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In this paper are shown some new results on fixed point related to a ¢ —y contractive map
in JS — generalized metric spaces X. It proves that there exists a unique fixed point for a
nonlinear map f: X — X, using two altering distance functions. Furthermore, it gives some
results which related to a couple of functions under some conditions in JS — generalized
metric spaces. It provides a theorem where is shown that two maps F, g: X — X under a
nonlinear contraction using ultra — altering distance functions y and ¢, which are lower
semi — continuous and continuous, respectively, have a coincidence point that is unique in
X. In addition, there is proved if the maps F and g are weakly compatible then they have a
fixed point which is unique in JS — generalized metric space. As applications, every theorem
is illustrated by an example. The obtained theorems and corollaries extend some important

results which are given in the references.

1. Introduction

The study of fixed point in metric space has an important role
in Functional Analysis. It is developed in two directions during
the years which are the improving contraction conditions and
changing axioms of metric space with the intention to generalize
fixed points results in this space. As a result, there are given many
new spaces such as generalized metric space [1], cone metric
space [2], rectangular metric space [3].

In [4], authors introduced the concept of JS — metric space. It
generalizes well-known concepts of metric structures like metric
spaces, b — metric spaces [5], metric - like spaces [6], etc. There
are many articles which are worked on these spaces, like [7]-[10].

In [11], authors expanded the Banach contraction introducing
the concept of weakly contractive function in Hilbert spaces.

Many authors have used these functions in many other spaces
like [12]-[14].

In [15], authors provided some theorems related to fixed
points of mappings in generalized metric spaces introducing the
concept of altering distance functions.
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In [16], authors generalized some theorems on fixed point for
contractive functions of type Kannnan, Chatteria and Hardy —
Rogers in generalized metric space.

This paper generalizes some important results on fixed point
for weakly contractive functions and functions with altering
distance between points, giving some new theorems on fixed point
for ¢ — 1 contractive functions in JS — generalized metric spaces.

Furthermore, it proves a theorem on common fixed points of
two @ — Y contractive functions on JS — generalized metric
spaces.

2. Preliminaries

Let X be a set which is not empty and D;s be a non - negative
function of cartesian product X X X .

For each 9 € X, let define the set
C(Djs,X,9) = {{x,} € X: lim Djs (x,,9) = 0}
n—-oo
Definition 2.1 [4] The map Djs that satisfies the conditions:

(Dys,) Dys(x,%) = 0yields x = %
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(D]SZ) D]S(x' X)) = D]S(f' x)

(D]53) There exists a constant p > 0,
C(Djs, X,9), it yields

such that for x, €

Dis(x, %) <p nl—i>I-Pm Dys(xp, %)
for all (x, %) € X X X, is called JS — generalized metric.
The couple (X, Djs) is called s JS — generalized metric pace.

In [4], authors showed that JS — generalized metric space are
metric space, b — metric space, dislocated metric space, etc.

Remark 2.2 [4] As it can be seen in JS — generalized metric space,
the map D;s(%, X) maybe not zero.

Remark 2.3 [4] When the set C(DJS,X,ﬁ) does not contain any
element for all 9 € X, the couple (X, Djs) is JS — generalized
metric space satisfying only (Djs1) and (Djs2).

Definition 2.4 [16] Let (X,D;s) be a JS — generalized metric
space and {xplpey is in X and YeX . If
{xn}nen isin C(D,s, X, 19), it is called D)5 — convergent to ) € X.

Remark 2.5 [16] If a constant sequence is D;s — convergent to
¢ € X then Dj5(c,c) = 0.

Proposition 2.6 [16] A necessary and sufficient condition that the
set C(Dys, X,9) is not empty is that D;5(89,9) = 0

Proposition 2.7 [4] Let the pair (X,D;s) be a JS - metric
generalized space and {x, },ey in X and 9,9 € X. If {x,}pey is
D;s — convergent to 9 and O then ¥ = 9.

Definition 2.8 [16] The sequence {x, },ey in a JS — generalized
metric space (X,Djs)is called D;jg — Cauchy if Djs(xy,, x;,)
converges to 0 when m, n tent to +oo.

Definition 2.9 [16]A JS - generalized metric space (X, Djs) is
named D;s— complete if each D;s — Cauchy sequence in X is Djg
— convergent in X.

Example 2.10 Take X = [0, c] where ¢ € R and Djg be a non -
negative function of cartesian product X X X , where

max {x, X}, (x,%) # (0,0)
X
D,S(x, 56) — Z; (x, 0)
x ~
El (Ol x)

Since the map D;s accomplishes (D151) and (D,sz) in trivially

manner, it is a JS — generalized metric.

Consequently, it needs to verify that (D153) is satisfied only for
x € X that D;5(x,x) = 0. But D;s(x, x) = 0 implies x = 0.
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If (Xp)nen © X converges to 0 then lim Djs(x,, 0) = 0.
n—-+oo

Takingn € N and X € X,

max{x,, X}, forx, #0

D]S(xnv i) = {

g, forx, =0"

As a result, the inequality § < Djs(xy, %) is true.

From this, it yields D;(0, %) = § < “T sup Djs(xy, X).
n—+oo

So, (X, Djs) is JS — generalized metric. However, it is not neither
metric space nor dislocated metric space because it doesn’t
accomplish the third condition of their metric, for x, ¥ € X — {0}
and x* = 0, because

D;s(x,0) + D;5(0,%) = g—i- § < max{x, X} = Djs(x, %).

Definition 2.11 [15] The function : Rt — R™ that satisfies the
conditions:

1. 1 is non-decreasing and continuous
2. (s) = 0ifandonly ifs = 0.
3. Y(s) = Ms*, foreverys >0 where M > 0, > 0 are
constants
is called altering distance.

Definition 2.12 [15] A function y: RT — R* that accomplishes
the conditions:

1. 1 is non — decreasing
2. Y(s)>0ifs>0andyp(0) =0
is called ultra — altering distance.
The set of ultra-altering distances is denoted V.

Let g, F two functions of X in itself.

Definition 2.13 [17] The point ¢ € X which completes the
equality g(&) = F(¢&) is called coincidence point of g, F.

Definition 2.14 [18] The functions g, F that satisfy gF¢ = Fgé,
for each ¢ that is coincidence point of g and F, are called weakly
compatible.

Definition 2.15 [18] The point { € X, in which { = F & =g¢,
is called common fixed point of maps g, F.

Theorem 2.16 ([16], Corollary 5.5) Let f of set X in itself
where(X, Djs)is D;s — generalized metric space which is complete
and

Djs(fx'ff)

Dys(x, f%) + Dys(X, fx)}

< kmax{D;s(x, %), D;s(x, Tx), D;s (%, T%), >

If there exists a ¢ € X that § (D,s, f, g) < +oo, then the sequence
{f"¢}nen D;s — convergences to a point 9 in X.
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When Djs(¥, f9) < +oo then ¥ is fixed point of function f .

Furthermore, for 9" € X which is another fixed point of function
f, such that D;g (¥, f9") < +o0, it yields 9 = 9".

3. Main results

3.1. Fixed point results related to @ — P contractions in JS —
generalized metric spaces

Definitions 3.1.1 Define the set
5(D]S'f' C) = sup {Djs(f’c.f’"c). [,Lm =0}
where ¢ € X.

Theorem 3.1.2 Let (X, D)5) be JS — generalized metric space
which is complete and f:X — X a function that satisfies the
following condition:

¥ (Dys(fr ) <9 (Msx D) — oM7) (G.1)
where
M;s(x, %) = maximum{D;s(x, %), D;s (x, fx), D;s (%, £ %),
Dys(x, £2), Dys(%, £},

for every xand ¥ fromX and ¢,y from¥ , where ¥ is
continuous and ¢ is lower semi — continuous.

If there exists a ¢ € X that§ (D,S, f, c) < +o0, then the sequence
{f"¢}nen Djs — convergences to a point 9 in X.

When Djs(9, f9) < +oo then 9 is fixed point of function f .
Furthermore, for 9’ € X which is another fixed point of function
f, such that D;s(¥', f9') < +oo, it yields 9 = 9.

Proof. Let take ¢ € X that S(Djs, f, c) < +oo. Applicating (3.1)
fori,j,n € N, it yields

¥ (Dys (s, f146) )
<y (MIS(an_lc,fn”_lC)) _ (M]S(fnﬂ—lc’fn.;.j_lc))
< (M (-1, £r71))

M]S(fn+i—1c'fn+j—1c)
D]s(fnﬂ_lc;fn”_lC)’D]s(fnﬂ_lc'fn”ﬁ')’
= maximum{ Dys(f™*/7 ¢, "), Dys(f" 71, f4),
D]s(f"”‘lc.f"”c)

< 8Wys, fL 1)

(3.2)

Consequently,

P (Dys(Fie, f146) ) < o (Mys(F7+4g, f7H710) ) <
w (8(Dys. £.£771)).
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Using the non-decreasing monotony of v it results

Djs(fn+ic’fn+jg.) < M]g(fn+i_1§',fn+j_1§') <
§(Dys, £, f™7%6) (3.3)

foreveryi,j € N,n € N.

5(D15'f:fnC) = SUP{D]S(anC'anC)' i,j € N}
< 8(Djs, f, f™L6).

As a result, the sequence {8 (DJS, f.f "g)}nEN is non — increasing
and bounded.

Consequently, it D;s — converges and lirP ) (D,S, f.f "g’) ==
n—->+oco
0.

In addition, from (3.3) the following inequality
8(D]S: fﬁfnc) < M]S(fn-H:_lCi fn+j_1c)
<85, f.f"710)

Taking the limit in (3.4) whenn — +o0 and i,j € N, it yields

3.4

lim Ms(f™* 2, M) = 1> 0.
n-+o
Furthermore, from
8(D]5,f,fnc) = sup { D]S(fn+ithn+jC): l:] € N}a
it implies:

for each natural number k, there exist i(k) and j(k) that the
inequality

[ == < Dys(fm+ig, freitog) < | (3.5)
holds.
Taking the limit in (3.5) when k — +o0, it yields

Al—r& Dys(Fi0g, freitog) = .

Furthermore, since ¢ is lower semi — continuous and Y is
continuous, taking the limit in

" (Djs(fn+i(k)c’fn+j(k)c))
< 0 (Mg prei00-1g)
_ (M]S(fnﬂ(k)—lc‘fn+j(k)—1c))
it implies Y (1) < Y1) — (D).
Consequently, ¢(1) = 0. Since ¢ is in W, it implies [ = 0.
So

lim §(Djs,f,f") =0 (3.6)

n-—-+oo
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Since 8(Dys, f, ™) = sup {Dys(F™*s, f4¢),i,j € N}, it is
true that

0 < D]S(fn+ic'fn+jc) < S(D]S,f,fnc),
foreveryi,j € N.
Taking the limit when i,j — +oo , it implies

im - Dy (™, f**¢) = 0 (3.7)
i,jo>+00

Since the sequence {f"¢} ey is Djs — Cauchy, there exists a
point ¥ € X, that accomplishes:

lim D;s(f"s,9) =0 (3.8)
n-+o
Let prove now that f(9) = 9.
D]S(fﬁ’ 19) < pnl_lf_'l:lm D]S(fﬁ’fn+1c)
Taking (3.1) for x = 9 and ¥ = f"¢, it implies

YDy (I, F716) < Y(Mys (0, £7)) — @ (Mys(9,£76))  (3.9)
where

M]S(ﬁ:fnC)
= maximum{DJS(ﬁ,f”g), D]S(ﬁ'fﬁ)' D,s(f”c,f"“c).

Dys(@®, f™*16), Dys(f™s, f9)}

Taking limit in M;s(¥9, f™¢) whenn — +oo and from (3.7) and
(3.8), it yields

lim M50, f"6) = maximum{0, D;s(9, f9), 0,0, D;5 (9, f9)}
= Dys(9, f9)

Taking limit in (3.9) it implies

YDy (19, 9) < Y(Dys (9, £9)) — ¢ (D59, £9))
Consequently ¢ (D,s(ﬁ,fﬁ)) =0and

Dis(®,f9) =0 (3.10)
From this, it yields f9 = 9.
If 9" is another point that f9' = ¥’ and D;5(9',9") is finite, then
Dys(9',9") = 0.
Indeed, applicating (3.1) for x and ¥ equaltod’, it yields
lp(D]S(ﬁ" 19’) = lP(Djs(fﬁ’ 'f19’ ))
< YMys (8, 9)) — o (Mys (8, 9"))

where

M]5(19' ,9')
= maximum{ D;s(9",9"),D;s (¥, f9"), D;s (¥, f9"),
WWwWw.astesj.com

D]S(ﬁ’ f9), D15(19’ S} = D15(19’ ,9")
Asaresult p(D;s (@, 9') < (D@, 9')) — @ (D]S(ﬁ’ 9 )) ,
which implies ¢ (Djs(ﬁ’ , 0 )) =0and D;s(¥',9") = 0.
Furthermore, D;s(¥ ,9) = 0, because f(9) = 9.

Due to the fact Djs(9,9") = Djs(f9, f9'), it yields

WD (f9,£0') < PMys(9,9')) — 9 (Mys(0,9)) (.11
where
M;s(9,9") = maximum{ D;s(9,9"),D;s (@, f9), Dy (9", f9'),

Dy, f9"),Dys (¥, f9)}
= maximum{D;s(¥9,9"),0,0, D;s(9,9"), D;s (9", 9)}
= D]_g('l9, 19,)

From (3.11), it implies
YDy (9,9 < P(Dys (0,8 )) — ¢ (Dys(9,9")).
As a result @ (D,S(ﬁ 0 )) =0and Dj5(89,9') = 0and 9 = 9’ .

Remark 3.1.3 Theorem 3.1.2 generalizes Theorem 2.18
(Theorem 1.9) in [19].

Example 3.1.4 Let be X = [0,1] and a non — negative Dg of
X X X, where

maximum {x,%}, x#0,x#0

X A —
Dys(x,y) = 2’ xeX,x=0
> x=0,%€X

(X,Djs) is a JS — generalized metric space as it is shown in
Example 2.10.

x2

and the functions
2(1+x)

Let f: X — X be a map such that f(x) =

QY EW p(s) =S p() =2

S
2"

Forx #Xandx #0,X # 0

D,S(f(x),f(f)) = maximum {2(1x+ ShTc: f)}'

%2

2(1+%)

Taking x < X, D,S(f(x),f()?)) =
M;s(x, %) = maximum{D;;(x, %), D;s(x, fx), D;s (X, fX),

D]S(x'ff)l D]S(f' fX)},

Djs(x, %) = maximum{x, ¥} = %, D]S(x,f(x))
X2
x M} =%
115
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. L X -
D(X,f(X) =D (x,m) =X,

%2 £
D,S(x,f(a?)) = maximum {x,m} = { 2(1+%) »
x

=

1 x? B
2(1+x)}_

fz}
x)

1+
Faaem) s

= maximum E =X
22

Ds(f (x),%) = max1mum{

2
Case 1. If Dj5(f (%), x) = 2(1 o then

1
M;s(x, %) = maximum {x X, 5

1+x

3 3%2

l/)(ng(f(x) f(x)) ¥ (2(1+x)) -

2204%)  4(1+0)’
¥ (M5 9) = 0 (M6, 0) = 9D - 9(D) = 2~ 2 = %
/ / 2 2
=2
Since %(1’:—@ < X, the condition of Theorem 3.1.2 is accomplished.

Case 2. IfD(x,f(J?)) is x, then

M]S(x,a'c') = maximum{¥, x} = ¥

2

3%
YOs(FO.F @) = 35505 = 1orsr
- - N 3 ¥ _
Y(ME D) - oM@ D) =@ —pE) =— -5 =%
52
Since 3. — < X, the condition of Theorem 3.1.2 is completed.
4 (1+%)

Therefore, the function f: X — X has a fixed point which is 0.

Corollary 3.1.5. Let (X , D]S) be a JS — generalized metric space
which is complete and fa function of X in itself satisfying the
condition

Dys(fx, fX) < Mys(x, %) = (M5 (x, X)),

where

D]S(x,f), D]S(x'fx)' D]S(i' ff),}

Ms(x, %) = maximum{ Dy (x, £3), Dys (R, £)

for every x, X € X and ¢ is from W, and lower semi — continuous.

If there exists ¢ € X that 5(D]5,f, ¢) < 400, then {f™¢lnen Djs
— convergences to a point ¥ in X.

When Djs(9, f9) < +oo then 9 is fixed point of function f .

Furthermore, for 9" € X which is another fixed point of function
f, such that D;s(¥', f9") < +oo, it yields 9 = 9.

WWwWw.astesj.com

Proof. Replacing ¥(s) = s € ¥ in above theorem, the proof is
clear.

Corollary 3.1.6 Let (X , D,S) be a JS — generalized metric space
which is complete and f a function of X in itself satisfying the
condition

Dis(fx, fX) < kMjs(x, %)
where

D]S(x' i)! D]S(x' fx): D]S(fl ff)!}

Mjs(x, %) = maximum{ Dy (e, £3), Dys (%, £)

for every x, ¥ € X and x € 10,1].

If there exists ¢ € X that §(Djs, f, ) < +oo, then {f"¢}nen Djs
— convergences to a point ¥ in X.

When D;5(9, f9) < +oo then ¥ is fixed point of function f .
Furthermore, for 9’ € X which is another fixed point of function
f, such that D;g (¥, f9") < +o0, it yields 9 = 9".

Proof. Taking (s) = s and ¢(s) = (1 — k)s € ¥ in inequality
(3.1), the proofis clear.

Remark 3.1.7 Corollary 3.1.5 is a generalization of Theorem 2.16
which is the result of [16] as Corollary 5.5 and Corollary 3.8 in
[20].

3.2. Common fixed point related to @ — P contractive functions
in JS — generalized metric space.

Theorem 3.2.1 Let (X, Djs) a JS — generalized metric space
which is  complete and F,g:X—>X such that
FX is a subset of gX and the set gX is closed in X and

YDy (Fx, F2) < 9 (Mys (g%, 9%)) — 9 (Mys (g%, 9%)) (3.12)

where

M;s(gx, g%) =
maximum {D;s(gx, g%), D;s(gx, Fx), D;s(gy, F%)}

for xand ¥ in X and ¢ and ¥ in ¥, 1 is continuous and ¢ is
lower semi — continuous.

If there exist ¢ €X such that 6(D]5,F,C)<+00 and

8(Dys, 9,6) < +oo then the sequence (Vnlnew = {gSn+1lnen =
{F¢n}nen, where y; = F¢ = gg;, D;s — converges to a point
Yin X.

If 6(D]5, F,19) < +o00 and S(DJS, g,19) < +oo then the maps F, g
have a unique coincidence point in X.

Furthermore, they have a unique common fixed point in X,

if they are weakly compatible.
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Proof. Let take ¢ € X such that 5(D]5, F, c) < +oo and
5(D]5,g,c) < 4o00. For ¢ € X, due to FX c gX then F¢ € gX.
Consequently, there exists ¢; € X, g¢; = Fg.

Reasoning in the same manner for ¢; and so on, there can be
defined the sequences {¢, }nen and {¥y, }nen such that

Yn= 9Sn+1 = F¢n (3.13)
forn=0,1,2,..

If there exists any n € N, such that y, = y,44 then g¢,,1 =
FCn =Yn=VYn41 = F§n+1'

So, ¢,44 is the required point for g and F.

Let suppose now that the terms of
{v.} are diferent from each other.
Consequently,

Dys(Yn Yn+1) > 0. (3.14)

Y (D]S(yn' Vn+1)) =y (D]S(Fcn' FCn+1))
<y (M]s(gcn. gcn+1)) 4 (M,s(gcn. gcn+1)) (3.15)

where

M]S(gCn' ISn+1)

= maximum{D;s(g¢n, 9Sn+1)> D;s(Sn FSn), Dys(gSnt1, FSn1)}
= maximum{D;s(g¢n, 9Sn+1)> Djs(GSn, 9Sn+1): Djs(GSn+1, GSn+2)

= maximum{D;s(gSn, GSn+1): Djs(GSn+1, ISn+2)}
= maXimum{Djs Vn-1,Yn)) D]S Vo yn+1)}

Case 1. Djs(ggn,ggnﬂ) = Djs(¥Vn, Yn+1), then replacing it in
(3.15), it yields

Y (D]S(Yn' Vn+1)) <y (D]S(]/n' Vn+1)) -9 (D]S(Vn' Vn+1))

S0 ¢ (Dys(u ¥ns1)) = 0 and consequently Dys (Y us) = 0,
which is absurd due to (3.14).

Case 2. M;5(gSn, GSn+1) = Djs(Yn-1,¥») then replacing it in
(3.15), it yields

¥ (Djs()/n. yn+1)) <y (Djs(yn. yn—l)) 4 (Djs()/n. yn—l))

<9 (Dys O Yn-r)) (3.16)

Due to non-decreasing monotony of 1, it implies
D]S (yn' yn+1) < D]S (yn' yn—l)a
foralln € N.

This shows that {D;5(Vy, ¥n+1)nen is non-increasing and lower
bounded because D;s (¥, ¥n+1) = 0.
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Consequently, the sequence {D;s(Vpn, Yn+1)}nen converges to [ >
0, nl_IHIOO D]S Vo Ynar) = L.

Taking the limit in (3.16) when n = +o0, it yields

YO <y -oO).
Consequently, ¢(l) = 0andl = 0.

So,
Mim D5 (Vo) Vnis) = 0 (3.17)
Denote
C = sup{D,s(yi, y]-), ij> k} (3.18)

¢, is finite for every k € N because S(DJS, F, g) < +o0 and
8(Dys,g,6) < +oo.

Since the sequence {cy }xey 1S non — increasing, lower bounded
from zero, it is convergent to a point {,

i =7>
k1—1>r-Poo g, =¢=20 (3.19)
From (3.17), it yields:
for each p € N, there exist ip, Jp > D, such that
1
¢y =2 < Djs (yip,y]-p) <c, (3.20)

} Taking limit in (3.20) when p — +o0 and using (3.19), it yields

i osn)=c o

Knowing that Dy (yip,yjp) = Djs (ngp_l, ngp_l), it implies

Y (D/s (Cip' Cj,,)) =¥ (Dys (FCip—1,Fij—1) =
¥ (M]S (gci,,_l,gcj,,_l)) -9 (M]S (gcip_l.gcjp_l)) (3:22)
where

Mg (QCip—l'Qij—1>

— aximum Dys (gcl-,,_l, gc,-,,_l) 'Dys (HCip—lrFCi—l)'
Djs (Qij—1'F§jp—1)

D;s (Vip—z' Vjp—z) »Dys (Vip—z' HCip—l) ’
Dys (Vjp—z' ij—l)

From (3.17) and (3.19), it yields

= maximum

Am M;s (gCip—l'Qij—1> = maximum{{, 0,0} = {

Taking the limit in (3.22) when p - +o0 and from (3.21), it
implies
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Y =P — @)
Consequently, ¢({) = 0and { = 0.

So,

lim ¢, =0
k—+co

(3.23)

From (3.18) and (3.23), it yields lim Djs(y;¥;) = 0, which
i,jo+co

means that the sequence {y, }nen is Djs— Cauchy in X.

Since ¥, = gSns1 = F¢p, ityields {y, }nen € g(X). Since the set
g(X) is closed, there is 9 € gX such that lirII V=1 .
n—-+oo

Consequently, nl—i>r-|l:loo ISns+1 = nl—i>r-|l:loo F¢,=19.

Since ¥ € gX then thereis u € X, gu = 9.

The other step is to show that Fu = 9.

Knowing D;s( 9, Fu) < nl_i)rllw D;s(F¢y, Fu) and applying x =
¢, and X = p at (3.12), it implies

¥ (D]S(F Sno Fu)) < (M/s(gcn.gu)) 4 (M/s(gcn.gu))
(3.24)

where

M;s(gSn, g1
= maximum{D;s(gsn, g11), Dys(gSn, Fsn), Dys(gu, Fi)}
= maximum {D;s(g¢n, 9), D;s(gSn, Fsn), Djs (9, Fu)}

Since
Jim D;s(ggn,9) =0
and
Mm Dys(g6n, Fgn) = lim Dys(yn-1,¥n) =0,
it implies nl_i)r+noo M(gsn, gu) = Dis(¥, F).
Taking limit in (3.24) when n — +oo, it yields
Y(Dys (0, Fu) < Y@, F) — (9, Fu)
As aresult (9, Fu) = 0.
Consequently, 9 = Fpu.
The following step is to prove that 9 is unique.

Suppose that there exists another point of coincidence 9’ # 9 of
gandF.

So, there exists p; € X which accomplishes Fu; = gu; =9’
(D5 (9,97) = ¥ (Dys(Fu Fiy) )

<y (M,s(gu. gul)) 4 (M]s(gu. 9#1)) (3.25)

WWwWw.astesj.com

For

M;s(gu, gua)
= maximum{D;s(gu, gu1), Dys (g, Fi), Dys (g, Fuy) }

= maximum{D;s(¥9,9"), D;s(9,9), D;s (9,9} (3.26)

Dys(8,9) = Dys(Fu, Fi)
¥ (Dy5,9) = v (Dys(Fu )

<y (M]s(gﬂ, g#)) 4 (M]s(gﬂ, g#)) (3.27)

where

M;s(gu, gu) =

maximum{D;s(gu, gu), D;s(gu, F1t), Dys(gu, F)} =
maX{D]S(ﬁ' 19)' D]S(ﬁf 19)' D]S(ﬁ' 19)} = D]S(ﬁ’ 19)

Replacing M;s(gu, gu) = D;s(9,9) in (3.27),
it implies
P (D)500,9)) < (D5 9,9)) = 0 (Dys0,9))
So., ¢ (Dys(9,9)) = 0 and
D;s(9,9) =0 (3.28)
Using the same method, it can be proved that
D;s(¥',9") =0 (3.29)
Replacing (3.28) and (3.29) in (3.26) and then in (3.25) it yields
M;s(gm gia) = Dys(gp, gua) = Dys(9,9)
¥ (D)5, 90) <9 (Dys(8,99) = 0 (Dys(9,9)
From this, it implies ¢ (D]S(ﬁ,ﬁ')) =0 and D;5(9,9") =0.
Consequently 9 = 9.

Furthermore, let prove that if g and F are weakly compatible then
FY = g9.

From Djs(F9,9) = D;s(F9, Fu) and (3.12), it implies

<o (Mys(g9,90)) — 0 (M;s(g9,9)) ~ (330)

M;s(g9, gn)
= maximum{D;s(g9, gu), D;s (g9, Fi), D;s(g9, Fu)}
= maleum{Djs(Fﬁ, 19), D]S(Fﬁ, Fl9), D]5(19, 19)}

From (3.28), it is known that D;5(9,9) = 0. Using the same
method as in (3.28), it can be proved that D;s(F9, F9) = 0.
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Consequently, M;s(g9, gu) = D;s(F9,9)

Replacing this equality in (3.30), it implies
Y (D]S(Fﬁ‘ﬁ)) <y (D]S(Fﬁ: 19)) ¢ (D]S(Fﬁ;ﬁ)>
From this ¢ (Dys(F9,9)) = 0 and D;s(F9,9) = 0.

So, F9 =9 = g9 and ¥ is unique.

Remark 3.2.2 Since JS — generalized metric spaces are metric
spaces, b — metric spaces, dislocated metric spaces, partial metric
spaces it implies that Theorem 3.2.1 is true in these spaces.

Example 3.2.3 Let be X = [0, a], where a € R and Dj; the JS —
generalized metric defined at Example 2.10 and the functions

1

(p'lp € lpa (P(S) = ES’ lp(s) = %

Let g,F:X - X two functions where g(x) = g and F(x) =
X.

In (1 + Z)

The functions g, F complete the condition of Theorem 3.2.1.

Indeed,

D;s(Fx, FX) = Dy (ln (1 + z) ,In (1 + f))

4
x X
= maximum{ In (1 + Z) ,In (1 + Z)}

Since x # X, it is supposed that x < X without restricting
anything.

From monotony of logarithmic function

D]S(FxﬁFf) = D]s (11] (1 +E),ll’1 (1 +§>) =In (]_ +§)
M;s(g(x), g(%))

= maximum {D;s(g(x), g(X)), D;s(g(x), F (x)), D;s(g (%), F (X))}

D;s(g (%), g(x)) = maximum{g (%), g(x)} =

N &

Dys(F(x), 9(x)) = max{F (x), g(0)} = 5.

Dys(F(%), 9 (%)) = max{F (%), ()} =
M9, 9(2) = 5%

Y(Dys(Fx, F2)) = (n (1+1%)) <y (3%) =%,

1 (M]s(gx,gfc')) 4 (Mjs(gx,gf)) =y (;) 4 @ = %

Since
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¥ (Mys(9%.99)) = 0 (Mys(gx,90)) = v (D5 (Fx, ) ) >

3%k X _ X

then g, F have a common fixed point 0.

Corollary 3.2.4 Let (X , D,S) be a JS — generalized metric space
which is complete and g, F: X — X such that gX is closed and
FX is a subset of gX and

D;s(Fx,F%) < Mjs(gx, gX) — o(M;s(gx, g%)) (3.31)
where

M]S(x' X)) = maX{D]S(gx: 9%), D]S(gx: Fx), D]s(gf. Ff)}, for

x, X in X and ¢ in W is lower semi — continuous.

If there exist ¢ €X such that S(DJS,F,Q)<+00 and

5(Djs'9'C) < +oo then the sequence {Vn}neny = {gSn+1lnen =
{F¢n}nen, where y; = F¢ = gg;, D;s — converges to a point
Yin X.

If 5(D]5, F,19) < +o00 and S(DJS, g,19) < +oo then the maps F, g
have a unique coincidence point in X.

Furthermore, they have a unique common fixed point in X,
if they are weakly compatible.
Proof. Taking ¥ (s) = s in (3.12), the corollary is true.

Corollary 3.2.5 Let (X , D,S) be a JS — generalized metric space
which 1S complete and g, F:X—-X that
gX is closed set and FX is a subset of gX in X and

such

D]S(in Fi) < Kmax {D]S('gxugi)lD]S('gxi Fi)! D]S('glex)}
where k € ]0,1[ for x and ¥ € X.

If there exist ¢ € X such that 5(D]S,F,g)<+oo and

5(Djs'9'C) < +oo then the sequence {Vn}neny = {gSn+1lnen =
{F¢n}nen, where y; = F¢ = gg¢;, D;s — converges to a point
YinX.

If 5(D]5, F,19) < +o00 and S(DJS, g,19) < +oo then the maps F, g
have a unique coincidence point in X.

Furthermore, they have a unique common fixed point in X,
if they are weakly compatible.

Proof. Taking ¥(s) =s, ¢(s) =(1—k)s in (3.12), the
corollary is true.

Corollary 3.2.6 Let (X , D,S) be a JS — generalized metric space
which is complete and F, g: X — X such that FX c gX and gX is
closed setin X and

Dis(Fx,F%) < k1 D;5(gx, g%) + k,D;5(gx, Fx) +
k3D;s(gX, FX)
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where 0 < k; + Kk, + k3 < 1, for x and X from X.

If there exist ¢ €X such that S(DIS,F,c)<+oo and

6(D]S' 9, C) < +oo then the sequence {Vpn}nen = {gSn+1tnen =
{F¢n}nen, where y; = F¢ = gg¢;, D;s — converges to a point
YinX.

Ifd(Djs, F,19) < 400 and S(Djs,g,ﬁ) < +oo then the maps F, g
have a unique coincidence point in X.

Furthermore, they have a unique common fixed point in X,

if they are weakly compatible.
Proof. Taking k = k1 + kK, + k3, K € ]0%[, it implies

k1D;s(gx, g%) + Ky Dj5(gx, Fx) + k3D (g%, FX) <
K (D,S(gx,ga?) + Dys(gx, Fx) + Djs (g%, FJ?)) <k-3-
M]S(gx' gx).

Replacing ¢(s) = (1 —3k)sand Y(s) =s
corollary holds.

in (3.12), the

4. Conclusions

In this paper are given some theorems and corollaries on
fixed points for weakly contractive functions and for contractive
functions with altering distance between points in JS —
generalized metric spaces. Furthermore, in it are proved some
results related to common fixed points of two ¢ — 1 contractive
functions on JS — generalized metric spaces. Since JS —
generalized metric spaces are metric spaces, b - metric spaces,
dislocated metric spaces, partial metric spaces, it implies that all
obtained results are true in above mentioned spaces. In additions,
some important results given in this paper are generalizations of
some known references. Concretely, Theorem 3.1.2 generalizes
Theorem 1.9 in [19]. Corollary 3.1.5 is a generalization of
Corollary 3.8 in [20] and Corollary 5.5 in [16].
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