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 A real-time embedded system requires plenty of measurements to fallow the Nyquist 

criteria. The hardware built for such a large number of measurements, is facing the 

challenges like storage and transmission rate. Practically it is very much complex to build 

such costly hardware. Compressive Sensing (CS) will be a future alternate technique for 

the Nyquist rate, specific to some applications where sparsity property plays a major role. 

Software implementation of Compressive Sensing takes more time to reconstruct a signal 

from CS measurements using the Matching Pursuit (MP) algorithm because of fetching, 

decoding, and execution policy. It is necessary to build hardware in CS. The author 

proposes one such VLSI Architecture (Hardware) for 256 𝑋 256 and 512 𝑋 512image. 

Various random matrices like Bernoulli, Partial Hadmard, Uniform Spherical, and 

Random Matrix are used to build hardware. FHT (Foreward Transform) with ±2 𝑡𝑜 6 

threshold is applied to get CS measurements. The reconstruction time, Signal to Noise ratio 

(SNR), and Mean Square Error (MSE) are measured. Multiple time experiments are carried 

out and results show that for an image of size 256 𝑥 256, SNR is 25 𝑑𝐵 and MSE is 166. 

For the image of size 512 𝑥 512, the values are 27𝑑𝐵 and 182. However, both the input 

images are resized to  256 𝑋 256 so the reconstruction time is 2.62µ 𝑠𝑒𝑐   which is less is 

compared to software implementation.  
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1. Introduction 

The digital sensing and processing based on the Nyquist 

criteria made a tremendous impact on real-time applications. The 

scale of data accumulated by digital conversion has increased from 

a few to exponential growth. In many emerging applications it will 

be very complex to store and transmit over the communication 

channel. Therefore, it is very much essential to find out an 

alternative for the Nyquist criteria which can reconstruct the 

signals with few numbers of samples than the Nyquist criteria. The 

Compressive Sensing theory (CS) [1-7], which is an asymmetric 

concept [8] with the simple decoder and dumb encoder, can 

reconstruct the sparse signals when the samples are acquired other 

than the Nyquist criteria.  

                                 𝑍 = 𝛹𝐴                                              (1) 

The signal acquisition in CS theory is the product of random 

measurement matrix (Ψ)  and analog signal (A)  leads to CS 

measurements (Z) [9, 10] defined by equation (1).  

Z          Ψ = I.   N X N Identity matrix         A 

N X 1  

[
 
 
 
 
 
 
Z1
Z2
Z3
Z4
⋮
⋮

ZN]
 
 
 
 
 
 

= 

[
 
 
 
 
 
 
1 0 0 0 ⋯ ⋯ 0
0 1 0 0 ⋯ ⋯ 0
0 0 1 0 ⋯ ⋯ 0
0 0 0 1 ⋯ ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋯ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ ⋯ 1]

 
 
 
 
 
 

* 

[
 
 
 
 
 
 
A1
A2
A3
A4
⋮
⋮

AN]
 
 
 
 
 
 

 N X 1             

(2) 

The Nyquist criterion as shown in equation (2), is extended to 

illustrate compressive theory, where A is an analog signal, Ψ is 

unity (identity) matrix of size N X N and Z is the Nyquist samples. 

In CS unity matrix is replaced with a random matrix such as 

Bernoulli Matrix [11], Uniform Spherical, Partial Hadmard, etc. 

Samples that are obtained by multiplying the analog signal with 

the random matrix are called CS measurements (Z) as shown in 

equation (3). 

𝑍                          𝛹   𝑚 𝑋 𝑁  𝑚𝑎𝑡𝑟𝑖𝑥                               𝐴 
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 [

𝑍1
𝑍2
⋮

𝑍𝑚

]=[

𝛹11 𝛹12 𝛹13 𝛹14 ⋯ ⋯ 𝛹1𝑁

𝛹21 𝛹22 𝛹23 𝛹24 ⋯ ⋯ 𝛹2𝑁

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝛹𝑚1 𝛹𝑚2 𝛹𝑚3 𝛹𝑚4 ⋯ ⋯ 𝛹𝑚𝑁

] 

[
 
 
 
 
 
 
𝐴1
𝐴2
𝐴3
𝐴4
⋮
⋮

𝐴𝑁]
 
 
 
 
 
 

       (3) 

These CS measurements are related to only sparse (big 

amplitude) signal, that’s why m is less than N. Random matrix is 

modified as shown in equation (4) by including only those columns 

related to sparsity. Remaining signals (N − K) are not processed 

which may be located anywhere in the signal. Therefore, CS is an 

asymmetric theory.  

     𝑍                                  𝛹   𝑚 𝑋 𝐾  𝑚𝑎𝑡𝑟𝑖𝑥                       𝐴 

[

𝑍1
𝑍2
⋮

𝑍𝑚

] =[

𝛹11 𝛹12 𝛹13 𝛹14 ⋯ ⋯ 𝛹1𝐾

𝛹21 𝛹22 𝛹23 𝛹24 ⋯ ⋯ 𝛹2𝐾

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝛹𝑚1 𝛹𝑚2 𝛹𝑚3 𝛹𝑚4 ⋯ ⋯ 𝛹𝑚𝐾

] [

𝐴1
𝐴2
⋮

𝐴𝐾

]       (4) 

Various Matching Pursuit algorithms [12] are used to solve the 

linear equation (4). Orthogonal Matching Pursuit (OMP) is 

compatible for sparse recovery [13-15]. This OMP will search the 

sparse related columns iteratively which appears in the random 

matrix. These are the best approximate-correlated columns that 

correspond to the sparse signal. One best-correlated column is 

searched in the iterations and removed from the random matrix. 

Like this finally updated matrix (C)  of dimension K x K  is 

obtained. The sparse reconstructed signal is obtained by solving 

the Least Square Problem (LSP). The complete OMP procedure is 

bellowed: 

1. Declaration: Declare residual  Resi = Y,  matrices 𝑄 =
𝑧𝑒𝑟𝑜𝑠 (𝑚, 𝐾) ,𝑅 = 𝑧𝑒𝑟𝑜𝑠 (𝐾, 𝐾) , 𝑅𝑖𝑛𝑣 = 𝑧𝑒𝑟𝑜𝑠 (𝐾, 𝐾)  and 

the index set 𝐶 = 𝑧𝑒𝑟𝑜𝑠(𝑚, 𝑘). Initialize iteration i to 1. 

2. Search Index: Search the most correlated index by solving 

the optimization problems and generate 𝑄 and 𝑅 matrices.  

                     KKi = arg maxj=1..N|< Resii−1, Ψj|                                                  

                     𝛹𝑗 = 𝑄𝑗𝑅𝑗     

                                                                                                     

3. Residual Status Update: Revise the index set 𝑐 and estimate 

the residual.   

                       𝐶𝑖 = Ci−1U {KKi}                                                                                     

                          Rinv = [Rinv Ψci
]                                                                               

     𝑅𝑒𝑠𝑖𝑖 = 𝑅𝑒𝑠𝑖i−1 − (𝑄i−1 ∗ Qi−1
′)𝑅𝑒𝑠𝑖i−1    

                                         

4. Iterations: 𝒊 = 𝒊 + 𝟏  and go back to search index step 

suppose 𝑖 < 𝐾.  

5. LSP: Least Square problem,  Find the inverse 

corresponding  𝒄 to get reconstructed sparse signal  

                       𝐴𝑅 = (Rinvj
∗ Qj

′ ∗ Zj)j=1……K      

Further write up of the paper is as follows. 2 briefs design 

methodology. In 3 VLSI architecture is proposed. The results of 

the work are shown in 4. Finally, work is concluded with future 

work in 5.                                                      

 

2. Design Methodology 

2.1. OMP (Reconstruction Algorithm) Blocks 

OMP is a sequential algorithm (as shown in Figure1) where the 

Optimization block is formed by combining the Search Index and 

Residual update. CS measurements (Z)  which are in HEX 

format  (256 X 256) , Random Matrix (Ψ)  of dimensions 

128 x 256  and sparsity count (K = 64)  are applied as inputs. 

Correlated columns (Ψ = 64 X 64)  related sparse signals are 

identified. From these correlated columns, reconstructed signal 

(CK) is calculated by taking the inverse of the matrix as shown in 

equation (5) and (6) in LSP.   

                              𝐙𝐊 = 𝐂𝐊𝚿𝐊                                  (5)
                                                
                              𝐂𝐊 = 𝚿𝐊

−𝟏𝐙𝐊                              (6)
                                                                                                         

                                     𝐀𝐑 = 𝐈𝐅𝐇𝐓 (𝐂𝐊)                         (7)   

 

Figure 1: OMP Blocks 

2.2. Input for OMP Architecture 

MATLAB tool is used to generate input for OMP Architecture. 

The unsigned gray image of any dimensions is resized into 

to 256 X 256. Double Precision format for processing purposes 

and integer format for display purpose is followed. Since the image 

does not exhibit sparsity property in the normal domain so it is 

converted into FHT (Foreward Hadmard Domain). Less 

magnitude coefficient values are treated as zero by selecting a 

proper threshold value. This is asymmetric contrast to the Nyquist 

criteria. These zero value signals may be located anywhere in the 

image. These are converted to in HEX number and stored as a text 

file which is used as input for OMP VLSI Architecture. The 

complete procedure of creating a text file is shown in Figure2. 

 

Figure 2: Text File Creation Flow 
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3. Proposed VLSI Architecture 

The text file which is obtained from the previous step and the 

random matrix are stored in different RAM in the proposed OMP 

architecture as shown in Figure3. The tree structure (Wallace tree) 

as shown in Figure4 is used to obtain the inner product vector. The 

CS measurements in the form of  3 x 3 dimensions are applied to 

the Wallace tree along with random variables.  

 

Figure 3: Proposed OMP Architecture 

 

Figure 4: Multiplier (Wallace Tree) 

In this proposed architecture, a carry-save adder (CSA) as 

shown in Figure5 is used to perform the fast addition of partial 

products. At the beginning of the calculations, the accumulator 

register is reset to zero. Then, the first partial product, P, is selected 

by the multiplexer and applied to the 16-bit adder. The other input 

of the adder comes from the 16-bit register. Hence, at this stage, 

the output of the 16-bit adder will be Acc=P + 0=P. With the 

upcoming clock tick, this will be stored in the accumulator register. 

Next, the second partial product, Q, will be chosen by the 

multiplexer. This will be added to the current value of the 16-bit 

register which gives Acc = P + Q. This procedure will be repeated 

for the remaining partial products. With each clock tick, a new 

partial product will be added and the result will be stored in the 16-

bit register. The control unit is used to generate an appropriate 

signal for the select input of the multiplexer. Speed up of the 16-

bit adder is achieved by implanting a carry-lookahead structure for 

a 16-bit adder. 

 

Figure 5: Carry save Adder 

 

Figure 6: Control Path Block 

In a single clock cycle, it cannot be completed since the carry 

bit has to propagate. CSA is required in different stages of the 

OMP algorithm. This adder architecture is critical as it is used for 

many numbers of operations. The complexity of the adder depends 

on the operation like subtraction, multiplication, and division. In 

general carry-save adders connected in a tree-like structure can 

reduce the number of operations from m  to  m − 1  compare to 

parallel adders. This in turn contributes to reconstruction time. 

Within the tree structure, an adder is designed using  2: 1 

multiplexers which can reduce the delay of higher multiplexers and 

it address reconstruction time. Once the product vector is obtained 

from the tree structure, the maximum value, and its corresponding 

column numbers are calculated using a comparator, and values are 
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stored in RAM represented as update residual in architecture. Later 

these values are removed from text files and like this for every 

3x3 sample process repeats iteratively. This process repeats until 

K(Sparsity Count)  values are searched. Finally,   Zk = CkΨk 

values are obtained from the optimization block and later applied 

to the LSP block. As the matrix size increases, the number of 

computations like multiplication, addition/subtraction, and 

division is increasing. That’s why the image is divided into a 3x3 

matrix. All submatrix are processed iteratively which contributes 

towards reconstruction time. From the Optimization block, all the 

sparse signal information is obtained and it is stored in RAM of 

LSP architecture. The arithmetic right shifts are used in LSP to 

perform division and reciprocal operations. Shifting one bit right 

is dividing by 2 in binary. Compared to a division operator, a shift 

operator will execute in less number of cycles in all most all 

processor. This contributes to the reduction of reconstruction time. 

Moreover, it can be reused for shift operations wherever it is 

necessary.  The entire LSP operation is controlled by the control 

path block as shown in Figure6, which is implemented in the form 

of a state diagram as shown in Figure7. 

Depending upon the state diagram and data the control signals 

are generated, and the data out (reconstruction signal) will be 

calculated. Finally, these reconstructed signals are stored in the 

output text file. 

3.1. State diagram 

• Reset S0: At the beginning, LSP architecture is initialized by 

storing all the signals (Zk) obtained from the Optimization 

block. This state is considered a reset state. If control 

signal reset = 0, LSP remains in the same state otherwise 

new state will be initialized. 

• New System S1: Since LSP iterative in nature, the iteration 

counter is initialized to zero based on a clear signal in this state. 

• New Iteration S2: Values (ZK, Ψk)  is loaded in this state 

based on Load and loadx signal. When clears signal is in high, 

loaded values will be sent to the calculation state. 
• Calcs S3:  Architecture in this state will start calculation 

(division) using processing elements and shift operator if sha 

and Shax signal is high. At the same time counter is 

incremented. It will be in the same state if the number of 

calculations is not equal to the number of elements considered. 

When the calculations become equal to number with counter 

then it will go to the next state called wait state.  
• Wait S4: Results of division obtained from the previous state 

are collected in this state.  

• Calculation Reciprocal state S5:  (CalcR) In this state 

reciprocals are calculated iteratively on the outcomes obtained 

from the previous state. Encounter signals trigger the counter 

to keep track of the number of iterations. When the counter 

becomes equal to the number of iterations, state transition will 

occur based on shx.     
• Calcx S6: When the number of calculations is not equal to 

the number of reciprocal elements then S1 and S2 signals 
will be high which keeps reciprocal calculation in progress. 
If the number of calculations (iterations) is equal to K and 
then state changes to countsys state.  If iteration is not 
equal to K  then state transition switches to S2.  and the 
process repeats until all K blocks are completed. 

 

Figure 7: LSP State Diagram 

• Countsys S7: Once all K blocks are processed, memory is 
initialized in this state to store the results. State transition 
occurs when Write becomes high. 

• Savex S8: In this state, results are updated on the output 
text file.      

All the control signals generated by the state diagram will be 

reflected in the LSP data path which is as shown in Figure 8. 

 

Figure 8: LSP Data Path 

4. Results 

On Intel Core with  1.2GHz  processor and 3GB  memory, 

several time experiments are carried out. Obtained results are 

tabulated to analyze the performance of our proposed architecture. 

Bellow steps are followed to get the results. 

• Select any Image of dimensions more than or equal to 

256 X 256. 

• Create a text file in HEX. 

• Use text file in Test-bench and reconstruct signal which will 

be stored in the output text file.  

• Read the output text file and display it after processing 

 

Steps 1, 2, and 4 are carried out in MATLAB 2014A. For the 

third step, the ModelSim PE Student Edition is used. Standard 

Lena image of dimension 256 x 256  and 512 X 512 with 

different image formats are used as input to the proposed 

architecture. Several times process is repeated and only the average 

value of selected parameters [16] is analyzed. 

http://www.astesj.com/
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• MSE: Difference between original and reconstructed signal 

which is estimated using MSE defined by equation (8). 

                                          MSE = ∑
(A−Arec)2

nn                            (8)                                                                                                       

• Reconstruction time: Time taken by OMP VLSI architecture 

to generate output file which is measured in second.  

• SNR: The amount of noise present in the signal reconstructed 

using OMP VLSI architecture which is defined by equation 

(9).                                         

                               SNR = 10log10 (
∑ An

n

∑ (A−Arec)n
2)             (9)  

                                                                  

4.1. Analysis of Image Reconstruction Quality 

• Standard Lena Image (N = 256 and 512). 

• Measurement Matrix:  (128 X 256) 

• Number of CS measurements = 128X 1. 

• FHT transform coder. 

• Threshold value (±Tr)= 3 

 

Figure 9: Reconstructed 256 𝑋 256 and 512 𝑋 512 Image 

Figure 9 is the reconstructed image using OMP VLSI 

Architecture indicates that the quality of the image degraded which 

will be one of the future challenges of OMP VLSI architecture. 

Simulation results of this work compared with MATLAB 

implementation [17] and Virtex 5 implantations [18, 19] as shown 

in Table I. Compared with other simulation work, the proposed 

design takes less reconstruction time. The reduction in 

reconstruction time is mainly due to less processing elements as 

input 3x 3  is fed into the system iteratively. To process 256x256  

at a time require more hardware and more time to reconstruct 

Table 1: Comparison of Proposed Design with Other Similar Work 

𝐏𝐥𝐚𝐭𝐟𝐨𝐫𝐦 [𝟏𝟕] [𝟏𝟖] [𝟏𝟗] 𝐏𝐫𝐨𝐩𝐨𝐬𝐞𝐝 

𝑇𝑜𝑜𝑙𝑠 𝑈𝑠𝑒𝑑 𝑴𝑨𝑻𝑳𝑨𝑩 𝑿𝒊𝒍𝒊𝒏𝒙 𝑿𝒊𝒍𝒊𝒏𝒙 

𝑇𝑎𝑟𝑔𝑒𝑡 𝐷𝑒𝑣𝑖𝑐𝑒 𝑵𝑨 𝑽𝒊𝒓𝒕𝒆𝒙 − 𝟓 𝑽𝒊𝒓𝒕𝒆𝒙

− 𝟒 

𝑆𝑖𝑔𝑛𝑎𝑙 𝑆𝑖𝑧𝑒 (𝑁) 256 512 256 256 256 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝑚) 128 128 64 64 128 

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 𝐶𝑜𝑢𝑛𝑡 (𝐾) 64 64 8 8 64 

𝑹𝒆𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 𝟗𝒔𝒆𝒄 𝟏𝟓𝒔𝒆𝒄 𝟏𝟕µ𝑺 𝟐𝟐µ𝑺 𝟐. 𝟔𝟐µ𝑺 

𝑀𝑆𝐸 550 580 - - 166.60 

𝑆𝑁𝑅 (𝑑𝐵) 23 26 - - 25.91 

4.2. Varying 𝑇𝑟 with FHT Domain 

Normally large amplitude signals hold most of the important 

information about the input. Even by neglecting lesser value 

amplitude signals, information can be extracted. To remove small 

amplitude signal threshold value from ±2 to ± 6is used in the 

FHT domain. To minimize the number of measurements larger 

threshold value should be selected. However, it affects the quality 

of the reconstructed signal. Therefore trade-off between the quality 

of the reconstructed signal and reconstruction time will be the 

parameter for selecting proper threshold value. Experiment 

analysis shows that for N = 256 or 512, the FHT threshold value 

should not be more than ±7. SNR for different threshold is almost 

the same as shown in table 2.  

Table 2: Threshold and SNR Analysis 

𝐈𝐦𝐚𝐠𝐞 𝐒𝐢𝐳𝐞 𝐓𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 (±𝐓𝐫) 𝐒𝐍𝐑 (𝐝𝐁) 

 

𝟐𝟓𝟔 𝐗𝟐𝟓𝟔 

2 25 

4 25 

6 25 

4.3. Device Utilities 

Table 3 shows the device utilization report using the Xilinx ISE 

8.1i version tool. Verilog code implemented on target device 

namely xc4vlx15-12sf363 (Vertex 4 FPGA). However, our work 

[1] and [17] are continued in this paper and the main objective of 

reduction of reconstruction time is achieved. The analysis and 

optimization of area, power consumption, and other VLSI 

parameters are considered as future work for this paper. 

Table 3: Device Utilization Summary 

𝐋𝐨𝐠𝐢𝐜 𝐔𝐭𝐢𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐔𝐬𝐞𝐝 𝐀𝐯𝐚𝐢𝐥𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐔𝐭𝐢𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 

𝐒𝐥𝐢𝐜𝐞𝐬 2116 6144 34% 

𝐒𝐥𝐢𝐜𝐞 𝐅/𝐅 2257 12288 18% 

𝟒 𝐈𝐧𝐩𝐮𝐭 𝐋𝐔𝐓𝐬 3523 12288 28% 

𝐁𝐨𝐧𝐝𝐞𝐝 𝐈𝐎𝐁𝐬 212 240 88% 

𝐆𝐂𝐋𝐊𝐬 1 32 3% 

5. Conclusion and Future Work 

This paper presents semi-VLSI architecture which contributes 

to developing hardware, especially for the Compressive Sensing 

image. The implemented architecture has equal reconstruction for 

both 256x256 and 512x512 image i.e 2.62µS since it is resized 

to256x256. This is far better than software implementation and 

some hardware implementation. For FHT (Foreward Transform)  

±2 to 6  (less than7 ) is to be used as a threshold for proper 

reconstruction. 25db and 27dB are the SNR for an image of size 

256 x 256  and 512x512 respectively. Mean Square Error (MSE) 

is 166 which is less as observed in software. Finally, our work 

concludes that one of the objectives (reconstruction time) is 

achieved. Analysis and optimization of some objectives like area, 

power consumption, and other VLSI parameters are considered as 

future work of this paper 
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