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Indoor positioning system (IPS) has become a high demand research field to be developed and
has made considerable progress in recent years. Wi-Fi fingerprinting is the most promising
technique that produces an acceptable result. However, despite the large amount of research
that has been done using Wi-Fi fingerprinting, only a few Wi-Fi based IPS in the market can be
said to be successful. Doing the research in a controlled environment and ignore the temporal
signal changes may be the cause of such scenario. A long-term dataset was built to overcome
this issue, yet the distance error of the state of the art was 2.48m. Therefore, we aim to reduce
the distance error by combining two positioning algorithms which are Weighted k-Nearest
Neighbor (WKNN) and Long-Short Term Memory (LSTM) using ensemble learning. The result
shows that our ensemble method can reduce the localization error to 1.89m and improve the
performance of the IPS by 23.7% when compared to the state of the art.

1 Introduction

Today, outdoor positioning is already a mature research field. An
object with Global Navigation Satellite System (GNSS) service
– such as Global Positioning System (GPS), GLONASS, Galileo,
BeiDou – can be easily located with the help of satellite signal with
high accuracy [1].

On the contrary, Indoor Positioning has not reached its maxi-
mum results and is on the focus of researchers recently. Satellite
signals cannot be used for Indoor Positioning System (IPS) purposes
due to too much signal attenuation in an indoor environment [2]
that results in IPS with an accuracy of more than 100m [3]. IPS
is very useful and has many functionalities in an environment like
museum, department store, university, etc. Which is why IPS has
become a high demand research field to be developed and has made
considerable progress in recent years. Due to the absence of satel-
lite in an indoor environment, researchers attempt to utilize other
signals to be used in IPS such as Wi-Fi, Bluetooth, FM radio, RFID,
ultrasound or sound, light, and magnetic field [4].

Wi-Fi signal has been the most popular and most used in devel-
oping IPS in recent years because it achieves high applicability in
a complex indoor environment and does not require line-of-sight
measurement of Access Points (APs) [4]. However, Wi-Fi also faces
several problems when deployed in IPS. Wi-Fi is usually established

for communication purposes and rarely deployed with the ideal den-
sity and geometry for IPS [5]. The existing environment will need
to deploy extra AP to create an ideal environment for IPS, which
results in spending more money and makes it relatively expensive.

The most popular and promising approach in building an IPS
is fingerprinting. This approach has two stage, offline phase and
online phase. In the offline phase, the characteristics of several
locations, called as Reference Point (RP), is measured. Then, a
positioning algorithm will be used in online phase using the data
collected during the offline phase. IPS with Fingerprinting approach
can be viewed as a classification or regression problem. Many
classification and regression algorithms like k-Nearest Neighbor
(KNN), Weighted k-Nearest Neighbor (WKNN), Support Vector
Machine (SVM), Multilayer Perceptron (MLP), Convolutional Neu-
ral Network (CNN), Recurrent Neural Network (RNN), and Long
Short-Term Memory (LSTM) have been tested.

Combining the two, Wi-Fi fingerprinting has been the most
popular technique for developing IPS. With dense Wi-Fi coverage
in a well-surveyed environment, Wi-Fi fingerprinting can achieve
acceptable accuracy, as shown in recent research [6]. Local Feature-
based Deep Long Short-Term Memory (LF-DLSTM) was proposed
and achieves localization performance with mean localization errors
of 1.48m and 1.75m under the research lab and office environments,
respectively.
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However, to the best of our knowledge, only a few WiFi-based
IPS in the market can be said to be successful. Although there are
many methods that have been tested before, the accuracy in the real
environment decreases. This may happen if the testing of the IPS
was done in a specific, probably controlled environment. Therefore,
the accuracy in the real environment may decrease significantly [7].
To overcome this issue, research in IPS needs to be done using a
public dataset, therefore the environment cannot be controlled by
the authors.

There are many public IPS dataset that can be obtained online
such as [8] and [9]. However, these datasets were collected in one
day only and do not take into account the changes in the temporal
signal that inevitably occur in the real environment. This happens
because the RSSI received from an AP might be different between
one day and the next day, even if the location and environment is
precisely the same [10]. Therefore, the accuracy in the real environ-
ment may drop significantly. To resolve the issue, dataset needs to
be collected and updated periodically.

In this research, we use an IPS dataset that is published online
which considers the temporal signal changes [7]. To the best of our
knowledge, the best accuracy that has been done using this dataset
was the research by Hsieh that used RNN to obtained a distance
error of 2.48m [11]. To the best of our knowledge, the research
employs RNN and LSTM separately and is applied directly to the
dataset without any modification to prevent overfitting. However,
the training data only contains fingerprint from 24 RP, while the
testing data contains fingerprint from 106 RP. With much fewer
reference points in the training data, the model tends to overfit.

This research aims to reduce the localization errors by applying
methods to prevent overfitting in the LSTM model. We also provide
a new way to reduce the localization errors further by combining two
positioning algorithm which are WKNN and LSTM using ensemble
learning.

2 Literature Review

2.1 Fingerprinting

Fingerprinting technique utilizes the signal characteristics of a spec-
ified location in a particular environment. It consists of an offline
phase and an online phase. During the offline phase, a site survey is
conducted on the environment. First, several location coordinates,
referred to as Reference Points (RPs) will be chosen, which later
each of them will be used to collect the RSSI from numerous access
points. Multiple RSSI readings will be taken in each RPs. These
collections of data consist of RPs and RSSI from multiple access
points is usually known as radio map. During the online phase,
a mobile unit observes RSSI measurements at a specific location
and use an algorithm to associate the measurements with the radio
map. The mobile unit is assumed to be collocated with an RP if
the measurements made in the online phase and offline phase are
similar.

Fingerprinting approaches can be viewed as a classification prob-
lem. The radio map collected during the offline phase is trained
to obtain a model. Then, the position of the mobile unit will be
estimated by putting the measurements taken into the model as a
parameter. Classification algorithm such as K-Nearest Neighbor

(KNN), Weighted K-Nearest Neighbor (WKNN), Support Vector
Machine (SVM), Naı̈ve Bayes, Artificial Neural Network (ANN),
Recurrent Neural Network (RNN), Long-Short Term Memory net-
works (LSTM) have been used.

In a traditional site survey where the surveyor collects the radio
map by standing at RP and taking multiple measurements, it took
10 hours for two people to build a radio map consists of 150 RPs
in a 281m2 environment [12]. It can be concluded that, when using
a site survey as a radio map collection method, the offline phase is
time-consuming, labor-intensive, and cost-prohibitive.

Fingerprinting can produce a low localization error because un-
like any other approach, fingerprinting relies on the characteristics
of the environment itself. Fingerprinting allows obstacles like wall,
furniture, and other static objects do not interfere with localization
accuracy. However, this also works as a trade-off. If there are any
changes in the environment, such as furniture and access points
relocation, another site survey is needed.

Then, researchers tried to lessen the time taken to build a ra-
dio map. [13] introduced the Quick Radio Fingerprint Collection
method (QRFC) that allows radio map to be created, simply by
holding a smartphone while walking. QRFC makes the radio map
collection become effortless, especially if there are extra volunteers.
Even with lesser times, radio map built by QRFC has been proven
gave the same results with a radio map created by a site survey, and
even better.

The fingerprinting technique offers both accuracy and ubiquity.
Access point location does not need to be known, and there is no
Line of Sight (LOS) requirements. Usually, fingerprinting tech-
niques produce an IPS with better localization accuracy, which
makes it superior to other methods [14].

2.2 Weighted k-Nearest Neighbor (WKNN)

Weighted k-Nearest Neighbor (WKNN) is a modified version of k-
Nearest Neighbor which is a supervised machine learning algorithm
that can be used for classification and regression problems. KNN
assumes the data in the same cluster is identical and has the same
characteristic. It can be seen in Figure 1, that the data in the same
cluster is adjacent one to another.

Figure 1: k-Nearest Neighbor

The similarity between two data points can be known from the
distance between them. The distance can be calculated using several
methods, the most basic and used one are the Euclidean distance
(1). The smaller the distance, the more similar the data is.
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d =

√√ n∑
i=1

(qi − pi)2 (1)

Euclidean distance is used to calculate the distance between the
new data and the dataset. Where n is the number of access points
that transmit RSSI, qi is the RSSI measured on the RP from ith

access point, and pi is the RSSI measured on the mobile unit from
ith access point.

A number of k data points with the smallest distance are consid-
ered as the nearest neighbor to the new data, which means they are
similar to each other. The mode of the k labels will be considered as
the label of the new data in a classification problem. In a regression
problem, the mean of the k labels will be returned instead.

However, the hyperparameter k needs to be chosen carefully. If
k is too large, the neighborhood may include too many data points
from other classes, which leads to inaccuracy. However, KNN
would be more sensitive to outliers if k is too small. Several experi-
ments need to be done to decide the value of hyperparameter k in
KNN.

To overcome existing problem in KNN, a weight is given to
every k neighbors; thus, this algorithm is called weighted k-nearest
neighbor. Any function can be used to determine the weight of every
neighbor, usually called a kernel function. The bigger the distance
gap between the new data and its neighbor, the smaller the weight is.
Bigger weight means the data is more similar than other neighbors
with a smaller weight. In this research, the kernel function is defined
in (2).

wi =
1/di∑k

j=1 1/d j
(2)

Where k is the total number of neighbors, di is the distance from
the mobile unit to ith neighbor, and wi is the weight for ith neighbor.
Then, the position of the mobile unit can be estimated by assigning
the weight to the RP coordinates using (3).

(x,y) =

k∑
i=1

wi(xi, yi) (3)

Where wi represent the weight for ith neighbor, while xi and yi is
the coordinates of the ith neighbor which are X and Y, respectively.

2.3 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) was made to overcome the prob-
lems found in Recurrent Neural Network (RNN). It is well known
that RNN suffers from the vanishing gradient problem during back-
propagation, which makes it is hard to remember the importance of
the data from earlier timesteps if the data sequence is long enough.

RNN layers are connected to each other, as shown in Figure
2. To obtain the output at time t (Yt), RNN takes into account the
input at time t (Xt) and the hidden state from the previous time step
(ht-1). The hidden state from previous time step (ht-1) is passed to
the current step (ht) as an input, which holds the information of the
previous time step. However, the gradient in the earlier layers in
RNN usually shrinks as the sequence gets longer, and with a low
gradient update rate, the layers stop learning. With the layers from

early timesteps stop learning, RNN will forget what it had seen
when the sequence got longer, thus having a short-term memory.

Figure 2: Recurrent Neural Network

LSTM used the same flow as RNN, where the information from
the previous time step is passed onto the current time step. The
difference is LSTM has an internal mechanism called gates that can
learn which data is essential or not. If the data is considered impor-
tant, LSTM will keep the information. If it turns out that the data
is not important, LSTM will forget the information. This internal
mechanism in LSTM is called a cell state, which has various gates.

The cell state can be thought of as a “memory” in LSTM, where
the cell state will carry information throughout the processing of
the sequence. As the sequence goes, additional information will be
added to the cell, and some will be removed from the cell state. The
cell state consists of three gates: input gate, forget gate, and output
gate. These gates determine which information will be stored, keep,
and be omitted from the cell state. Two activation functions are used
within the three gates, which are sigmoid and tanh, which can be
written as (4) and (5), respectively.

σ(z) =
1

1 + e−z (4)

tanh(z) =
2

1 + e−2z (5)

2.3.1 Forget Gate

Forget Gate decides which information to be kept or discarded. Both
information from the previous hidden state and the current input will
be passed into a sigmoid function. The forget gate can be described
as (6).

f t = σ(w f [ht−1, xt] + b f ) (6)

The information is considered as unimportant if f t is close to
zero, and the cell state will discard the information. If f t is close to
1, that means the information is important.

2.3.2 Input Gate

The input gate has a role in determining which information will
be added to the hidden state from the current input. Besides the
sigmoid activation function, the input gate also uses tanh activation
function.

it = σ(w f [ht−1, xt] + bi) (7)
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First, the previous hidden state will be passed along with cur-
rent input into sigmoid functions, written in (7). Then, we pass
the hidden state and current input into tanh function, written in (8),
producing C̃t.

C̃
t
= tanh(wc[ht−1, xt] + bc) (8)

Now, we can determine the current cell state by executing (9).

Ct = f tCt−1 + itC̃
t

(9)

2.3.3 Output Gate

The output gate is the one that produces a new hidden state to be
passed to the next time step. Just like forget and input gate; first we
passed the information from the previous hidden state along with
current input into sigmoid function, written in (10)

ot = σ(wo[h(t − 1), xt] + bo) (10)

Then, the new hidden state to be passed into the next time step
can be obtained by using (11).

ht = ottanh(Ct) (11)

2.4 Related Works

The most straightforward yet beneficial application of IPS can be
found in [15]. The research provides a system to ease doctors and
nurses in locating their patients, especially in emergencies. The
system was built by deploying multiple BLE throughout the ceiling
of the hospital for every 10m. By using the proximity technique, the
nearest BLE will be chosen based on the RSSI, and the location of
the BLE will be sent to the system server for location mapping. The
user will be considered in the same room, or the same area with the
nearest BLE detected. By using this algorithm, the system achieved
97.22% accuracy for location classification.

An IPS made using the multilateration technique can be seen in
[16]. The research was performed in a furnished laboratory environ-
ment with 13.1m x 6.5m. A total of 6 Raspberry Pi3 was used to
capture the signal from a mobile BLE that transmits two signals at
each second. Linear Least Squares is a multilateration method and
was used in the research with a localization errors up to 1.79m.

Meanwhile, [6] proposed an IPS based on Wi-Fi signal with
Deep LSTM architecture, which is just a stack of LSTM. The data
were preprocessed using the sliding window to reduce the noise
effect on the RSSI, which produces a more robust representation of
the RSSI with minimal loss of signal properties. Two LSTM layers
were used with 30 and 40 hidden layers. Then, a fully connected
layer with a size of 60 was used to transfer the outputs of the second
LSTM layers. The architecture also implements one dropout layer
to prevent overfitting that usually happened to deep networks. The
experiment was carried in two environments, a research lab with
35.3m x 16m and an office with 55m x 50m. The result of DLSTM
was compared to ANN, SVR, Extreme Machine Learning (ELM),
WKNN, and Stacked Denoising Autoencoder (SDA). The result
shows that the proposed algorithm outstands the other algorithm
with a localization error of 1.48m and 1.75m under the research lab
and the office, respectively.

Due to creating a fingerprint database took a long time, some 
researchers focus on creating a fingerprint database for indoor po-
sitioning research purposes, such as [17]. The dataset consisted of 
multiple buildings and multiple floors and is used by Jang, who pro-
posed a convolution neural network (CNN) [18]. The network uses 
the Interquartile range (IQR) for feature scaling, a dropout layer, 
data balancing, and ensemble methods. The architecture consists 
of 3 identical CNN models, with each of them has a different filter. 
The research shows that the proposed algorithm outperforms the 
Deep Neural Network (DNN) architecture.

RNN and LSTM has been proved to be successful in detecting 
pedestrian trajectory in indoor environment [19], [20], which in-
spired Hsieh et al. to utilize RNN and LSTM in indoor positioning 
system [11]. The research used a public dataset, which is the one 
used in this research [7]. The model consists of input layer, RNN or 
LSTM layer, fully connected layer with 40 neurons, fully connected 
layer with 2 neurons, and output layer. The number of RNN or 
LSTM layers were adjusted to 1, 3, and 5. The result shows that the 
best accuracy can be achieved by employing 5-layer RNN with a 
distance error of 2.48m and 99.6% accuracy of floor prediction.

Several ensemble learning approach has been done in building 
Indoor Positioning System. A research by Li et al. provide an 
ensemble approach to fuse Differential Time Difference Of Arrival 
(DTDoA) with RSS value [21]. Some research provide a way to 
combine the results from several positioning algorithm such as KNN 
[22]–[24] and neural network [25]. Research by Hayashi divide the 
environment into several area and each area has its own positioning 
algorithm. The result from positioning algorithms from each area is 
combined to get the final prediction [26].

A simple application of IPS can be created using simple tech-
niques such as using proximity to locate the mobile unit in a partic-
ular subarea. To determine the exact position of the mobile unit in 
a small to medium environment scale, trilateration or multilatera-
tion can be used. However, if the environment grows bigger into a 
multi-floor or even multi-building environment, using a fingerprint 
technique is recommended.

Ensemble approach has been proved to be successful in both 
classification and regression problem [24]. Previous research pro-
vide ways to combine the result several weak-learners to obtain 
the final p rediction. To the best of our knowledge, this is the first 
research that uses an ensemble approach where the result from one 
positioning algorithm was taken as an input for the next positioning 
algorithm in the IPS field.

3 Methodology

3.1 Dataset

We used a dataset released online in [7] to verify our proposed 
method. According to the authors, the dataset has been 
standardized and ready to be used for indoor positioning research 
purposes. The dataset was collected in a library that consists of 
multiple bookshelves from two different floors ( 3rd and 5 th) with 
total coverage of 308.4m2. To overcome the problem that occurs 
because of temporal signal changes, the data were collected within 
15 months, with 63.504 measurements in total.
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Each measure in the dataset provides information such as exact
position, RSSI readings, timestamps, and some identifiers. Four
hundred forty-eight access points were used in the measurement.
Access points were installed on both floor levels at approximately
2.65m from the ground.

To collect the fingerprint database, A trained person that is called
as the subject was chosen. Multiple locations were chosen to create
the radio map. The radio map consists of fingerprint data with the
subject facing four different directions, which are forward, back-
ward, left, and right. At the offline stage, the subject stood at the
selected location and held Samsung Galaxy S3 with the right hand
in front of his chest. The mobile phone was equipped with an appli-
cation that collects the RSSI of the Wi-Fi and eases the collection
process. The app gave an ordered list of locations for the subject and
gave a specific direction for the subject has to face. Therefore, this
application reduces the likelihood of the subject placing themselves
in wrong positions.

The dataset has been split into training and testing dataset by the
authors. The training dataset consists of 16.704 fingerprints from
24 different RP while the testing dataset consists of 46.800 finger-
prints from 106 different RP. Each fingerprint consists of 448 RSSI
readings from every AP. However, not all of them were detected. If
an AP is not detected in a fingerprint, the value will be recorded as
100. In this research, the dataset is scaled using Min-Max Scaler
which can be described in (12).

Xscaled =
X − Xmin

Xmax − Xmin
(12)

where X is the original value of the feature, Xmax and Xmin is the
highest and smallest value that exists in the feature, respectively.

3.2 Proposed Method

Several research [22]–[25] used an ensemble learning approach
where the outcomes of several positioning algorithms are combined
into one single output. In this study, we provide a different ensem-
ble method which combines two positioning algorithms, namely
WKNN and LSTM.

Since the result from WKNN will be used as an input in the
LSTM model, we need to get the coordinates and floor prediction
from WKNN. Each data in the testing dataset which contains RSSI
values from 448 APs will be used as an input into WKNN to predict
the coordinates and the floor level of the object. The data will be
scaled using Min-Max Scaler to turn it into the range of 0-1 by using
(12).

For every data in the testing dataset, WKNN will create a list
containing all of its neighbors from the training dataset. To be pre-
cise, each testing data will have 16.704 neighbors in total. Every
neighbor has its own distance from the testing data. The distance is
measured using Euclidean Distance (1). The smaller the distance
means the RSSI values between the testing data and the neighbor
is similar to each other. If the RSSI values are similar, it can be
assumed that the object positions are also similar. Therefore, it can
be concluded that we can predict the coordinates and the floor level
of the object by collecting several neighbors with similar character-
istics (RSSI value).

A number of k neighbors with the smallest Euclidean Distance
will be used to predict the coordinates and floor level of the object.
The coordinates, both X and Y, is calculated using (3). Since the
smaller the distance means the data is more similar, a neighbor
with a smaller distance will have more weight. Thus, it has more
impact in predicting the coordinates of the object. We select the
floor level that occurs the most within the k neighbors as the floor
level prediction of the object. Since we are using mode to predict
the floor level, the number of neighbors must be odd. Hence, the
configuration of hyperparameter k is set to an odd number in this
research.

After the coordinates and floor level of the object has been pre-
dicted by WKNN, the result will be concatenated to the testing
data to create a new dataset called WKNN dataset. WKNN dataset
consists of RSSI values from 448 APs, predicted coordinates by
WKNN, predicted floor level by WKNN, real coordinates, and real
floor level.

The WKNN dataset will be used to calculate the localization
error and accuracy of the WKNN model, and it will also be used in
LSTM architecture. Two architecture are proposed in this model
since we are using regression to predict the coordinates and clas-
sification to predict the floor level of the object. Figure 3 shows
the overall process of our ensemble method where the result from
WKNN is combined with the original features and is used as an
input to the LSTM model. To the best of our knowledge, this is the
first study that uses this kind of ensemble learning approach in the
IPS field.

Figure 3: Proposed Method

4 Experimental Design and Result

4.1 Experimental Design

Both regression and classification will be done in the experiment
since the dataset contains data with multiple floors. The purpose of
the regression model is to predict the coordinates of the object while
the classification model predicts the level of the floor the object is
on.
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Three scenarios will be conducted in the experiment. The first
scenario is to use only WKNN to predict the coordinates and the
level of the floor of the object. The second scenario will use both the
regression and classification model to predict the coordinates and
the level of the floor of the object. The third scenario is similar to the
second scenario. But in this scenario, the result from WKNN (coor-
dinates or floor) will be added as an input for the model. Therefore,
there will be 4 neural network architecture used in this experiment.
All of the architecture is trained using k-fold cross validation to
prevent overfitting. The number of folds used in this research is 5.

The neural network of the regression model can be seen in Fig-
ure 4. The input layer consists of 448 features which are the RSSI
value for each AP. The features are fed to LSTM layer that consists
of 448 neurons with tanh as its activation function. To prevent
overfitting, a dropout layer is added in the LSTM layer with 0.5
dropout rate. Then, the result from LSTM layer will be fed into a
fully connected layer that consists of 40 neurons with sigmoid as its
activation function. Finally, the output layer consists of 2 neuron
that represent the coordinates of the object. Linear activation func-
tion is used in the output layer. The model uses Adaptive Moment
estimation (adam) as the optimizer and root mean squared error as
the loss function. Ten epochs ere used to train the model with 5
training examples for each batch.

Figure 4: LSTM Regression Architecture

The architecture of the classification model can be seen in Figure
5. The architecture is similar to the regression model. The difference
resides in the output layer which only consists of one neuron that
represents the floor level of the object. Instead of using the linear
activation function, sigmoid is used as the activation function of the
output layer. Binary cross-entropy is used as the loss function and
accuracy as the metrics.

The architecture of the regression model for our proposed
method (WKNN-LSTM) can be seen in Figure 6. All of the acti-
vation functions, optimizer, number of epochs, batch size of this
architecture is the same as the one used in LSTM regression archi-
tecture. The only difference is the number of neurons in the input

layer and LSTM layer since there are additional inputs which are
the coordinates from WKNN.

Figure 5: LSTM Classification Architecture

Figure 6: WKNN-LSTM Regression Architecture

The architecture for WKNN-LSTM classification model can be
seen in Figure 7. Same as before, the architecture use the same
settings with LSTM classification architecture and there will be one
additional input which is the floor level prediction from WKNN.

4.2 Experimental Result

In the first scenario, we try out several WKNN model with a differ-
ent values of hyperparameter k. The result of the first scenario can
be seen in Table 1.

It can be seen that the distance error decreases as the hyper-
parameter k increase while the floor prediction accuracy does not
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show any significant changes. The increase in performance is pretty
significant between k=5 and k=13. However, the performance gap
between k=13, k=21, and k=25 is not too big. Yet, as the hyperpa-
rameter k increases, the computational cost and time also increase.
Therefore, hyperparameter k needs to be adjusted according to the
user needs.

Figure 7: WKNN-LSTM Classification Architecture

Table 1: WKNN Results

Model Distance Error (RMSE) Floor Prediction Accuracy
k = 5 2.28m 99.75%

k = 13 2.17m 99.76%
k = 21 2.15m 99.77%
k = 25 2.14m 99.76%

The result of the second and third scenario can be seen in Table
2. The three hyperparameter k values in Table 1 will be applied in
the third scenario for WKNN model to predict the coordinates and
the floor level. We also compare the result from our experiment
with the research by Hsieh [11].

Table 2: LSTM and WKNN-LSTM Results

Model
Distance Error

(RMSE)
Floor Prediction

Accuracy
RNN [11] 2.48 99.6%

LSTM [11] 2.57m 99.5%
Our LSTM 1.99m 99.8%

WKNN-LSTM (k = 13) 1.90m 99.85%
WKNN-LSTM (k = 21) 1.92m 99.87%
WKNN-LSTM (k = 25) 1.89m 99.86%

Our LSTM model can achieve distance error and accuracy of
1.99m and 99.8%, respectively. Both predictions are superior com-
pared to WKNN model. However, when the result from WKNN
is used as an additional input to LSTM, our model can achieve
distance error and accuracy of 1.89m and 99.86%.

It can be seen that the LSTM model surpass the performance
of WKNN model in predicting the coordinates and the floor level.
Yet, the performance can increase even more if both of the model is
combined using our ensemble approach.

5 Conclusion
In this research, we proposed a new way to reduce localization
error by using ensemble learning. The ensemble consists of two
positioning algorithms which are WKNN and LSTM. Aside from
the original features which are RSSI values from all of the APs, the
result from WKNN, either the coordinates or the floor level, are
taken as an additional input for the LSTM model. The result shows
that our ensemble approach can improve the performance of the
IPS by 11.6% and 5% when compared to the performance of our
WKNN and LSTM, respectively.
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