents the results and discussion. We conclude our paper in
section 6.

2 Kinematic Constraint

Cartesian coordinate is used to describe the system configuration,
and constraint equations are obtained from individual joints. Figure
1 shows the coordinate system, where (Oxyz) is global frame and
(Oiξiηiζi) is body-fixed frame attached on body i with the center
of mass Oi. A point P on the body has coordinate as a vector in
body-fixed frame and global frame defined by s

′P
i and rP

i respec-
tively. Figure 2 shows a parallel mechanism which is used as dual
axis solar tracker. The body numbers are labeled as seen in the
figure. The mechanism consists of 7 connected rigid bodies. It has
a global coordinate (Oxyz), and each body has its own body-fixed
frame as explained in Figure 2. Body 7 is connected with body 5
and 6 via 2 spherical joints and with body 4 via a universal joint.
Body 6 is connected with body 2 via a revolute joint. Body 5 is
connected to body 3 via a universal joint. Body 4 is connected to
body 1 (ground) via another revolute joint. Body 3 is connected
with body 1 via a translational joint. Body 2 is connected with body
1 via another translational joint. Two linear actuators are attached at
the translational joints. The actuators exert forces on body 2 and 3
along vertical axes.

Denote qi =
[
rT , pT

]T

i
=

[
x, y, z, e0, e1, e2, e3

]T
i as a coordi-

nate vector of the body i, where ri is position vector of the
center of mass of the body as illustrated in Figure 1, and
pi =

[
e0, eT

]T

i
= [e0, e1, e2, e3]T

i is Euler parameters.

z

y

x

rP
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Figure 1: Cartesian Coordinate System
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Figure 2: Global and Local coordinates of the parallel mechanism at the initial
configuration

The parameter satisfies a mathematical relationship,

pT
i pi − 1 = 0. (1)

The second time derivative of (1) is

pT
i p̈i + ṗT

i ṗi = 0. (2)

Denote Ri as a rotational matrix of body i, and a pair of 3×4 matrices
Gi and Li defined as Gi = [−e, ẽ + e0I]i and Li = [−e,−ẽ + e0I]i .
Then Ri = GiLT

i ,[8] . The global coordinate of the point P illustrated
in Figure 1 can be defined by

rP
i = ri + Ris′Pi = ri + GiLT

i s′Pi , (3)

where s′Pi =
[
ξP, ηP, ζP

]T

i
is body-fixed coordinate of the point P.
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Denote q =
[
qT

1 , q
T
2 , q

T
3 , q

T
4 , q

T
5 , q

T
6 , q

T
7

]T
as coordinate vector for

describing the configuration of the mechanism, and its respective
first and second time derivative, q̇ and q̈, for describing the motion
of the mechanism. The number of coordinates of the system is
n = 7× 7 = 49, and the number of Euler parameters relationship (or
mathematical constraint) is 7.
Denote

Φ ≡ Φ(q) = 0 (4)

as kinematic equation derived from kinematic constraints which
have 34 equations. The compact form of the kinematic equation
for each joint is given in Appendix A. The first and second time
derivative of (4) are written as

Φqq̇ = 0,

Φqq̈ +
(
Φqq̇

)
q

q̇ = 0

or Φqq̈ = γ,

(5)

where γ = −
(
Φqq̇

)
q

q̇ is called the right side of the kinematic accel-
eration equation and can be found in [8]. We adopt the constraint
violation stabilization methods from [9], another similar technique
can also be found in [10, 11].
Consider the following closed loop system,

D̈ + KPḊ + KDD = 0, (6)

where KP and KD are constant and defined in Appendix B. Due to
the fact that there exists numerical errors in using numerical method
to solve the differential equations (5), we use the positive constraint
violation stabilization method to obtain a stable response. So (5) is
modified such that the kinematic constraint equations are satisfied
by ensuring the shrinking of the computation error.
First time derivative of constraint equation is obtained as

Φqq̇ = Ḋ (7)

Second time derivative of the constraint equation is given as

Φqq̈ + (Φqq̇)qq̇ = D̈

= −KDḊ − KPD

= −KD(Φqq̇) − KPΦ(q)
(8)

Thus,
Φqq̈ = γ − KD(Φqq̇) − KPΦ(q). (9)

The equation (9) is used for simulation and the performance is
discussed in section 5.

3 Dynamic Modeling for Unconstrained
and Constrained Bodies

Newton-Euler equations of motion is used to derive the equations
of motion for multi-rigid bodies of the parallel mechanism. Prior to
having the equations of motion for a set of interconnected bodies by
kinematic joints which is known as constrained body, the equations
of motion for body with no contact to other bodies which refers as
an unconstrained body are written.

3.1 Dynamic Equations for Unconstrained Bodies

From Newton’s method, an unconstrained body i with mass mi and
moment of inertia J′i with respect to its center of mass exerted by
external force fi and moment τ′i has dynamic equation of motion as

Nir̈i = fi
J′i ω̇

′
i + ω̃′i J

′
iω
′
i = n′i ,

(10)

where Ni = diag
([

m m m
])

i
and ω′i is the angular velocity de-

fined in body-fixed frame. The equation of rotational motion in (10)
is transformed by using the following relationships [8].

ω′ = 2Lṗ

ω̇′ = 2Lp̈.
(11)

L̃i ṗi = LiL̇T
i (12)

Equation (10) becomes

2J′i Li p̈i + 4L̃i ṗiJ′i Li ṗi = n′i
2J′i Li p̈i + 4LL̇T J′i Li ṗi = n′i

2J′i Li p̈i + LiHi ṗi = n′i ,

(13)

where Hi = 4L̇T
i JT

i Li. The dynamic equations of motion for an
unconstrained bodies are written as

Nir̈i = fi
2J′i Li p̈i + LiHi ṗi = n′i

pT
i p̈i + ṗT

i ṗi = 0.

(14)

In matrix form, (14) is rewritten asNi 0 0
0 2J′Li 0
0 pT

i 0


 r̈i

p̈i

0

 +

 0
LiHi ṗi

ṗT
i ṗi

 =

 fi
n′i
0

 . (15)

3.2 Dynamic Equations for Constrained Bodies

Bodies are interconnected to form a system of constrained bodies
via kinematic joints which create constraint reaction forces and mo-
ments. When applying the constraint reaction forces and moments
to (14), the dynamic equations of motion for a constrained bodies
are written as

Nir̈i = fi + f (c)
i

2J′i Li p̈i + LiHi ṗi = n′i + n′i
(c)

pT
i p̈i + ṗT

i ṗi = 0.

(16)

A constrained body i is additionally exerted by reaction forces and
moments

[
f (c), n′(c)

]T

i
from joints. These forces and moments can

be transformed to coordinate system consistent with q denoted by[
f ∗(c), n∗(c)

]T

i
and defined by[

f ∗(c)

n∗(c)

]
i
=

[
ΦT

r
ΦT

p

]
i
λ (17)
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To be used with the formulation (16), the moment in (17) is trans-
formed to be

n′(c) =
1
2

Lin′∗(c)

=
1
2

LiΦ
T
pi
λ

(18)

where λ = [λ1, . . . , λ34] is known as Lagrange Multipliers, and[
Φri,Φpi

]
= Φqi is Jacobian Matrix of the kinematic constraint

Φ ≡ Φ (q) with respect to qi. Therefore, the dynamic equations of
motion for the mechanism are given in compact form as

Ni 0 ΦT
ri

0 2J′Li
1
2 LiΦ

T
pi

0 pT
i 0


 r̈i

p̈i

−λ

 +

 0
LiHi ṗi

ṗT
i ṗi

 =

 fi
n′i
0

 . (19)

[
M BT

P 0

] [
q̈
−λ

]
+

[
b
c

]
=

[
g
0

]
, (20)

where

M =



N1 0 . . . 0 0
0 2J′1L1 . . . 0 0
...

...
. . .

...
...

0 0 . . . N7 0
0 0 . . . 0 2J′7L7


,

B = [Φr1 ,
1
2

Φp1 LT
1 , . . . ,Φr7 ,

1
2

Φp7 LT
7 ]

,

P =


0T pT

1 . . . 0T 0T

...
...

. . .
...

...
0T 0T . . . 0T pT

7

 , b =



0
L1H1 ṗ1

...
0

L7H7 ṗ7


, c =


ṗT

1 ṗ1
...

ṗT
7 ṗ

 ,

g =



f1
n′1
...
f7
n′7


, and q̈ =

[
r̈1

T p̈1
T . . . r̈7

T p̈7
T
]T

=

[ẍ, ÿ, z̈, ë0, ë1, ë2, ë3]T
i , (i = 1, 2, ...7).

Equation (19) consists of 49 equations with 83 variables, therefore
34 constraint equations are appended with (19) to solve for coor-
dinate vectors q and Lagrange multiplier λ. A system of algebraic
differential equation is obtained as follow

M BT

P 0
Φq 0


[

q̈
−λ

]
+

bc0
 =

 g
0

γ − KD(Φqq̇) − KPΦ(q)

 . (21)

Equation (21) were solved for the coordinate vectors q by using
state equations as follow:

x1 = q = [x1, y1, z1, [e0, e1, e2, e3]1, . . . , x7, y7, z7, [e0, e7, e7, e7]7]
x2 = q̇ = [ẋ1, ẏ1, ż1, [ė0, ė1, ė2, ė3]1, . . . , ẋ7, ẏ7, ż7, [ė0, ė1, ė2, ė3]7]

ẋ1 = x2 = q̇

ẋ2 = q̈ =
[
[I] [0]

] M BT

P 0
Φq 0


−1  g − b

−c
γ − KD(Φqq̇) − KPΦ(q)

 (22)

4 PD Controller

The desired value of actuator’s displacement is obtained from the 3D
model such that the solar panel reach the position as shown in Figure
4 where the desired value of the two actuators are z2d = 0.046m,
z2d = 0.046m . The actual displacement of the two actuators labeled
as body number 2 and body number 3 are denoted as z2 and z3 re-
spectively. Figure 3 illustrates a common feedback controller known
as proportional derivative (PD) controller that is used to obtain the
desired response, and has a form as follow:

PD Controller Dynamic Equation
ẋ

Actual Value of actuator displacement z2, z3

Desired Value Error

z2d , z3d

x

Figure 3: Block Diagram for PD Controller

u = Kpez + Kd ėz, (23)

where u =

[
f2z

f3z

]
, ez =

[
z2 − z2d

z3 − z3d

]
and ėz =

[
ż2 − ż2d

ż3 − ż3d

]
are the position

error and velocity error. Kp and Kd are 2 by 2 positive definite diag-
onal matrix. Kp plays a role as a spring that tries to keep the position
error decreasing. Kd is considered as a damper which maintains the
velocity error ė decreasing.

Solar Panel

z2d z3d

Linear Actuator Linear Actuator

Figure 4: Desired configuration of the solar panel
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5 Results and Discussion

PD control law is applied to drive the parallel mechanism from
its initial configuration to the desired configuration with Kp =[
50 0
0 50

]
, and Kd =

[
20 0
0 25

]
as shown in Figure 1 and Fig-

ure 4. The control input u =
[
f2z f3z

]T
is exerted to the two

actuators by assigning the external forces in the vector g =[
f T
1 n

′T
1 ... f T

7 n
′T
7

]T
containing

f2 =
[
0 0 f2z

]T

f3 =
[
0 0 f3z

]T
,

(24)

while keeping the remaining components in g to be zero. Other
parameters used in this paper are shown in Appendix C. As can
be seen in the Figure 5, the two actuators reach the desired posi-
tion quickly. The movement of the solar panel can be observed
in Figure 7. It appears that the parallel mechanism can be easily
controlled such that it is practically possible to move the solar panel
directed to the sunlight, and thus more energy could be produced.
It is evident that the desired orientation of the solar panel is with
its coordinate system (ξ7η7ζ7) is parallel to the global coordinate
system (xyz). In this case, the euler parameters is expected to be
equal to

[
cos φ

2 0 0 sin φ
2

]T
[8], where φ is the rotation angle

around ζ axis, and is reported true by Figure 8. Figure 9 illustrates
the mathematical relationship of euler parameters of the solar panel
as described in (1) which satisfies pT

7 p7 = 1. When the euler pa-
rameters are used to describe a rotational coordinate, it is important
to ensure that (1) is satisfied because the four quantities of euler
parameters are not independent.

6 Conclusion

Our study provides the frame work for modeling any mechanism
by obtaining the algebraic differential equations of motion derived
from Newton-Euler equation of motion and kinematic constraint
equations. This technique can be applied to a wide range of simula-
tion applications, especially for a close loop mechanism. Moreover,
our result confirms the usefulness of the Baumgarte stabilization
method that deals with numerical error when solving system of
algebraic differential equations with mathematical constraint of
Euler parameters. The control simulations using PD controller was
to drive the solar panel to reach the desired configuration with a
good performance.

Future work should focus on applying a model based controller
that could provide a better control result, especially for tracking
control. If the same modeling approach is applied to a system that
requires fast response, an investigation on computation time should
be made.

0 1 2 3 4 5
0

0.05

Actual

Desired

0 1 2 3 4 5
0

0.05

Actual

Desired

Figure 5: Response of Actuator’s Displacement

Figure 6: Kinematic constraint

Figure 7: Orientation of Solar Panel

0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

Figure 8: Euler Parameters Describing the Orientation of Solar Panel
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0 1 2 3 4 5
0.5

1

1.5

Figure 9: Mathematical Relationship of Euler Parameters of Solar Panel

APPENDIX A

For the parallel mechanism, by following the concept of relative
constraints between two bodies from [8], the 34 constraint equations
are obtained as follows:

P

sP
i

ζi ξi

ηi

η j

ξ j

ζ j

r j
ri

sP
j

z

y
x

Figure 10: Spherical Joint

• Three equations for each Spherical joint between body (5,7) and
(6,7).

Φ(s,3) ≡ ri + Ais′Pi − r j − A js′Pj = 0, (25)

where s′Pi = [ξP, ηP, ζP] is body-fixed coordinate of the point P.

ηi ξi

ζi
sP

i
Q j

Qi

s j

r j

ri

ζ j

η j

ξ jyx

z

P
si

s j

Figure 11: Universal Joint

• Four equations for each Universal joint between body (3,5)
and (4,7).

Φ(s,3) ≡ ri + Ais′Pi − r j − A js′Pj = 0

Φ(n1,1) ≡ sT
i s j = 0,

(26)

z

y
x

ξ j

ζ j

η j

sP
j

sP
i

ζi

ηi

ξi

si

sj

P

Qi

Q j

(i)

( j)

Figure 12: Revolute Joint

• Five equations for each Revolute joint between body (1,4) and
(2,6).

Φ(s,3) ≡ ri + Ais′Pi − r j − A js′Pj = 0

Φ(p1,2) ≡ s̃is j = 0,
(27)
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Figure 13: Translational Joint

• Five equations for each Translational joint between body (1,2)
and (1,3).

Φ(p1,2) ≡ s̃is j = 0

Φ(p2,2) ≡ s̃id = 0

Φ(n1,1) ≡ hT
ti ht j = 0,

(28)

APPENDIX B

Consider the following mass spring damper equation of motion

D̈ + 2ζωnḊ + ω2
nD = 0, (29)

where ζ is a critical damping constant, and ωn denotes a natural
frequency. From (6) and (29), we can write

D̈ + KDḊ + KPD = 0

D̈ + 2ζωnḊ + ω2
nD = 0

(30)

ζ =
KD

2ωn
=

KD

2
√

KP

ωn =
√

KP

(31)

In the case of critically damped system, ζ = 1 ensures a fast re-
sponse with no overshoot. Therefore, we choose KD = 2α and
KP = α2, where α is a positive constant and taken to be 10.

APPENDIX C

Table 1: Mass of body i, i = 1, 2, · · · , 7.

Symbols Value Unit
m1 475.09 × 10−3 Kg
m2 189.7 × 10−3 Kg
m3 189.7 × 10−3 Kg
m4 104.45 × 10−3 Kg
m5 53.25 × 10−3 Kg
m6 54.4 × 10−3 Kg
m7 890.5 × 10−3 Kg

Table 2: Position vector of center of mass of body i at initial position, i = 1, 2, · · · , 7

Symbols Value Unit
r1 10−3 × [−63.93, 63.93, 30.41]T m
r2 10−3 × [−123.99, 15, 24.6]T m
r3 10−3 × [−15, 123.99, 24.6]T m
r4 10−3 × [−11.50, 18.37, 99.21]T m
r5 10−3 × [−12.99, 98.33, 68.84]T m
r6 10−3 × [−92.31, 15, 66.27]T m
r7 10−3 × [−34.28, 42.89, 136.56]T m

Table 3: Euler parameters of body i at initial position,i = 1, 2, · · · , 7

Symbols Value
p1 [1, 0, 0, 0]T

p2 [1, 0, 0, 0]T

p3 [1, 0, 0, 0]T

p4 [1, 0, 0, 0]T

p5 [1, 0, 0, 0]T

p6 [1, 0, 0, 0]T

p7 [0.89043,−0.19791,−0.10481, 0.39619]T

Table 4: Moment of Inertia of body i,i = 1, 2, · · · , 7

Symbols Value Unit

J′1 10−4 ×

20 8 −1
8 20 1
1 1 26

 Kg m2

J′2 10−4 ×

 0.2774 0 −0.0102
0 0.2015 0

−0.0102 0 0.1987

 Kg m2

J′3 10−4 ×

0.2015 0 0
0 0.2774 0.0102
0 0.0102 0.1987

 Kg m2

J′4 10−3 ×

0.1217 0.0000 0
0.0000 0.1248 0

0 0 0.0054

 Kg m2

J′5 10−4 ×

 0.5827 0 −0.0824
0 0.5940 0

−0.0824 0 0.0172

 Kg m2

J′6 10−4 ×

0.6242 0 0
0 0.6231 −0.0000
0 −0.0000 0.0058

 Kg m2

J′7 10−4 ×

12 0 1
0 12 0
1 0 24

 Kg m2
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