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 Internet of Things (IoT) is changing the world through a new wave of revolution for 
communications technologies that are no more limited to the human being. One of the main 
challenges that result from the exponential spread of IoT technology is the difference in the 
traffic characteristics between classical human communications and advanced things 
communications. The IoT traffic characteristics become essential for understanding and 
studying the parameters affecting the IoT traffic shape and thus all further studies related 
to traffic aggregation, topologies, and architecture designs. In this paper, a traffic 
aggregation in both the space domain and time domain is proposed whereas a matrix of 
traffic parameters is analyzed and simulated through building a practical lab case study to 
demonstrate the theoretical results. It is proven that the two proposed aggregation 
techniques could impact the traffic profile shaping existing IoT use cases for optimizing the 
network efficiency from several perspectives as 20% high throughput gain, 45% low 
collision probability, network congestion is limited to 800~1600 packets in the space 
domain and about 300~20 packets in the time domain, and overheads are minimized by 
about 50~27 Kbytes in the space domain and 9.5~0.59 Kbytes in the time domain. 
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1. Introduction  

Internet of things is the fabric that enables the exchange of 
information between people, things, and processes which in turn 
leads to a growing data sphere and sophisticated traffic models as 
a result of diversified sources of data. The number of IoT devices 
is in an increasing exponential increase that is expected to reach 
41.6 billion devices in 2025 with a corresponding data growth that 
is expected to reach 79.4 Zettabyte in 2025 within a compound 
annual growth rate of 28.7% over 2018 to 2025 [1]. The expected 
growth in adoption of IoT is attributed to several factors including: 

• The diversity of industries that is perceiving the IoT as a key 
solution for their existing problems as healthcare, 
manufacturing, agriculture as well as smart communities and 
smart cities. 

• The advances in network technologies could carry efficiently 
the IoT traffic. 5G network technologies are a good example. 

• Presence of new cost-effective surveillance techniques as low 
cost embedded integrated cameras, drones technologies etc. 

video surveillance data is expected to grow at a compound 
annual growth rate of 60% from 2018 to 2025.  

Accordingly, traffic aggregation is becoming significant to 
shape the traffic generated by such a world of sensors and cameras 
efficiently. Traffic aggregation rules could be applied at different 
stages including sources, aggregators, routers, and gateways.  

The data aggregation can accurately summarize and combine 
multiple stream data into one data chunk to reduce the number of 
packets to be sent in the large scale networks [2, 3].  

In this paper, the main key IoT traffic challenges that are 
addressed by the aggregation techniques proposed are the massive 
number of terminal devices and a burst traffic profile of node with 
the massive amount of data transmissions (number of sent 
packets), Data volume (light or heavy), and payload size. 

The paper contributed value is mainly in organizing the high 
network nodes (colocation) and the number of massive 
transmissions times (grooming time) using aggregation strategy 
as two main traffic aggregation techniques to shape and schedule 
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several IoT traffic profiles of the IoT smart city nodes for efficient 
IoT network.  

A proposed model for IoT traffic data control includes the 
following; 

• Traffic parametric analysis (space and time) 
• Key factors affecting the traffic profile shaping 
• IoT smart city architecture model for optimized traffic profile 

shaping 
• Building real-time experiments (case study) based on the IoT 

smart city nodes before and after the two proposed 
aggregation techniques.  

The smart city case study is analyzed with an associated lab 
setup for results measurements. In the lab work, the effect of 
several parameters (node-multiplex, time multiplex, data 
grooming…etc.) is studied against the traffic profiles. Traffic 
models are built as a function of those parameters and a traffic 
aggregation approach is proposed to model and shape the IoT 
traffic for efficient and reliable network operation. The 
experimental pilot shall consider single and multiple IoT devices 
against space and time multiplexing using a proposed colocation 
and grooming methodologies. 

The paper is organized as follows: a literature review is 
presented in section 2. The proposed traffic aggregation 
techniques are discussed in section 3 followed by explaining the 
dimensions of network performance metrics in section 4. The 
experimental setup and the results are presented in section 5. The 
discussion and conclusion are discussed afterward.  

2. Related Work 

The previous works studied technologies related to two main 
traffic aggregation approaches in the IoT networks that are 
complemented by the following studies: 

2.1. The node-based aggregation 

Authors in [3] proposed hybrid Quality of Service-Aware 
Data Aggregation (QADA) scheme that is a combination between 
the data aggregation of the cluster nodes and the aggregation of 
the tree nodes to overcome the limitations in both existing tree and 
cluster aggregation processes in order to reduce the power 
consumption and increase the network lifetime. QADA 
architecture model of the 101 nodes are designed and simulated 
using NS2.35 network simulator, compared to the existing tree 
and cluster aggregation techniques to prove the concept. 

Authors in [4] discussed the IoT traffic characteristics in the 
smart city use case. The authors proposed the smart city network 
architecture for collecting IoT traffic data of the smart city nodes 
of different scenarios as Logistics goods tracking, university 
campus, smart hospital, smart homes, mobile payment, Smart 
Shopping Centre, Intelligent Transport, and smart grid. They also 
collected the IoT traffic aggregation from different scenarios on 
one or many gateways for modeling the overall collected traffic 
using the Gamma-Modulated Wavelet model. 

The Internet of Things Protocol (IoTP) is introduced in the 
IoT communication layer to aggregate data of the massive number 
of IoT devices into one aggregator in such IoT scenario model. 

The protocol is programmed by using the P4 high-level language 
to be implemented on the switch aggregation that forwards the 
data aggregation into IoT gateway. The main findings in the IoTP 
are to improve the network efficiency, reduce the number of 
packets sent, total payload sent, control average aggregation delay, 
and average IoT device battery. However, the IoTP aggregation 
strategy is limited to handle 50 data blocks with a 200KB limit of 
the P4 register, also, to cover a very short-range communication 
technology as Bluetooth Low Energy (BLE) [5].  

The authors in [6] grouped the sensors in the IoT network into 
different clusters using a fused resemblance matrix based on the 
sensor behavior as acoustic, light, and radio. The cluster-based 
data aggregation for IoT application is developed by multi-sensor 
data fusion workflow for obtaining the robust cluster that can 
provide an energy-efficient data aggregation over the IoT 
networks. However, the number of transmitted data packets is 
higher in the cluster-based aggregation than in other modalities.  

The work in [7] proposed the dynamic aggregation approach 
based learning automata for the Routing Protocol for Low-power 
and Lossy-network (LA-RPL). The learning automata develops 
each node in the IoT hierarchical networks, including child nodes, 
parent nodes, and one Sink node to aggregate data on the parent 
nodes with the help of the Cooja emulator. The simulation results 
show that the LA-RPL routing algorithm outperforms other 
routing schemes (RPL, Adaptive RPL, Bounding Degree RPL, 
and Modified RPL) in terms of energy and the control overheads, 
average path length, average delay. Besides, the practice tests are 
implemented in this article to evaluate the drop packets, PDR, and 
aggregation percentage among the routing strategies.  

The authors in [8] proposed the Cross-Layer Commit 
Protocol (CLCP) for data aggregation and its efforts for query-
based search in the IoT smart city application. The NS2 simulator 
tests 50-nodes, deployed in the 600m×600m area and clustered 
into multiple groups to show an impact of CLCP based cluster 
head selection with or without aggregation on the network 
performance, compared to Energy Efficient Clustering Protocol 
(EECP) methods. It is noted that CLCP and EECP for data 
aggregation have the same actual residual energy values. 
However, the CLCP without aggregation outperforms other 
approaches in terms of the overheads and the throughput.  

Compared to the Priority Queue Aggregation Scheduler 
(PQA) and Priority Queue Scheduler (PQ), the authors in [9] 
presented the Priority Frame aggregation (PFA) and the Priority 
Frame (PF) in the Wireless Body Area Network/ Wireless Area 
Network (WBAN/WLAN) healthcare system architecture. In the 
WBAN networks, a set of healthcare sensors are originated and 
deployed in the human body to be connected to the Personal 
Servers (PSs), which bridge with the WLAN Access Point 
(WLAN-AP) in the WLAN networks. The proposed PFA and PF 
schedulers perform scheduling of different data traffics, mapping 
between WBAN and WLAN, and data aggregation of WBAN 
sensors into WLAN frame. The PS device forwards it into the 
central server. The simulation results show that the two proposed 
PFA and PF schedulers outperform other techniques in terms of 
delay and throughput, and the dropped packets as the collision 
probability indicator. 
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2.2. The time-based aggregation 

The authors in [10] presented the Aggregation Periodic 
Process (APP) to aggregate the periodic IoT data every sample 
time on the IoT gateway. The aggregated periodic IoT data 
characteristics are presented and compared to the Poisson Process 
(PP) to approximate the APP scheme by the PP scheme and then 
quantify an error between the periodic aggregation and Poisson 
aggregation.  

In the previous study [11], the two statistical data aggregation 
schemes: the constant interval and constant number are analyzed 
and estimated to find the optimal aggregation parameters (optimal 
aggregation interval and the optimal aggregation number), which 
enable the aggregation model to minimize the mean total system 
time. But, the optimal aggregation results are suited for stationary 
arrival conditions. 

 Accordingly, the work-study in [12] proposed the adaptive 
aggregation number control based on the aggregation constant 
number scheme to minimize the latency for variation arrival rate 
conditions. 

3. Proposed model 

Despite the contributions of the related works 
aforementioned above, we explore the aggregation capabilities in 
the IoT smart city network for IoT traffic profile shaping on one 
side and optimizing the IoT network performance on the other 
side. The proposed traffic aggregation techniques can reap the 
benefits of the data aggregation approach in the WLAN network 
through the practical design methodology that had not been 
available yet. 

As a key traffic shaping technique, two main IoT traffic 
multiplexing techniques are presented mainly (a) the space 
domain aggregation, and (b) the time domain aggregation. The 
two approaches play a significant role to shape the traffic profile 
to be optimum and efficient for carrier networks, compared to the 
present smart city networks. Accordingly, the composite traffic 
parameters shall include two main attributes, the space domain, 
and the time domain. 

3.1. Space domain attribute 

The space domain attribute or Colocation attribute indicates 
the number of the possible number of source nodes integrated into 
one hub node or more according to the network topology. 
Accordingly, the hub node could be modeled as a multiple-input 
(N) single (M) output node. In addition, the definition of the space 
domain attribute goes beyond the processing node down to the 
transducer level as the same source node could be connected to 
multiple transducer nodes for efficient operation. The number of 
transducer points (N) could be connected to one source node that 
in turn share with other numbers of nodes (M) a hub bandwidth. 
Thus, the N-sensor/M-node model is typed into Single-node type 
(N=M) and Multi-node type (N≠M, M=1) as seen in Figure 1. 
Like the previous works [3-9], the Single-node type collaborates 
the data traffic from M source nodes into the sink node. On the 
other hand, the Multi-node type can collect the data traffic from 
N sensors of the same source node into the sink node.  

 
Figure 1: Colocation domain attribute (N sensor/M nodes model) 

(a) Single node type(N=M), (b) Multi-node type (N≠M, M=1) 

3.2. Time-domain attribute 

As presented in the work [12], the time domain aggregation 
can aggregate data traffic every constant inter-arrival time from 
the Single-node/Multiple-node into the sink node to overcome the 
problem of the stationary arrival conditions in the related works 
[10, 11].  

The time-domain attribute indicates the time aggregate of 
several data streams out of transducer level at the source node 
either aperiodic or periodic into one IoT output data stream 
including all protocols necessary to distinguish traffic from 
different sources and correlation of respective scenarios. In this 
paper, the term “grooming” will be used to describe the act of 
multiplexing to distinguish IoT traffic multiplexing concept 
against traditional multiplexing techniques. The concept is more 
towards aggregation buffering of data bytes sent at different 
random time slots into a periodic time slot with a minimal impact 
on the functional requirements of the applications.  

It is assumed that 𝑛𝑛 number of source nodes in the grooming 
process is asynchronous and homogenous. the grooming process 
is a random process at any instantaneous time 𝑡𝑡𝑖𝑖 . Each source 
node sends multiplexed data packets uniformly every periodic 
inter-arrival time 𝑇𝑇𝑖𝑖 . Let the source node 𝑖𝑖 emits one message 𝐴𝐴𝑖𝑖 
every second. A unique message has a fixed-length 𝐿𝐿 in bytes per 
node. For a constant sampling time duration, the data packets to 
be sent will be: 

𝑃𝑃𝐾𝐾.𝑖𝑖 = 𝐴𝐴𝑖𝑖𝐿𝐿𝑇𝑇𝑖𝑖                                                                      (1) 
 

The grooming time 𝑇𝑇𝐺𝐺  can be incremented by grooming 
index 𝐺𝐺 to be multiple times as𝑇𝑇𝐺𝐺 = 𝐺𝐺𝑇𝑇𝑖𝑖 . Where G represents 
the grooming index or a multiplier factor that produces multiple 
numbers of inter-arrival times. The grooming function for a 
unique node (e.g.  𝑖𝑖 = 1) becomes: 

𝐺𝐺𝑖𝑖(𝑡𝑡) = �
𝑃𝑃𝐾𝐾𝑗𝑗.𝑖𝑖               .   𝑡𝑡 = 𝑡𝑡𝑖𝑖 + 𝑗𝑗𝑇𝑇𝐺𝐺
0                     . 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

                              (2) 

Where the 𝐾𝐾 packets generated by a source node 𝑗𝑗  times can 
be detected based on the experiment time 𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇 and the waiting 
time as (𝑗𝑗 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝐺𝐺
).  The grooming function of 𝑛𝑛 finite number of 

nodes in the network scenario seems to be an impulse signal (e.g. 
delta function), having 𝑃𝑃𝐾𝐾.𝑗𝑗 amplitude and appears every 𝑇𝑇𝐺𝐺 . It 
can be described as: 

𝐺𝐺(𝑡𝑡) = ∑ ∑ 𝑃𝑃𝐾𝐾𝑗𝑗.𝑖𝑖𝛿𝛿(𝑡𝑡 − (𝑡𝑡𝑖𝑖 + 𝑗𝑗𝑇𝑇𝐺𝐺)) 𝐽𝐽+1
𝑗𝑗=0

𝑛𝑛
𝑖𝑖=1                        (3) 

                                                                                                 
(a)                                                           (b) 
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4. Network Performance Metrics 

Network performance enhancement is one of the key 
objectives behind the traffic aggregation approaches. The 
techniques proposed in this paper targets an improvement in five 
main key performance indicators mainly: 

4.1. Traffic volume 

Traffic volume is the amount of data exchanged between a 2-
dimensional traffic matrix of node pairs (traffic profile) in the IoT 
network. It can be measured by two main forms: the average data 
rate (Kbps) and packets data values (Kbits).  

4.2. Throughput 

The throughput is the amount of successful data delivered 
between two IoT source nodes over the wireless communication 
channel for a specified period, resulting in kilobits per second 
(Kbps) [13].  

Recently, the throughput of the source 𝑇𝑇(𝑖𝑖) in the  FAST TCP 
model is a source sending rate 𝑇𝑇𝚤𝚤

𝑓𝑓�or 𝑇𝑇𝚤𝚤𝑏𝑏� multiplied by the forward 
packet size 𝑃𝑃𝑓𝑓 as:  

𝑇𝑇𝑖𝑖 = �
𝑇𝑇𝚤𝚤
𝑓𝑓�𝑃𝑃𝑓𝑓                     𝑘𝑘𝑓𝑓 < 1
𝑇𝑇𝚤𝚤𝑏𝑏�𝑃𝑃𝑓𝑓                            𝑘𝑘𝑓𝑓 ≥ 1

                                  (4) 

 
Throughput is improved by high 𝑃𝑃𝑓𝑓when Asymmetry Factor 

(AF) 𝑘𝑘𝑓𝑓 is greater than one. Where 𝑘𝑘𝑓𝑓 represents a connection of 
asymmetric link between the two routers of a model. It is based 
mainly on asymmetry capacity ratio (ACR) and asymmetry 
packet ratio (APR) [14]. 

In the IoT technology, the asymmetry link has no effect on the 
wireless connectivity among IoT nodes in the same AP (router).  
the factor 𝑘𝑘𝑓𝑓 is ignored. 𝑇𝑇𝚤𝚤

𝑓𝑓�  and 𝑇𝑇𝚤𝚤𝑏𝑏�  of the forward and backward 
packets could be addressed into the sending rate 𝑅𝑅𝑖𝑖  (packets/s) 
from one thing node (source/destination) to another one. Thus, the 
throughput can be derived from (4) as:  

𝑇𝑇𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖                                                                               (5) 
 

while 𝑃𝑃𝑖𝑖  is the packet size (bytes), excluded from the fixed 
overheads. Consequently, the throughput percentage is the ratio 
between the useful data packets to the total amount of data packets 
including overheads. 

4.3. Collision probability 

The number of collision packets to the total number of 
transmitted packets is the packet collision probability.  

Recently, the collision of the IEEE802.11 standard occurs 
when multiple stations share the wireless channel to transmit data 
at the same time onto a receiver. The access technique caused 
more delay and packet data-flow degradation. In this technique, 
each node listens to the silence (idle) of the channel for the 
Distributed Coordination Function (DCF) Inter-Frame Space 
(DIFS) interval. The standard grants all 𝑛𝑛 − 1  nodes random 
backoff time 𝑊𝑊�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 before the transmission or retransmission 
on the wireless radio channel. When DIFS time is released and the 

channel is not busy, the senders are ready to transmit data after 
variable backoff times. The randomization of this time led to an 
increase in the probability of packet collision, which is given as 
[15]: 

𝑃𝑃𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 = 1 − �1 − 1
𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏����������������

𝑛𝑛−1
                                            (6) 

 
The term 1

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏��������������� describes the channel access probability. It 

is the probability that the station attempts to send data in arbitrary 
waiting time slots. By analogy, the same model could be applied 
on IoT networks including the parameters highlighted in the 
section above to be as follows: 

𝑃𝑃𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 = 1 − �1 − 1
𝐺𝐺𝑇𝑇𝐺𝐺

�
𝑛𝑛

                                                      (7) 
 

4.4. Network traffic congestion 

With the increasing number of high data transmission rates in 
IoT use cases, Network congestion can arise from high request 
traffic in the network. The congestion control mechanisms have 
been discussed based on protocols and offloading approaches to 
avoid the buffer overflow in the IoT networks. In the protocol 
approach, congestion control mechanisms focus on the 
application layer and the network layer. Throughput and Packet 
Delivery Ratio (PDR) metrics are improved to reduce the number 
of lost packets caused by the congestion in the network layer. 
While throughput is aforementioned. PDR is the ratio of the total 
number of received packets in the destination (sink) node to the 
total number of sent packets in the source nodes [16,17].  

On the other hand, the network traffic congestion could be 
evaluated by the number of sent packets by the source nodes in 
the IoT networks. 

4.5. Control overheads 

The control overheads are excess data or the control header 
behind the useful data in the packet format for a specific task. It 
is measured per bytes or Kilobytes. 

5. Experimental Results Analysis 

5.1. Experimental setup 

An experimental lab is established to collect, analyze, and 
profile the traffic model based on practical smart city use cases. 
Based on the architecture highlighted in figure 2, the prototype 
built for proof of concept purpose is composed of: 

• The sensor layer is designed to develop several scenarios 
related to smart city use cases from different perspectives as 
safety, security, energy, and environment. Table 1 shows the 
sensors used in an experimental study [18-20]. 

• The processing layer is based on the ESP micro-controller 
family including ESP 8266 MCU units and Wi-Fi 
802.11b/g/n unit as a network interface module. ESP 8266 
MCU unit is programmed to perform both the space domain 
aggregation and time-domain aggregation processes in the 
broker node. While the Wi-Fi unit enables the nodes to 
communicate with other nodes in the IoT network.  
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• The communication layer is architected according to the 
network diagram in figure 2, to enable different topologies to 
be configured and experimentally measured. Intermediate 
nodes are introduced to enable the traffic shaping and 
aggregation factors being applied as the broker node. 

• The networking layer includes all network scenarios among 
IoT sensor nodes in the smart city architecture as physical 
security scenario, human safety scenario, energy scenario, 
device control and management scenario, and the 
environment scenario. Each scenario network has two or 
three connected IoT nodes with the TCP/IP connection 
protocol. The paper examines the human safety scenario 
nodes specifically scenario 3 (fire-node, smoke-node) and 
cloud scenario (fire-node and webserver) that is presented in 
the classical smart city networks [20]. 

Table 1: Sensor Layer Specifications [18-20] 

Parameters Sensor model Measurement range 
Natural Gas  MQ-5 (0-1000ppm) 

Smoke  MQ-2 (0-10000ppm) 

Fire  KY026 (20-100Cm),60° 
CO  MQ7 (20-2000ppm) 

Light detector  TSL2561 (0.1-40,000) Lux 
Temperature DHT22 (-40-125°C) 

 

 
Figure 2:  IoT architecture model designed for experimental work [20] 

 
Figure 3: Proposed single-node scenario in the smart city networks 

 
Figure 4: Proposed Multi-node scenario in the smart city networks 

 
 

Figure 5: Proposed Time-domain scenario in the smart city networks 
 

A set of experiments are designed to emulate the traffic 
patterns associated with each type of traffic aggregation either the 
space domain attribute or the time domain attribute, compared to 
that before (without) the aggregation process [20]. The 
experimental setup details are listed in table 2. 

On the space domain side, a list of IoT nodes is operating on 
two models of operations as seen in figures 3 and 4. Figure 3 
shows the network model of a Single-node type. While the Multi-
node type is architected in figure 4.  

In a Single-node experiment, 5-fire source nodes as senders 
can communicate with an individual smoke receiver node. Each 
fire-node comprises a fire-sensor subscribed to the processor node. 
After an initial step of one fire node connects to a unique smoke 
node, the number of fire nodes is incremented and the results are 
monitored on each step. As seen in figure 3, the smoke node is a 
broker that accumulates the traffic profile sent from each fire 
source node and then forwards it into the AP and the higher layers 
(gateway and internet). The Multi-node experiment follows the 
same methodology design of the Single-node experiment except 
for the five fire nodes of the Single-node type are replaced by five 
fire sensors that are connected directly to one processor node.  

In the multi-node type, the unique fire source node can 
operate as a broker node, which accumulates traffic profiles of the 
connected fire-sensors into the traffic aggregation and send them 
to the destination smoke node. 

The time-domain experiment is performed in both one source 
node experiment and N source nodes experiment as shown in 
figure 5. In one source node experiment, a single fire node is 
designed to store and buffer the sensed data and then send a 
multiplexed sensed data onto one smoke node as a broker node at 
grooming times 𝑇𝑇𝐺𝐺  of about 1-16 minutes. Each 𝑇𝑇𝐺𝐺  is 
incremented every 60 seconds. N-sensor nodes experiment is to 
establish five nodes of Single-node fire sensor and one smoke 
broker node to emulate the grooming pilot of N source nodes. The 
experiments are executed for a real-time experiment 𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇 (960 
seconds). 

Table 2: Experimental setup details 

Experimental 
parameters 

Space-domain 
experiments 

Time-domain 
experiments 

𝑃𝑃𝑖𝑖  (bytes) 90-1548 
Header/packet (byte) 32 
𝑇𝑇𝐺𝐺  (minute) N/A 1-16 
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Connection protocol TCP/IP 
Wireless communication Wi-Fi 802.11b/g/n 
N nodes/sensors  1-5 nodes 
Sensors type Fire and Smoke 
 𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇 (sec) 750 960 

 
5.2. Results 

Before the aggregation process, table 3 lists the limited key 
performance values of the fire-node in the classical smart city 
(scenario 3 and cloud scenario).  

Table 3: Fire performance values in the classical scenario 3 network  

   
 

Throughput 
         % 

Overheads 
   Kbytes 

No. of 
sent 

packets 

Traffic 
volume 

Kbits/Kbps 
Sc. 3 62.65 85.00  2720 1934/2.01 

Cloud 64.37 9.53  305 214/1.6 

After the aggregation process, the measurement results of 
different experimental pilots are summarized into traffic profile 
results, and network performance metrics results. 

In the space attribute, the role of the broker node is exploited 
as a method of traffic profile shaping for IoT networks. As shown 
in Figure 6, the Multi-node traffic profile is smoothed with low 
traffic volume (packets data values), compared to the Single-node 
type.  

 
Figure 6: Traffic shaping of N-sensors M-nodes model 
(a) Five-sensors Five-nodes, (b) Five-sensors One-node 

 
Generally, Figure 7 explains the difference of configuration on 

the space model. Figures 7.a shows the average data rate versus the 
low number of sensors/nodes for both types of the space domain 
attribute. An average data rate in the Single-node type begins to 
increase significantly with an increasing number of nodes. On the 
other side, the average data rate of the Multi-node type is 
approximately constant.  

As shown in Figure 7.b, it is obvious that the number of sensors 
attached to the same node has a direct impact on the network 
throughput on an average of 0.1-0.2% on each additional sensor 
per node. The increase might not be a significant one however it is 
not the main target out of the space multiplex. While the Single-
node type hasn't been impacted by the throughput. 

Figure 8.a shows the relationship between the PDR and the low 
number of nodes in the Single-node type. The PDR decreases 
significantly with the increasing number of heavy traffic nodes. 
The PDR reduces from 99% in 1-node to 75% in 5-node whereas 

the nodes send high traffic packets rates with an average of 13.8 
packets/sec.  

 
Figure 7: Space attribute (a) Average data rate, (b) Throughput 

As shown in Figure 8.b, the number of packets sent by the 
node(s) increases with the increasing number of nodes in the 
Single-node type. On the other hand, the number of transmitted 
packets may decrease or remain constant in the Multi-node type. 

 
Figure 8: Network congestion in the Space domain attribute (a) PDR, (b) 

Number of sent packets 
 

Figure 9 shows the relationship between the control overheads 
on one side and the number of aggregated nodes/sensors on the 
other side. It is noted that the data overheads begin to significantly 
increase from one source node to five sources in the Single-node 
type. On contrary, the control overheads seem to be constant with 
an increasing number of sensors attached to one-node in the Multi-
node type. 

 
Figure 9: Control overheads in the space domain attribute 

 
(a)                                                              (b) 

    
(a)                                                   (b)                               

    
    (a)                                              (b)                                
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On the other hand, the time domain experimental results 
tested 16 levels of grooming index (i.e. multiplex of 16 channel 
of data streams on the same channel). The experiment shows a 
relationship between the grooming index G on one side, and the 
traffic profile on the other side from five experimental key 
observations: traffic volume, collision probability, throughput, 
network congestion, and BW overheads.  

It is observed that the traffic volume (packets data values or 
average data values) increase as the grooming index increase as 
shown in Table 4. Figures 10 shows that the grooming time 𝑇𝑇𝐺𝐺  
between the two generated packets 𝑃𝑃𝐾𝐾𝑖𝑖 and 𝑃𝑃𝐾𝐾𝑖𝑖+1 sent by a node 𝑖𝑖 
is highly impacted by the grooming factor G in a directly 
proportional relationship. Equation 8 describes the grooming 
traffic profile of Figure 10. The traffic volume is impacted by the 
data aggregation of one/multiple source nodes for G grooming 
times. The average data rate is reduced from 0.175 Kbps at G=2 
to 0.164Kpbs at G=8. Similarly, the packet data size data rate is 
reduced from 168.8 Kbits at G=2 to 164.5 Kbits at G=8. 

 
Figure 10: Time-domain attribute for 4-level grooming index 
(a) One fire node experiment, (b) Five fire node experiment 

 
The collision probability in the grooming attribute results is 

affected by two main enablers: the number of nodes and grooming 
guard periods as depicted in (6). As shown in Figure 11.a, the 
collision probability increase as the grooming index increase, 
whereas the graph shows an exponential growth of collision 
probability versus the number of nodes for the first 400 nodes for 
grooming index G=2, while the same growth to lower values of 
collision probability from grooming index G=8 which in turn 
explains the high impact of grooming index of collision 
probability especially for a big volume of nodes that characterize 
IoT and WSN technologies. 

The graph in Figure 11.b shows that the grooming index G 
has a considerable impact on throughput as it increases the 
throughput value from 72.8% at G=1 to 91.2% at G= 8 which 
indicates the 18.4 % gain in throughput value followed by a small 
growth rate at G>10. It is obvious that the throughput increase 
from 91.2 % to 92.6% as G increases from G=8 to G=16. It is 
noted that an effective impact of the throughput is for G less than 
or equal to 8. 

For 5-fire source nodes in Figure 12.a, it is obvious that the 
PDR increases with a high G grooming index whereas, PDR is 
43% at G=1 until reaches 74% at G=8. As shown in figure 12.b, it 
is noticed that the number of sent packets decreases for long 
grooming times.  

Consequentially, it is obvious that BW overheads (Kilobytes) 
exponentially decrease with the increasing number of G grooming 
index as seen in Figure 13.  

 
Figure 11: Time-domain attribute (a) Collision probability, (b) Throughput 

𝐺𝐺(𝑡𝑡) =    𝑃𝑃𝐾𝐾10𝛿𝛿(𝑡𝑡 − 𝑡𝑡1) + 𝑃𝑃𝐾𝐾13𝛿𝛿�𝑡𝑡 − (𝑡𝑡1 + 𝑇𝑇𝐺𝐺)� +
⋯𝑃𝑃𝐾𝐾50𝛿𝛿(𝑡𝑡 − (𝑡𝑡5 + 2𝑇𝑇𝐺𝐺) + 𝑃𝑃𝐾𝐾53𝛿𝛿�𝑡𝑡 − (𝑡𝑡5 + 3𝑇𝑇𝐺𝐺)�     (8) 

 

 

Figure 12: Time-domain attribute (a) PDR, (b) Network congestion 

 
Figure 13: Control overheads in the time domain attribute  

Table 4: Time-domain attribute results 

Grooming 
index G 

Packets data values (Kbits) Average 
data rate  𝑃𝑃𝐾𝐾1  𝑃𝑃𝐾𝐾2  𝑃𝑃𝐾𝐾3  𝑃𝑃𝐾𝐾4 

4 (240 sec) 25.45  29.52  40.64 72.75 0.175 Kbps 
8 (480 sec) 85.0  79.3  --- --- 0.164 Kbps 

 
6. Discussion 

Table 5 discusses the impact degree or an improvement gain 
of the two traffic aggregation techniques on the IoT network 
efficiency, compared to the classical smart city network before 
aggregation as: 

6.1. Space domain attribute 

In contrast to the existing aggregation techniques [3-9], it is 
noted that the traffic profile is shaped severely by applying the N 

  

                              (a)                                                      (b) 

  

                              (a)                                                                (b) 

  

                          (a)                                                                  (b) 
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sensor /M node model as shown in Figure 6 as a result of the new 
architecture which in turn has a direct impact on the IoT network 
key performance indicators: 

In the traffic volume, minimizing the number of processing 
to one is verified through the constant average data rate. It can 
maintain the average data rate by about 4Kbps with an increasing 
number of sensors in the Multi-node type as in Figure 7.a. While 
the average data rate is significantly increased by about 4~16 
Kbps with an increasing number of nodes in the single nod type. 
Thus, the traffic data volume of the multi-node type is lower than 
that in the single-node type. 

As listed in table 5, the traffic data volume (average data rate, 
data size) of the fie-node, resulting from the space domain  

attribute is higher than that in the classical smart city 
scenarios (scenario 3 and cloud) before the aggregation process. 
The average data rate increases from 2.01Kbps and 1.6 Kbps in 
the classical 

smart city scenarios (scenario-3 and cloud) to 3.2 ~2.9 Kbps 
and 3.2 ~15.4 Kbps in the multi-node type and single-node type, 
respectively. In the same manner, the amount of data size 
increases from 1934 Kbits and 214 Kbits in the classical smart 
city scenarios into 2285.5~2126.8 Kbits and 2285.5~11125.2 
Kbits in the multi-node type and single-node type, respectively. 

 In the throughput, the impact of node aggregation 
architecture on network performance becomes very clear in 
Figure 7.b that shows a significant impact on throughput as a 
result of aggregating several sensors on the same node. The result 
is attributed to the network metadata added to the traffic header 
on each transmission. In the same case of n-sensors on the same 
node, the broker shall use the header once. As a result, the 
throughput gain per sensor is about 0.2% for 5 sensor case that is 
scaled up to a total 20% throughput improvement for a 100 sensor 
real case aggregated on one broker. Thus, throughput in the multi-
node type is higher than that in the classical smart city scenarios 
by about 20% improvement gain for large scale networks (100-
IoT nodes) as depicted in table 5. However, the single-node type 
is approximately the same as in the classical smart city scenario 
nodes.  

High throughput and constant average data rate in the Multi-
node type reduces network traffic congestion. On contrary, the 
low network congestion in the Single-node type is caused due to 
the low throughput and PDR values as in Figures (7.b, 8.a). 

From the number of sent packets perspectives, the Multi-node 
type maintains the minimum number of packets by about 800 
~1600 packets for a low incremented number of sensors rather 
than the single-node type that has a significantly increasing 
number of sent packets for 5-source nodes by about 3700~13900. 
The number of sent packets is reduced from 2720 packets in the 
classical smart city network (scenario3) to 800~1600 packets in 
the multi-node type with an improvement gain of about 22% as 
depicted in table 5. Otherwise, both single-node type and multi-
node type in the space domain attribute do not affect the number 
of sent packets in the classical cloud scenario.  

From the overheads perspectives, it is remarked that 
overheads in the Multi-node type are lower than that in the Single 
node type as depicted in Figure 9 and Table 5. The control 
overheads in the proposed Multi-node type is reduced from 50 
Kbytes in one-sensor to 27 Kbytes in five-sensors. The overheads 
in the multi-node type are less than that in both scenario 3 and the 
cloud scenario of the classical smart city networks with an 
improvement gain of 300% and 30% compared to scenario 3 and 
the cloud scenario. 

6.2. Time-domain attribute 

Rather than the previous time aggregation techniques [11-13], 
the traffic profile shaping concept is verified and proved in the 
time domain aggregation as shown in Figure 10. As the G number 
of grooming times increased, the collected data information to be 
sent will increase, and vice versa. the traffic profile of 
one/multiple nodes is shaped into a delta function. Its 
mathematical formula in (8) meets a theoretical time-domain 
concept in (3).  

While the previous time aggregation techniques reduce an 
error and the latency [11-13], the main findings in this article are 
to improve the IoT network performance as follows: 

Table 5: The improvement gain of the proposed techniques, compared to the classical system 

Performance metrics in the IoT 
Smart city networks 

IoT Network key performance indicators 
Throughput 

(%) 
Collision 

Probability 
(%) 

Traffic volume  No. of sent 
packets 

Overheads 
(Kbytes)  Average data 

rate (Kbps) 
Data size 
(Kbits) 

 
 

 Proposed  
Techniques 

 
 Space 
domain 
attribute 

Single-
node 
type 

64~65 N/A 3.2 ~15.4 2285.5~11125.2 3700~13900 116~434.75 

Multi-
node 
type 

64~84/ 100-
nodes 

N/A 3.2 ~2.9 2285.5~2126.8 800~1600 50~27 

Time domain 
attribute 

72.8~ 93 95~50 0.175~0.164 168.8~164.5  300~20 9.5~ 0.59  

Classical 
smart city 

Before 
aggregation 

Human safety 
network (scenario3) 

62.65  
 

99.9  
 

2.01 1934 2720  85  

Cloud scenario 64.37  99.5  1.6  214 303   9.3  
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The time-domain attribute reduces the traffic data volume 
whether the average data rate and data size from G=2 to G=8. The 
traffic volume in the time-domain attribute is less than or equal to 
that in the classical smart city scenarios. The time-domain 
attribute reduces the average data rate from 2.01Kpbs in the 
classical smart city scenarios (scenario 3) to 0.175~0.164Kbps. 
Similarly, it reduces the amount of data size from the 1934 Kbits 
and the 214Kbits in the classical smart city (scenario 3 and cloud 
scenario) to 168.8~164.5 Kbits. While the average data rate of the 
time-domain attribute (1.6Kbps) is moderated with that in the 
cloud scenario of the classical smart city. 

The collision probability is reduced from 95% at G=2 to 50 % 
at G=8 for a dense number of nodes (400 nodes) in the non-real-
time IoT applications. For the large scale networks with 400-
nodes, the collision probability is mitigated by about 95~50 % 
with at least 45% improvement gain, compared to that in both 
classical smart city scenarios before aggregation (up to 99%). 
Thus, the proposed time-domain technique enables the dense 
number of nodes in IoT smart city networks to avoid the collision. 

The percentage of the throughput in the time aggregation is 
raised by about 20% gain whereas this approach develops high 
throughput, gained from 72.8% at G=1 to 93% at G=10 as in 
Figure 11.a. It is noted that the throughput of 72.8~93% in the 
time-domain attribute outperforms the throughput of 62.65% and 
64.37% in the classical smart city scenarios with an improvement 
gain of about 30%. 

The number of transmitted packets in the time aggregation is 
reduced from 300 packets at G=1 to 20 packets at G=8. Also, 
throughput in Figure 10.b and PDR in figure 12.a are improved to 
avoid network traffic congestion in this technique. It is remarked 
that the number of sent packets is minimized from 2720 packets 
and 303 packets in both classical smart city scenarios (scenario3 
and cloud) to about 303~20 packets based on G grooming times. 
The overheads are mitigated by a minimization factor of 9 at G =2 
and 15 at G=8, compared to the overheads in scenario-3 and the 
cloud scenario. 

The excess overheads are reduced from 9.5KB at G=1 until 
0.59 KB at G=8 as shown in figure 13. The overheads are 
minimized from 85Kbytes and 9.3Kbytes in scenario 3 and the 
cloud scenarios of the classical IoT smart city to about 
9.5~0.59Kbytes in the time domain attribute with an improvement 
gain that exceeds up to 150% at G=8 than overheads in scenario 
3 and a minimization factor of about 90 at G=2 in the cloud 
scenario. 

7. Future work 

Our practical experiments (testbed lab) are established from 
5-fire sensors, one-smoke-node, and 6-ESP 8266 MCU units as a 
case study in the IoT smart city networks to prove the concept. 
Our experimental setup could be extended to be applied for large-
scale smart city networks and other IoT use cases in the future. 

8. Conclusion 

The two traffic aggregation techniques (space domain and 
time domain) have been proposed in this article to address the 
challenges of IoT traffic characteristics in the smart city networks 
as dense number of nodes, the massive number of transmissions, 

Data volume (light or heavy), and the payload size. Compared to 
the classical smart city networks, the methodology design of the 
proposed work highlights shaping the individual traffic profiles in 
the classical smart city into the traffic aggregation of N source 
sensors/nodes via the space domain attribute and the traffic 
aggregation for G grooming times (delay) via the time-domain 
attribute for IoT traffic data control, thus optimizing the IoT 
network performance in the smart city use case from the five main 
perspectives (traffic volume, throughput, collision probability, 
network congestion, and the control overheads). The practical 
experimental lab model is built as one of several smart city 
networks (scenarios) before and after the proposed aggregation 
techniques to prove the concept.  It is verified that the two 
proposed aggregation techniques have a better improvement gain 
than the existing smart city networks (without aggregation).   

Last but not least, the practical study works focus on the 
smart city models, but the results could be extended to other non-
real-time IoT use cases as smart metering, telemetry, and 
surveillance. 
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