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Dithering or error diffusion is a technique used to obtain a binary image, suitable for
printing, from a grayscale one. At each step, the algorithm computes an allowed value of
a pixel from a grayscale one, applying a threshold and, therefore, causing a conversion
error. To obtain the optical illusion of a continuous tone, the obtained error is distributed
to adjacent pixels. In literature there are many algorithms of this type, to cite some Jarvis,
Judice and Ninke (JJN), Stucki, Atkinson, Burkes, Sierra but the most known and used
is the Floyd-Steinberg. We compared various types of dithering, which differ from each
other for the weights and number of pixels involved in the error diffusion scheme. All these
algorithms suffer from two problems: artifacts and slowness. First, we address the artifacts,
which are undesired texture patterns generated by the dithering algorithm, leading to a
less appealing visual results. To address this problem, we developed a stochastic version
of Floyd-Steinberg’s algorithm. The Weighted Signal to Noise Ratio (WSNR) is adopted to
evaluate the outcome of the procedure, an error measure based on human visual perception
that also takes into account artifacts. This measure behaves similarly to a low-pass filter and,
in particular, exploits a contrast sensitivity function to compare the algorithm’s result and the
original image in terms of similarity. We will show that the new stochastic algorithm is better
in terms of both WSNR measurement and visual analysis. Secondly, we address the method’s
inherent computational slowness: we implemented a parallel version of the Floyd-Steinberg
algorithm that takes advantage of GPGPU (General Purtose Graphics Processing Unit)
computing, drastically reducing the execution time. Specifically, we observed a quadratic
time complexity with respect to the input size for the serial case, whereas the computational
time required for our parallel implementation increased linearly. We then evaluated both
image quality and the performance of the parallel algorithm on a exhaustive image database.
Finally, to make the method fully automatic, an empirical technique is presented to choose
the best degree of stochasticity.

1 Introduction
Most printing devices are constrained by a limited number of color
intensities (typically 2/4/8/16 values), as consequence, before print-
ing an image they must first convert the original color domain into a
new set of values that can be represented with the color intensities
at their disposal. A process we call quantization.

An intuitive and trivial quantization method is to map each input
pixel to the nearest available color. However, most of the time this
leads to a visually unpleasant and low quality output image due
to a large number of artifacts. Here, dithering comes to help and
it has been proved to be able of achieving a higher quality results.
In particular, the best known and popular dithering algorithms is

the Floyd-Steinberg (FS) [1] which is based on errors diffusion.
Besides the FS, there are other algorithms that differ from this for
the weight distribution matrix. The error scattering technique is
straightforwardly described in Algorithm 1.

Algorithm 1 Dithering algorithm
for rows ∈ image do

for pixels p ∈ row do
find closest color τ to p
err = p − τ
diffuse err to neighbouring pixels according to the error diffusion scheme

end for
end for
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In case of binary dithering applied to a monotone image (e.g.
grayscale to black and white), Algorithm 1 is just a simple thresh-
old operation. Extending it to a larger set of colors (or tones) is a
trivial change in finding the closest color. It was one of the most
revolutionary methods and is widely used in digital printers, which
prints small and isolated dots.

The other algorithms against which we will compare for the
numerical experiments are: Atkinson, Burkes, Fan, Sieraa, Filter
Lite, Jarvis, Judice and Ninke (JJN), Jarvis, Stucki and Shio Fan
[2].

There are several error distribution scheme and different ways
to scan the image, such as the traditional left-to-right direction and
the top-to-bottom raster. Considering all the matrices of weights
related to the various methods would be redundant, therefore we
show only a few in Figure 1 to clarify the concept.

Figure 1: Error diffusion scheme for different dithering algorithms: Floyd-Steinberg
(a); Jarvis, Judice and Ninke (b); Stucki (c); Sierra (d). The flux of the whole image
remains the same.

We also took care of the borders, in particular, we ensured that
the image flux or average is maintained through the entire image,
Figure 2 shows the modified FS error distribution weights in all
particular cases.

Figure 2: Error diffusion in the FS dithering in case of boundaries. a) first column, b)
last column and c) last row.

The major shortcomings of the FS dithering algorithm are the
generation of disturbing hysteresis artifacts or worm patterns at
extreme gray-levels[3, 4] and the slowness [5].

2 Background and preliminaries

The purpose of image dithering, or halftoning, is the procedure that
generates a pattern of quantized pixels able to create a continuous-
tone image illusion. A comprehensive analysis about halftoning
techniques can be found in [2]. Dithering is necessary for showing
gray scale images on printed surfaces when the only available tones
are black and white. Dithering algorithms will produce different
results with respect to quality and image characteristics. To allow a
comparison between different algorithms, we must therefore quan-
tify the performance. Doing so by means of psychovisual tests is
hard due to the need of controlled conditions and long duration of
the tests. A possible solution to this problem is developing quality
measures that can numerically express the perceived visual differ-
ence between the dithered image and the original one. The ideal
target would be to include several objective aspects of image quality
within one single, robust and reliable measure, so to evaluate and
improve dithering algorithms.

We cans also describe digital halftoning as an artifact mini-
mization problem, because we search for the dithered image that
minimizes the measured visibility of artifacts. We therefore need
a computational model that allows us to compute the visible error,
so to automatically rank images in an optimization algorithm. Nev-
ertheless, measuring in a quantitative way the visual quality of a
dithered image is still a challenging task.

Objective quality measures can be divided in two classes: math-
ematical/statistical ones and human visual system (HVS) based.

The first ones could be used to evaluate dithered patterns of
constant grey values. These metrics provide a great understanding
of the possible relationships for a given point distribution. These
kinds of measures are usually independent of viewing conditions
or observer, easy to compute thanks to the low computational com-
plexity. It is possible to find in literature different examples of this
kind of measures, such as: Structural Similarity (SSIM) [6], Peak
Signal-to-Noise Ratio (PSNR) [7] and Mean Squared Error (MSE)
[8]; nevertheless, none of these measures consider the presence of
artifacts as explained in [9, 10].

The second one tries to model the perceived visual quality and
predict artifacts generated by the dithering procedure. The ideal
halftone algorithm is able to minimize this visibility. Since the eye
detects more distortions at certain spatial frequencies, the devel-
opment of a halftone visibility metric is based on a model of the
HVS.

HVS models are relatively simple and have proven to be quite
successful when applied to algorithms that seek the best possible dis-
tribution scheme. All digital halftone techniques, whether they are
based on screening algorithms, error scattering or iterative halftone,
all adopt these models, either explicitly or implicitly. In fact, even
those methods that are categorized as model-free because they do
not explicitly include an HVS block in their block diagram, still
replace it with a low pass filter. Moreover, not only is an HVS
model fundamental to the design of most halftone techniques, but
additionally, the shape of the HVS model can be modified to achieve
increased texture quality in the dithering result.

Therefore, the performance of a certain halftone algorithm can
be maximized by adequately designing improved HVS models.

Digital halftoning usually refers to methods and algorithms able
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to convert continuous-tone images to binary ones, for displaying
them in bilevel devices such as printers, both ink jet and laser ones.
Within the computer industry, the market demand for fast, high
resolution printing devices has recently escalated. Halftoning’s con-
tribution to this industry has been essential to its success. For this
reason investigating image quality, and in particular finding an ob-
jective measure to evaluate the results is of fundamental importance.

2.1 A Quantitative Measure

As discussed, HVS models use human visual selectivity and sen-
sitivity to model and improve the perceived image quality. HVS
is based on the psycho-physical process that relates psychological
phenomena (contrast, brightness, etc.) with physical phenomena
(light intensity, spatial frequency, wavelength, etc.). It determines
which physical configurations give rise to a particular psychological
sensation (perceptual, in this case).

The two dimensional Discrete Fourier Transform (DFT) is ap-
plied on the image and then multiplied using Hadamard product
with a Contrast Sensitivity Function (CSF), so that a component of
the image at a particular angular frequency is weighted by the CSF
value at that frequency. The result of this computation is the two
dimensional DFT of an image that would lead to the same psycho-
logical response when viewed from a visual system with a flat CSF
to which the original image leads when viewed by HVS [11]. The
weighted signal-to-noise ratio (WSNR) of an M × N pixel binary
image (y), given the original (x) of the same size is computed as:

WS NR(dB) = 101 log10

( ∑
u,v |X(u, v)C(u, v)|2∑

u,v | (X(u, v) − Y(u, v)) C(u, v)|2

)
(1)

where X(u, v), Y(u, v) and C(u, v) are correspondingly the DFT
of the input image, of the output image and the CSF.

2.2 Stochastic version

As already described in the previous sections, halftoning converts
the input image into a black and white version of it to be reproduced
on a binary output device, such as an ink-jet printer, which can only
choose whether to print a dot or not in each position. The human eye,
behaving as a low-pass filter, blurs the dots and spaces together and
creates the illusion of many continuous shades of gray tones. De-
pending on the specific way the dots are distributed, a display device
can produce different degrees of image fidelity with more or less
granularity. According to the HVS, isolated and randomly arranged
dots, if distributed in a proper manner, should produce images with
the highest quality, maintaining fine details and sharp edges. Never-
theless, some displays and printing devices are unable to reproduce
isolated dots consistently in their entirety and, as a result, introduce
printing artifacts that greatly degrade the aforementioned details
that the computed dot distribution is designed to preserve. For this
reason, many printing devices create periodic patterns of grouped
dots, which are easier to produce on the printed page in a consistent
manner. For this reason, in our halftone study, the main objective
is to determine the optimal dot distribution for that HVS, and then
produce these models computationally efficiently.

Since the first article in which Floyd and Steinberg’s algorithm
was mentioned, many changes to the original error spread algorithm
have been introduced to avoid the undesirable artifacts present in
the original algorithm. But while these modifications eliminate
disturbing artifacts at certain levels of gray, many do so therefore at
the expense of other levels. Jarvis [12] and Stucki [13], for example,
introduced a different mask model and weights, called 12-element
error filter, but the artifacts remain during the algorithm because of
the fixed behavior manifested by these algorithms. Hence we realize
that the problem is not related to the number of elements involved
but rather to the determinism of the method. Other approaches sug-
gested to change the scanning path in which pixels are processed,
including the serpentine as the most trivial up to the space-filling
curves like Hilbert’s curves. Unfortunately, these methods still cre-
ate strong periodic patterns. To mitigate the problem of artifact our
idea is to transform the FS algorithm, a deterministic algorithm, into
a Stochastic (SFS) version inspired by [14]. A crucial point of our
new approach is the preservation of the average image. As in all
halftone methods, where everything and only the error is spread.
Even in our method, while modifying the weight matrix at each
pixel, the average of the values of the original image is not changed.

In particular we choose a real number p and, for each pixel, we
generate 2 random number:

r1 ∈ [−5/16, 5/16] and r2 ∈ [−1/16, 1/16]

and we compute

7
16

+ p · r1,
5

16
− p · r1,

3
16

+ p · r2 and
1

16
− p · r2 (2)

as error diffusion coefficients. This method, as a modification of
Ulichney’s one[15], is a good approximation of a blue-noise process.
Blue-noise halftoning is characterized by a distribution of binary
pixels where the minority pixels are spread as homogeneously as
possible. This method of pixel distribution creates a pattern that is
isotropic (or radially symmetric), aperiodic and does not contain
any low-frequency spectral components. From the considerations
made about HVS, it’s not surprising that blue-noise creates the vi-
sually optimal arrangement of dots. Unfortunately, blue-noise is
not trivial or fast to generate [16], but whit our method this can be
approximated.

2.3 Optimal choice of p

By introducing our new method we have underlined the need to
choose a p parameter.

In our previous work the choice of p was totally empirical and
not automated, that is, we tried different values of p in a predeter-
mined range and picked the best according to the image quality
measured by WSNR. Here we introduce a method for the automatic
setting of p. As pointed out above, these algorithms are often used
for printers in different areas, but often as an integral part of indus-
trial processes. For this reason and for the sake of completeness,
finding a fully automatic method would make the method more
effective and usable on a large scale. There are two critical issues
to be addressed: the choice of an appropriate interval and the need
for an intervention by the operator for the choice. First of all, let’s
discuss the choice of the interval. As we have defined p there are no
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limitations, it simply has to be a real value. Since it is not a probabil-
ity, it can certainly assume both values greater than 1 and negative
values. Conceptually there is a symmetry, at least on average, be-
tween negative and positive values so we can only take into account
positive values without losing in the generality. On the other hand,
choosing values much greater than 1 means to substantially change
the coefficients of the matrix used for the diffusion of the errors, for
example choosing p = 2 the values, on average, are doubled. In
addition to these preliminary considerations we conducted several
experiments aimed at understanding where the maximum value of
WSNR was in relation to the p choice. As it can be seen in Figure 3
, the maximum is usually included in the [0, 2] interval.

Figure 3: Sample of the algorithm behaviour for p in the interval [0, 2] for some
images of the dataset available in [2]. Due to the stochastic nature of the algorithm,
we repeat the algorithm 10 times with different random seeds for each value of p,
plotting minimum, average and maximum value for the resulting WSNR.

Once the range is fixed, we address the second issue by means of
an optimization algorithm that provides the p value that maximizes
the WSNR. The first idea, given the amount of references in the
literature, was to use a first-order technique as a gradient method
[17]. But we immediately noticed that, due to the lack of convexity
of the function to be maximized, such methods are often not effec-
tive. There are certainly techniques to use gradient methods even in
non-convex areas but they require at least the differentiability of the
function. Since we have to maximize a stochastic process we see
both the basic hypotheses of the gradient methods fall: convexity
and differentiability. Fortunately, our implementation of the parallel
algorithm on GPUs makes execution time particularly low, even
for large images. This allows us to approach efficiently the prob-
lem in an empirical way without increasing the time excessively.
Considering all these premises, our final idea is to calculate, first,
the WSNR for different values of p ∈ S n where S n is an equally
spaced partition of the interval [0, 2] with n elements. Due to the
stochasticity of the method, for each p ∈ S n we consider the average
over m runs.

Finally, choose the p with the highest average WSNR. We sum-
marize our method in the equation 3 where m is the number of
runs, I and SFS(p) represent respectively the input image and the
output image obtained from a single run of our stochastic dithering
algorithm with parameter p.

p∗ = arg max
p ∈S n

1
m

m∑
WSNR(I, SFS(p)) (3)

We obtained the best results with the following configuration:

• Size of partition S n, n = 100

• Number of repetitions for each p, m = 10

In this way, given any image in our experiments, the method lead to
satisfying results in terms of similarity to the initial image.

3 GPU implementation
Dithering algorithm are infamously known for being ”embarass-
ingly” unparallel due to the inherently sequential nature of the dither-
ing operation: the every pixel output depends on all the previously
computed outputs. Achieving good speed ups in such problems is
a challenging task and several work from the research community
tried to overcome this issue, either proposing a ”friendlier” dithering
algorithm or a more efficient implementation. For example in [18]–
[20] they introduce a block-based error diffusion algorithm which
allows to simultaneously process blocks of pixels and produced
good visual results, however is not clear which block dimension
should be taken in order to get the best image quality; whereas in
the work [21] the authors propose to parallelize over multiple pages
in order to saturate the GPU utilization, in this work we focus on a
single image case; in [22] they propose an efficient implementation
that consists of a hybrid approach where CPU and GPU are both
exploited but the CPU is used in the regions where GPU is expected
to perform worse, in particular, towards image corners; finally [5]
provided an optimal parallelization algorithm from a theoretical
point of view, unfortunately, assigning each thread a diagonal por-
tion of the image is currently not suited for general purpose devices
as it causes more time spent for additional computational overhead
than what parallel devices can manage to reduce.

In this work, we adopt the classical Floyd-Steinberg algorithm
as it’s still the dithering algorithm that yields the best result and
propose an implementation that rely solely on GPUs. Graphics
Processing Units (GPUs), in particular General Purpose GPUs, are
massively parallel architectures that comprises thousands of cores
designed to compute in an extremely efficient way repetitive and
simple operations such as those involved in the rendering pipeline
in Computer Graphics, hence ”Graphics” in the name. Each core
are less performing and simpler than state of art processors but the
computational power in such devices lies in the number of cores
rather than the capability of each single core. Nowadays GPUs are
widely adopted for many tasks in data mining, physics simulation,
medical imaging and machine learning, to name a few, hence the
”general purpose” in the name. We propose an implementation 1 that

1https://git.hipert.unimore.it/hjiacheng/stochastic_floydsteinberg
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is optimized for the NVIDIA GPUs, from which we will also get
the results reported in section 4.1, and we program with the archi-
tecture’s standard Application Programming Interface (API), called
CUDA [23] developed by NVIDIA itself. Nonetheless, our imple-
mentation takes into account obstacles and design principles valid
for almost all GPUs so it’s not limited to NVIDIA architectures.

Our implementation consists of two parallelization levels we
call stream level and pixel level. First of all we, describe the pixel
level parallelism consists of a function, named Parallel-FS, that
implements the Floyd-Steinberg on GPU and assumes the image
being already stored in the GPU memory, this function will be then
invoked by the stream level function.

Figure 4: Each thread is assigned a row and waits for the previous one to be three
pixels ahead instead of two. The thunder symbol on the diagonal represents the
pixels processed simultaneously, whereas the clock indicates a waiting thread

In order to achieve good results one must take into account the
of hardware on which the algorithm is executed. GPUs are SIMT
(Single Instruction Multiple Thread) architectures partitioned in sev-
eral Streaming Multiprocessors (SM), the latter are clusters of cores
with multiple hardware schedulers for dispatching a fixed number of
threads called warps. Each thread in the warp are committed to per-
form the same operation simultaneously, a feature called lock-step
execution, and they are able to fetch multiple data at the same time
if the addresses in the memory are aligned, a phenomena called ”co-
alesced access”. While these are good features in simple and regular
memory accesses, it becomes actually a downside in case of Floyd-
Steinberg because operations and accesses are neither simple nor
regular. Dithering algorithm finds the closest color input and handle
borders with many conditional, hence branching, instructions, which
hurts the performance as the device must turn-off the portion of the
threads not involved in the current branch because of the lock-step
execution, moreover there’s no coalesced access as the error diffu-
sion scheme follows an irregular pattern leading to increased latency.
This is the reason why the optimal theoretical algorithms presented
in [5] cannot be implemented, nonetheless we try to approximately
recreate the theoretical optimal situation in Parallel-FS. The func-
tion takes as input three data structures, an input buffer Ibu f f where
the original image is stored, an output buffer Obu f f where the result
will be stored and error buffer Ebu f f for the temporary error diffu-
sion values. Each row i is assigned a thread which, for each pixel
(i, j), j ∈ {1, ..., IWIDT H} where IWIDT H is the image width, reads
from the input buffer and computes the output Obu f f (i, j) by finding
the closest color according to the value S = Ibu f f (i, j) + Ebu f f (i, j),
and distribute the error S −Obu f f (i, j) to the neighbouring pixels ac-
cording to the error diffusion scheme of Floyd-Steinberg, updating
Ebu f f (i, j+1), Ebu f f (i+1, j), Ebu f f (i+1, j−1) and Ebu f f (i+1, j+1).

The actual implementation carefully takes into consideration also
borders compared to this simplified formulation. Each thread must
synchronize with the previous thread in order to compute the as-
signed pixel result, in our implementation, in order to avoid update
conflicts in the error buffer, which would require slow atomic op-
erations, each thread waits for the previous one to be three pixels
ahead with respect to his row instead of two, similarly to [21] (see
Figure 4). The Figure 4 also illustrates how pixels are processed
simultaneously along the diagonal (hence the name ”pixel level
parallelism”).

Figure 5: Visual illustration of the Double Buffering parallel execution scheme for
the stream level parallelism, with two CUDA streams; s j and ci and denote CUDA
stream respectively and image chunks. The ”load” and ”save” operations represent
the data transfer from host to device input buffer Ibu f f and from device output buffer
Obu f f to host respectively and ”work” consist of the invocation of Parallel-FS. It can
be noted that, starting from time step 2, the memory transfer latency is completely
hidden by GPU activity. ”X” denotes the empty chunk, note that there is always an
empty chunk because given NS TREAMS there are NS TREAMS + 1 blocks in the data
structure, so each iteration, every stream finds the results of the first row of the error
buffer already calculated by the previous stream by simply sliding up.

The stream level parallelism addresses a problem more related
to the physical devices limitation rather than the FS algorithm. In
previous function we assumed the image to be already when the
output is ready, the result is transferred back into host memory.
Unfortunately, in most parallel implementations memory bandwidth
represents one of the main bottleneck. The outer loop in our stored
in GPU memory, however, for a task to be executed on GPU, every
required data must be copied first from host memory (accessible
by CPU only) to device memory (accessible by GPU only) and
parallel implementation addresses this problem by hiding almost
completely the memory transfer overhead between CPU and GPU
wit the double buffering technique, which also removes the device
memory size constraint for huge images.

Given an image of size IHEIGHT × IWIDT H and two input parame-
ters NCHUNKS and NS TREAMS , the first parameter define the number
of chunks the image is divided into, whereas the latter represents the
number of chunk to be processed simultaneously. First we define
ChunkHEIGHT =

IHEIGHT
NCHUNKS

and we divide the image into NCHUNKS of
size ChunkHEIGHT × NWIDT H , secondly we create three data struc-
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ture of size (ChunkHEIGHT · (NS TREAMS + 1)) × IWIDT H size for the
input, output and error buffer respectively. Now, Nstreams CUDA
stream are created, each of these concurrent execution stream are
assigned an image chunk are responsible of computing the result
by invoking the Parallel-FS function previously described on the
assigned chunk. During the algorithm execution, every function
invoked by each stream references to the same data structure but
on a different memory address offset, the size of each buffer is
NS TREAMS + 1 chunk blocks instead of NS TREAMS because the the
additional chunk allows to leave one chunk empty at every iterative
step so Parallel-FS function avoids storing the error computed in
the last row into an auxiliary buffer, minimizing the number of con-
ditional operations. Because of the empty chunk, when a CUDA
stream finishes the job, it can slide on the upper chunk in a toroidal
fashion along the height, which means that the errors computed in
the last row of the data structure are actually propagated in the first
and the CUDA stream working in the first block moves to the last
in the next outer loop iteration as it finds the error values ready to
be used. The indexing and synchronization required to ensure the
overall correctness of the FS algorithm details will not be discussed
for the sake of simplicity. The final result is that when some CUDA
streams are processing their chunk, others are transferring data from
host to device memory and vice-versa, thus the memory bottleneck
is hidden and the architecture is fully exploited. In Figure 5 we
show the presented parallel execution scheme.

3.1 Theoretical improvement

Consider an image of size P × Q, where P identifies the number of
rows and Q the number of columns. We want to know the order

of magnitude of the time that is theoretically needed to process the
whole image. We use as a measure unit the time needed to process
a single pixel.

In the serial version: Time = P × Q where Time is the time
for the whole process. In the parallel version, with the same image
dimension, we have

Time = 3P + Q − 3 with Q > P (4)

and

Time = 3Q + P − 3 with P > Q. (5)

Considering, as said before, the time we use to process the single
pixel we can assume to spend a M time to calculate the first row, but
at this same time, always considering the parallel implementation,
we have already calculated the triangle at the top left as shown in Fig-
ure 4. Going on to finish the second line, we only need to calculate
another 3 pixels and we can proceed with a similar reasoning for all
the rows in the image. So we have Q+3×(P−1) = Q+3P−3. Even
in an image where the number of rows and columns is swapped we
have the same runtime. For these considerations we can conclude
that we pass from a time that grows as O(P × Q) with the input
size, in the serial case, to a time that grows linearly O(P + Q) in the
parallel case, all this from a theoretical point of view. This allows us
to have a great saving in computational time, especially in industrial
contexts where the images are of huge dimensions. This means an
incredible acceleration, especially when the size of the image is
large, as often happens in industrial cases.

Figure 6: Cameraman image dithered with p = 0 on the left. The red rectangles highlight regions with visible artifacts. On the right, dithered image with optimal p value to
maximize the WSNR value.
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Figure 7: Lena image dithered with p = 0 on the left. The red rectangles highlight regions with visible artifacts. On the right, dithered image with optimal p value to
maximize the WSNR value.

Figure 8: Peppers image dithered with p = 0 on the left. The red rectangles highlight regions with visible artifacts. On the right, dithered image with optimal p value to
maximize the WSNR value.

4 Numerical experiments

The authors of [2] provided a sufficiently large dataset of images
on which we applied our algorithm2, the Digital Halftone Database
(DHD). This dataset is composed of 196 reference images extracted
from the CVG-UGR-Image database and the Genreal-100 dataset.
In addition to these real images, we also assessed our approach on

synthetic images. In particular, a particularly complicated image to
process is the grayscale gradient, as in the Figure 10 or multi-tone
chessboard. Moreover, the well known Lena, peppers and camera-
man have been tested as well. Not all the images have same values
of width and height since the algorithm can be applied to rectangular
pictures as well. In the first experiments, we chose synthetic images.
To verify the improvement with respect to the presence of artifacts,

2https://sites.google.com/view/sankarasrinivasan-s/research-publication/DHD-Database
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we applied our algorithm to images composed of all shades of the
(0 − 255) grayscale. This was done because some tones are more
susceptible than others to artifact forming. In a second experiment
we applied the new techniques to images often used in published
works, in order to compare the results with the literature. Finally we
compare against the results of [2], that are provided as results im-
ages in the same dataset. Obviously it can be observed that there is
a considerable difference between the proposed stochastic approach
and the simple FS. The experiments were performed on a desktop
computer equipped with a CPU and GPU with the following specifi-
cations: Intel i7 7700K CPU, NVIDIA GeForce GTX 1080 GPU
and 32GB RAM.

4.1 Results

With respect to image quality, we computed the measure described
in Sec. 2.1 after applying FS, SFS and, for completeness, other
dithering algorithms known in literature: Stucki[13], SIERRA[24]
and Jarvis, Judice, and Ninke [12]. The results for the different
images in Figure 10 (top row) and Figure 6, 7 and 8 are shown in
Table 1 were we highlighted in bold the best WSNR values. The
charts in Figure 13 show the behaviour of the WSNR value with
respect to p for these images. Furthermore, we provided additional
visual comparisons in Figures 11 and 12.

We compared our algorithm to the error diffusion ones presented
in [2] on the same DHD dataset previously mentioned. We com-
puted WSNR from the output images that are made available in
the dataset and compared against our approach: over 196 different
images we achieved the maximum WSNR value amongst all the
algorithms 71% of the times, while the remaining 29% has been
topped by the Filter Lite Dot Diffusion algorithm from [25].

In Table 2 we report the values of WSNR for some images of
the dataset. We have to remark that, due to the different output

size of the image, for some pictures we were unable to compute
the WSNR value of comparison. The algorithms that are taken into
account here are our FSF, Atkinson (ADD), Burkes (BDD), Fan
(FDD), tradirional Floyd Steinberg (FSDD), Frankie Serra (FSIDD),
Filter Lite (FLDD), Jarvis Judice and Ninke (JJNDD), Jarvis (JDD),
Stucki (SDD) and Shio Fan (SFDD).

In addition to providing a theoretical discussion, we tested the
different versions of the algorithm, serial and parallel, on images
of different sizes. As we expected we obtained very good results:
while serial time increases quadratically, parallel time increases only
linearly. Let’s better illustrate the trends in Figure 9.

Figure 9: Comparison between the two versions: serial and parallel. Time in seconds
on vertical axis, horizontally there is side dimension in pixels of a square image. In
dotted line: all parallel execution time are less than one second.

Table 1: Dithering methods WSNR comparison

Image FS SFS Stucki Sierra JJN
p = 0.25 p = 0.5 p = 0.75

Gradient 52.58 53.15 53.34 53.28 50.49 50.64 50.28
Lena 48.51 48.48 48.57 48.51 41.79 41.58 41.08

Cameramen 45.78 46.02 46.30 46.43 39.29 39.13 38.61
Pepper 46.13 46.39 46.93 47.27 39.45 39.13 38.55

Table 2: Error Diffusion WSNR comparison

Index FSF ADD BDD FDD FSDD FSIDD FLDD JJNDD JDD SDD SFDD
1 47.50 20.00 43.61 44.33 48.23 40.90 49.74 26.35 40.44 41.44 44.48
3 50.64 24.09 44.40 44.22 46.92 41.28 47.99 28.72 40.79 41.51 44.63
5 45.49 18.80 41.72 41.08 44.91 38.80 46.15 23.56 38.27 39.11 41.28
7 49.77 20.99 43.65 45.49 47.57 41.22 49.57 27.41 40.73 41.60 45.97

17 44.97 15.81 39.52 40.40 42.48 36.30 43.72 20.87 35.80 36.50 40.79
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Figure 10: Inverted gradient pattern, original image (top-left) and halftoned using traditional FS (top-right): emerging artifacts are clearly discernible. In the middle row, 256
squares of all possible 1 Byte quantization values (left) ant their dithered version (right) Bottom line, particular of a single tone (value 128): on the left side artifacts arise
distinctly with traditional FS, while on the right side the stochastic nature of the method allows no emerging pattern.

www.astesj.com 660

http://www.astesj.com


G. Franchini et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 652-663 (2020)

Figure 11: On the left: dithered images using FLDD for images 24, 4 and 6 of the Digital Halftone Database. The red rectangles highlight regions with visible artifacts. On
the right, same images dithered using SFS with best p*.
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Figure 12: On the left: dithered images using FLDD for images 26 and 7 of the Digital Halftone Database. The red rectangles highlight regions with visible artifacts. On the
right: same images dithered using SFS with best p*.
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Figure 13: WSNR computed for our Stochastic Floyd-Steinberg algorithm with
p ∈ [0, 2] on the 3 well known images of Cameraman, Lena and Peppers. We
proceed as for Figure 3.

5 Conclusions

In conclusion, the new algorithm we presented solves both the prob-
lems highlighted at the same time: the presence of artifacts and
the slowness of execution. In particular, the transformation of the
algorithm from deterministic to stochastic, with the introduction of
a white noise, avoids the emergence of artifacts. The improvement
can be evaluated through a specific measure that takes into account
human perception called WSNR. Moreover, there is no increase in
computational time; on the contrary, the parallel version we propose
shows an excellent speed-up as the image size increases; which,
especially in industrial applications, can be very large. Thanks to
our parallel implementation, which guarantees speed to the method,
we were able to fully automate the technique. So given an image
we are capable of applying the best amount of stochasticity to the
algorithm, thus obtaining an image as free of artifacts as possible.
All the research part of the optimal parameter is done before the
actual image printing process. This guarantees a method in which
the operator does not have to make a decision and the printer is
not occupied for a long time. In conclusion, the method is totally
automatic, fast and guarantees a final image as close as possible to
the initial one and suitable for printing. As future work some of the
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possible extensions could be: more sophisticated methods to find
optimal p, developing other error measures that take into account
artifacts or geometric textures of different kinds. Another idea is to
evaluate the 4, 8 and 16 gray tones versions of the dithering algo-
rithm by proposing a technique that finds the best trade-off between
image quality and number of tones.
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