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We introduce a sign algorithm based on the normalised least mean square with Hammerstein
adaptive filtering using adaptive averaging step-size mechanism, which is derived by the
minimised absolute a posteriori squared error. To improve the performance by reducing
computational complexity, we suggest an adaptive averaging using energy of errors to update
step-size variant. The analysis of convergence behaviour and mean square performance are
derived. Experimental results reveal that the proposed algorithm can perform better than the
least mean square approach based on the Hammerstein model of adaptive filtering.

1 Introduction

Advantages of the adaptive linear filters are simply used in vari-
ous applications. However, the linear models underperform when
comparing with the nonlinear models. Over the last few years,
the spline adaptive filter (SAF) structure [1], [2] i.e. Hammerstein
spline filtering [3] in cascade architecture [4] has been applied in
many practical engineering fields as for example. SAFs based on
the set-membership approach [5] and infinite impulse response [6]
have been introduced for using in the impulsive noise environment.

In some particular nonlinear problems, the Hammerstein SAF
(HSAF) [3], the combined Wiener-Hammerstein SAF [1], and cas-
cade SAFs or sandwich SAF models [4] based on the least mean
square (LMS) can operate effectively to identify for nonlinear sys-
tems identifications. It provides a good potential for low cost imple-
mentation in hardware. Based on the normalised version of LMS
(NLMS) on HSAF have been performed in [7]-[10]. In [7], the
authors have pointed out the derivation of HSAF on NLMS. In [8],
the authors have proposed the performance analysis of HSAF based
on the stochastic gradient algorithm. To counteract with impulsive
noises, the sign normalised Hammerstein spline adaptive filtering

has been proposed in [9] and its performance shown in [10].
In order to reduce the computational requirements of NLMS, the

simplifications of NLMS approach in the form of a sign algorithm
has been presented in several applications [11]-[16]. To further di-
minish and protect the impulse noise, the sign normalised SAF [11],
[12] and sign subband adaptive filterings with variable step-size pa-
rameter [13]- [15] have been designed. In [16], the robust shrinkage
normalised version of sign algorithm has been implemented.

Recently, an approach based on the stochastic gradient method
for improving the convergence rate based on SAFs has been estab-
lished in [3], [17]-[19] resulting in the low computation and high
performance. For nonlinear systems, the authors in [17] have pre-
sented NLMS for SAF. In [18], the adaptive step-size mechanism
for SAF has been proposed with the fast convergence and robust-
ness. In [19], the authors have proposed the normalised version
of least mean square algorithm for spline adaptive filtering based
on the adaptive step-size method with the averaging energy on the
previous and present errors and their properties of stability analysis
have been introduced.
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Figure 1: Proposed Adaptive Averaging Step-size Sign Normalised Least Mean Square algorithm for Hammerstein Spline Adaptive Filtering (AAS-SNLMS-HSAF).

In this paper, we propose a statistical behaviour analysis of a
Hammerstein spline adaptive filter based on the sign version of
normalised least mean square algorithm with adaptive averaging
step-size (AAS-SNLMS-HSAF). To enhance the convergence speed
with low computational complexity, the adaptive averaging step-size
algorithm is suggested.

Also, the performance analysis of sign version of NLMS-HSAF
based on adaptive step-size mechanism using averaging energy
of errors are derived. We encounter the relationship between the
step-size parameter and the mean square error from the analysis
that can be examined numerically in the computer simulations for
an example of system identification.

This paper is organised as following. Section 2 clarifies the
HSAF structure based on LMS approach in brief. Section 3 in-
troduces the constraint criterion of the cost function based on the
stochastic gradient descent with the adaptive averaging step-size
mechanism. The energy of errors is exploited to update the vari-
ant of step-size parameter. Section 4 explains how to derive the
convergence analysis of HSAF-based algorithm that consists of the
convergence properties and the mean square behaviour analysis.
Furthermore, the simulation experiment design and experimental
results are detailed in Section 5 and Section 6. Finally, Section 7
discusses and Section 8 concludes the proposed algorithm.

2 Hammerstein Spline Adaptive Filtering

The structure of Hammerstein spline adaptive filtering (HSAF) is
depicted in Figure 1. It consists of a nonlinear model controlled
by adaptive lookup table (LUT) [20] in which the adaptive control
points vector is interpolated by the spline function and adaptive
linear finite impulse response (FIR) filter [7].

The vectors xk and sk at symbol k appear the input and output
vectors of adaptive LUT as

sk = uT
k C qi,k , (1)

uk = [u3
k u2

k uk 1]T , (2)

where C is a spline matrix, qik is the control point vector as
qi,k = [ qi,k qi+1,k qi+2,k qi+3,k ]T . The local parameter uk and
index i can be estimated as [3]

uk =
xk

∆x
−

⌊ xk

∆x

⌋
, (3)

i =

⌊ xk

∆x

⌋
+

Q − 1
2

, (4)

where ∆x is the uniform space between two-adjacent control points,
Q is the number of control points, and operator b·c is floor operator.

We can obtain the minimised cost function based on LMS for
HSAF as

J
(
wk,qik

)
= min

w,q

{1
2

e2
k

}
, (5)

where ek is given as [3]

ek = dk − yk = dk − wT
k−1 sk , (6)

where yk is the HSAF output, dk is the desired signal and wk is the
adaptive FIR coefficient vector.

By using the chain rule, the cost function in (5) is derivative
with respect to (w.r.t.) wk, qi,k. The result is set to zero to find
optimal points. So, the adaptive FIR coefficient vector wk and the
update control points coefficient vector qi,k are demonstrated in the
recursive form as

∴ wk+1 = wk + µw sk ek , (7)

∴ qi,k+1 = qi,k + µq uk CT wk ek , (8)

where µw and µq are the fixed step-size parameters.
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3 Proposed Adaptive Averaging Step-size
Sign Normalised Least Mean Square
Algorithm

We extend the scope of sign algorithm into Hammerstein spline
adaptive filtering (HSAF) based on the normalised version of LMS,
named SNLMS-HSAF derived by minimised absolute a posteriori
error as shown in Figure 1.

The constraints of this optimisation problem are formulated as

min
w
{ e′2k } = { dk − wT

k+1sk }
2 , (9)

subject to

‖wk+1 − wk ‖
2 ≤ ξ2 and ‖qi,k+1 − qi,k ‖

2 ≤ ξ2 , (10)

where e′k is a posteriori error and ξ2 is a small parameter in the
gradual update of coefficient vectors.

From [9], the constrained cost function using Lagrange multi-
plier can be illustrated by

J(wk) = min
w
{ e′2k } +

λ0

uT
k uk
·
[
‖wk+1 − wk‖

2 ≤ ξ2
]
, (11)

where λ0 is the Lagrange multiplier.
Hence, the derivation of J(wk) in (11) w.r.t. wk is set to zero,

−2 sk · sgn{e′k} + 2
λ0

uT
k uk
· ‖wk+1 − wk‖ = 0

Therefore, the adaptive FIR vector wk is recursively formulated
by

wk+1 = wk + µwk

sk · sgn{e′k}

uT
k uk + ε

, (12)

where µwk is an adaptive step-size of wk and sgn{·} is the sign func-
tion. The regularisation parameter ε is a small constant.

Similarly, the constraints of the cost function regarding with qi,k
can be shown as

J(qi,k) = min
q
{ e′2k } +

λ̃0

uT
k uk

·
[
‖qi,k+1 − qi,k‖

2 ≤ ξ2
]
. (13)

Considering the derivation of J(qi,k) in (13) w.r.t. qi,k is equal
to zero, we have

−2 uT
k · C · wk · sgn{e′k} + 2

λ̃0

uT
k uk
· ‖qi,k+1 − qi,k‖ = 0 . (14)

Finally, the updated control points vector qi,k is

qi,k+1 = qi,k + µqk

uT
k · C · wk · sgn{e′k}

uT
k uk + ε

, (15)

where µqk is an adaptive step-size of qi,k and the regularisation
parameter ε is a small constant.

To enhance the performance by reducing computational com-
plexity, we modify an estimation of the energy of errors for updating

average step-size parameter from the present and previous errors of
systems [21].

Since, the adaptive averaging step-size µwk of wk can be imple-
mented following [19]

µwk = γw · µwk−1 + ρw · ζ
2
k , (16)

ζk = σ · ζk−1 + (1 − σ) · e′2k , (17)

where ρw is a scaling variable, σ is close to 1 and 0 < γw < 1.
Therefore, the adaptive step-size µqk of qi,k is determined by

µqk = γq · µqk−1 + ρq · e′2k , (18)

where 0 < γq < 1 and ρq > 0.
The summary of the proposed sign normalised version of least

mean square algorithm using adaptive averaging step-size approach
for HSAF (AAS-SNLMS-HSAF) is presented in Table. 1.

4 Convergence Analysis
In this section, we focus on the derivation and analysis of the re-
lationship between the step-size and the mean square error. These
approaches are to ensure the optimal convergence at the steady-state
condition.

4.1 Convergence Properties

According to enhance the performance of SNLMS-HSAF-based
algorithm, we examine the optimal learning rate of step-size pa-
rameters for adaptive FIR coefficient vector wk and update control
points vector qi,k as follows.

We determine the a posteriori error e′k as

e′k = dk − wT
k+1 · sk . (19)

The desired response dk can be decomposed into the input vector
sk and the residual error is defined as

dk = wT
opt · sk + emin

k , (20)

where wopt ∈ R
N is the optimal Wiener solution vector and emin

k is
the residual error assumed as a Gaussian noise with zero mean and
finite variance.

Substituting (20) into (19), then we can obtain an expression to
estimate error as

e′k = emin
k − ∆wT

k · sk , (21)

where ∆wk ∈ R
N is the difference of the adaptive FIR coefficient

vectors wk defined by

∆wk = wk+1 − wk =
µwk · sk · sgn{e′k}

uT
k uk + ε

. (22)

Substituting (22) into (21) gives

emin
k − e′k = µwk

(sT
k · sk) · sgn{e′k}

uT
k uk + ε

(23)
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By taking the norm of both sides in (23), the adaptive step-size
µwk of adaptive FIR coefficient vector wk can be approximated by

∴ 0 < µwk <
uT

k uk

sT
k sk + ε

. (24)

where |e′k | < |e
min
k |.

Correspondingly, we investigate the convergence properties of
the update control points vector qi,k using Taylor series expansion
of estimated a posteriori error e′k as

e′k+1 = e′k +
∂e′k
∂qk
· ∆qk , (25)

where the difference of update control points vector ∆qk is given by

∆qk = µqk

uT
k · C · wk · sgn{e′k}

uT
k uk + ε

. (26)

Differentiating e′k in (19) w.r.t. qi,k by the chain rule [19], we
can get

∂e′k
∂qk

=
∂

∂qk

(
dk − wT

k+1 · uk · CT · qi,k

)
= −uk · CT · wk+1 . (27)

Substituting (26) and (27) into (25) gives

e′k − e′k+1 =
µqk · (Ψ

T
k · Ψk) · sgn{e′k}

uT
k uk + ε

, (28)

where Ψk is

Ψk = uT
k · C · wk . (29)

Similarly, we take the norm of both sides (28), the adaptive
step-size µqk of update control points coefficient vector qi,k can be
evaluated as

∴ 0 < µqk <
uT

k uk

ΨT
k Ψk + ε

. (30)

where |e′k | > |e
′
k+1|.

4.2 Mean Square Behaviour Analysis

In this section, we investigate the convergence analysis in forms of
the mean square error performance in the steady-state condition.

Remark 1: We assume that the estimated coefficient error vector
Vwk is under the independent and identically distributed condition
with zero mean and finite variance.

We consider following [4] the estimated coefficient error vector
Vwk involved the adaptive FIR vector wk as

Vwk+1 = Vwk −
µwk · sk · sgn{e′k}

uT
k uk + ε

. (31)

Table 1: Proposed adaptive averaging step-size algorithm based on sign normalised
least mean square algorithm for HSAF (AAS-SNLMS-HSAF).

1: ALGORITHM AAS-SNLMS-HSAF ()

2: w(0) = δ · [1 0 . . . 0]T , uk = [u3
k u2

k uk 1]T

xk = [ xk xk−1 . . . xk−K+1 ]

qi,k = [ qi,k qi+1,k qi+2,k qi+3,k ]

3: FOR k = 1 TO K − 1.

4: sk = uT
k C qi,k

5: uk = sk
∆x −

⌊
sk
∆x

⌋
6: i =

⌊
sk
∆x

⌋
+

Q−1
2

7: e′k = dk − yk = dk − wT
k+1 sk

8: µwk = γw · µwk−1 + ρw · ζ
2
k

9: ζk = σ · ζk−1 + (1 − σ) · e′2k
10: µqk = γq · µqk−1 + ρq · e′2k

11: wk+1 = wk + µwk

sk ·sgn{e′k}
uT

k uk+ε

12: qi,k+1 = qi,k + µqk

uT
k ·C·wk ·sgn{e′k}

uT
k uk+ε

13: NEXT k

14: END ALGORITHM

We can also determine the squared coefficient error vector as

‖Vwk+1‖
2 = ‖Vwk‖

2 −
2 Vwkµwk · sk · sgn{e′k}

uT
k uk + ε

+

∥∥∥∥∥∥µwk · sk · sgn{e′k}

uT
k uk + ε

∥∥∥∥∥∥2

.

(32)

Remark 2: We consider the condition, that

E{‖Vwk+1‖
2} ≈ E{‖Vwk‖

2} , k → ∞ .

By using Remark 2, we can rewrite (32) as

2 VT
wk
· sk · sgn{e′k} =

µwk · ‖sk‖
2 · |e′k |

2

uT
k uk + ε

2 εwk · sgn{e′k} =
µwk · ‖sk‖

2 · |e′k |
2

uT
k uk + ε

, (33)

where εwk is denoted by

εwk ≈ VT
wk
· sk . (34)

We proceed the a posteriori error involved with the adaptive
FIR vector wk as

e′k = εwk + Vwk . (35)

By taking the expectation on the left-side of (33) and using (35)
at the steady state condition, we can see that

E{εwk · sgn{e′k}} = E{εwk · sgn{εwk + Vwk }} ≈ E{ε2
wk
} . (36)

www.astesj.com 580

http://www.astesj.com


T. Wiangtong et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 577-586 (2021)

The expectation of the squared a posteriori error is then

E{(e′k)2} ' E{(εwk + Vwk )
2}

= E{ε2
wk

+ ζ2
wk
} . (37)

where ζ2
wk

is given by

ζ2
wk

= 2εwk · Vwk + V2
wk
. (38)

Substituting (36) and (37) into (33), we then obtain

2 E{ε2
wk
} =

µwk · ‖sk‖
2 · E{ε2

wk
+ ζ2

wk
}

uT
k uk + ε

E{ε2
wk
} =

µwk · ‖sk‖
2 · E{ζ2

wk
}

2uT
k uk + ε − µwk · ‖sk‖

2
(39)

where µwk � 1 is assumed.
Therefore, the excess mean square error (MSE) ξw

ex involved
with the adaptive FIR vector wk can be given by

∴ ξw
ex = E{ε2

wk
} =

µwk · ‖sk‖
2 · E{ζ2

wk
}

2uT
k uk + ε

. (40)

Please note that (40), an approximation of (39), is valid only for
small step-size parameter.

In a similar way, we consider the estimated coefficient error
vector Vqk concerned with the update control points vector qi,k as

Vqk = qi,k − qopt , (41)

where qopt ∈ R
N is the optimal control points vector and Vqk ∈ R

N .
We can then rewrite the update control points vector qi,k in (15)

by using the coefficient error vector Vqk as follows.

Vq,k+1 = Vq,k −
µqk · uT

k · C · wk · sgn{e′k}

uT
k uk + ε

. (42)

The square of coefficient error vector in (42) is computed as

‖Vq,k+1‖
2 = ‖Vq,k‖

2 −
2 · Vq,k · µqk · uT

k · C · wk · sgn{e′k}

uT
k uk + ε

+

∥∥∥∥∥µqk · uT
k · C · wk · sgn{e′k}

uT
k uk + ε

∥∥∥∥∥2
. (43)

Remark 3: We assume the condition, that is of

E‖Vqk+1‖
2 ≈ E‖Vqk‖

2 , k → ∞ .

We can get and rewrite (43) using Remark 1 as

2 · εqk · sgn{e′k} =
µqk · ‖Ψk‖

2 · |e′k |
2

uT
k uk + ε

, (44)

where εqk is given by

εqk ≈ VT
qk
· Ψk . (45)

where Ψk is defined in (29).
We calculate the a posteriori error with the updated control

points vector qi,k as

e′k = εqk + Vqk . (46)

After taking the expectation on the left-side of (44) and using
(46), we get

E{εqk · sgn{e′k}} = E{εqk · sgn{εqk + Vqk }}

≈ E{ε2
qk
} . (47)

We determine the square a posteriori error and take the expecta-
tion as

E{e′k} ' E{(εqk + Vqk )
2}

= E{ε2
qk
} + E{ζ2

qk
} , (48)

where ζ2
qk

is given by

ζ2
qk

= 2εqk · Vqk + V2
qk
. (49)

Substituting (47) and (48) into (44) gives us

2 · E{ε2
qk
} =

µqk · ‖Ψk‖
2 ·

[
E{ε2

qk
} + E{ζ2

qk
}
]

uT
k uk + ε

E{ε2
qk
} =

µqk · ‖Ψk‖
2 ·

[
E{ζ2

qk
}
]

(2uT
k uk + ε) − µqk · ‖Ψk‖

2
, (50)

where µqk � 1 is assumed.
Therefore, the excess MSE ξ

q
ex with the update control points

coefficient vector qi,k can be expressed by

∴ ξq
ex ' E{ε2

qk
} =

µqk · ‖Ψk‖
2 ·

[
E{ζ2

qk
}
]

2uT
k uk + ε

. (51)

Notice that (51) is an approximation of (50) is only applicable for
small values of the step-size parameter.

5 Simulation Experiment Design
In this section, the experiments are conducted with the system iden-
tification through computer simulations to verify the proposed non-
linear adaptive filtering. Flow chart of the proposed AAS-SNLMS
for HSAF is shown in Figure 2.

The input color signal xk composes of 10,000 samples by aver-
aging over 100 Monte Carlo trials can be generated by the following
equation as [3]

xk = ω · xk−1 +
√

1 − ω2 ϕ , (52)

where ϕ is a unitary variance of zero mean white Gaussian noise and
ω is a parameter to determine the correlation level between adjacent
samples [2], where 0 ≤ ω < 1.

In these experiments, we set ω = 0.15, 0.75 and signal to noise
ratio (SNR) is of 20, 25, 30dB. As shown in [3], simulation parame-
ters are comprised of

w0 = [0.6, −0.4, 0.25, −0.15, 0.1, −0.05, 0.001] .
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The target function of nonlinear memoryless determined by a
23-point LUT of update control points vector q0 is interpolated by
a uniform third degree spline function using an interval sampling
∆x = 0.2 [3]

q0 = {−2.20,−2.00,−1.80,−1.60,−1.40,−1.20,−1.00,−0.80,
− 0.91,−0.40,−0.20, 0.05, 0.0,−0.40, 0.58, 1.00, 1.00,

1.20, 1.40, 1.60, 1.80, 2.00, 2.20} .

The constant matrix C is called a Catmul-Rom spline matrix as
given by [5]

C =
1
2


−1 3 −3 1

2 −5 4 −1
−1 0 1 0

0 2 0 0

 .
For HSAF models, the initial parameters are in the follow-

ing terms: δ = 0.001, number of tap length M = 7, number
of control points Q = 23, µw = 1.15 × 10−3, 4.25 × 10−3, and
µq = 1.15 × 10−3, 2.55 × 10−3.

Other initial parameters of the proposed adaptive averaging
step-size sign normalised least mean square algorithm based on
the Hammerstein spline adaptive filtering (AAS-SNLMS-HSAF)
consists of µw(0) = 7.5 × 10−4, 7.5 × 10−3, 7.5 × 10−2 and µq(0) =

5.5 × 10−4, 5.5 × 10−3, 5.5 × 10−2. And the fixed parameter for
adaptive averaging step-size approach of the adaptive FIR vector wk

and the update control points qi,k are set as: γw = 0.97, γq = 0.975,
σ = 0.975, ρw = 2.75 × 10−3, ρq = 2.95 × 10−3, and ε = 1 × 10−6.

6 Experimental Results

The first experiment is carried out to show the effectiveness of the
proposed AAS-SLMS algorithm for HSAF performs against the
white Gaussian noise. In particular, the mean square error (MSE)
of HSAF-based algorithm with the different of ω = 0.15, 0.75 with
S NR = 25, 30dB presented in Figures 3 and 4 that manifests the
proposed AAS-SNLMS-HSAF and the conventional least mean
square algorithm based on Hammerstein spline adaptive filtering
(LMS-HSAF) [3] with the two different choices of ω given in (52).
It shows that the MSE directions of the proposed AAS-SNLMS-
HSAF algorithm can achieve faster convergence rate compared with
to the LMS-HSAF algorithm at the steady state condition.

In addition, Figure 5 shows the trajectories of µwk of tap-
weight vector wk at different initial value of step-size as µw(0) =

1.75× 10−2, 1.75× 10−3, 1.75× 10−4 at ω = 0.75 with S NR = 20dB.
Figure 6 conducts the step-size curves µqk of control point qi,k at dif-
ferent initial step-size µq(0) = 1.55 × 10−2, 1.55 × 10−3, 1.55 × 10−4

at the same environment.
Figure 7 depicts the trajectories of µwk of tap-weight vector wk

at different initial value of step-size as µw(0) = 7.5 × 10−2, 7.5 ×
10−3, 7.5 × 10−4 at ω = 0.75 with S NR = 25dB. Figure 8 shows the
step-size curves µqk of control point qi,k at different initial step-size
µq(0) = 5.5 × 10−2, 5.5 × 10−3, 5.5 × 10−4 at the same environment.

Figure 2: Flow chart of proposed AAS-SNLMS-HSAF algorithm

Figure 9 presents the trajectories of µwk of tap-weight vector wk

at different initial value of step-size as µw(0) = 1.75 × 10−2, 1.75 ×
10−3, 1.75 × 10−4 at ω = 0.75 with S NR = 30dB.

Figure 10 shows the step-size curves µqk of control point qi,k at
different initial step-size µq(0) = 1.55×10−2, 1.55×10−3, 1.55×10−4

in the same environment.
Considering the learning rate of the proposed step-size mech-

anism in terms of both the adaptive step-size parameter µwk of wk

and the adaptive step-size µqk of qi,k with different SNR values, they
can quickly converge to steady-state conditions compared with the
fixed step-size.
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Figure 3: MSE of proposed AAS-SNLMS-HSAF with the different initial step-
size of µw(0), µq(0) and LMS-HSAF [3] with the fixed step-size µw and µq, when
ω = 0.15, 0.75 and SNR = 25dB.

Figure 4: MSE of proposed AAS-SNLMS-HSAF with the different initial step-
size of µw(0), µq(0) and LMS-HSAF [3] with the fixed step-size µw and µq, when
ω = 0.15, 0.75 and SNR = 30dB.

In the second experiment, the electrocardiogram (ECG) [22]
from the MIT-BIH Atrial Fibrillation Database [23], [24] is used as
a real biomedical input signal, shown in Figure 11. ECG is sampled
at 250Hz. Figure 12 shows the proposed AAS-SNLMS-HSAF and
LMS-HSAF [3] using the ECG dataset with the different ω can
achieve better convergence rate compared with the LMS-HSAF
algorithm, even the ECG input signal is small.

Figure 13 demonstrates the trajectories of µwk of coefficient vec-
tor wk at different ω = 0.15, 0.75 and the initial value of step-size
µw(0) = 1.75 × 10−3 and µq(0) = 1.55 × 10−3 with S NR = 25dB
using the ECG dataset at [24]. Figure 14 presents the the learning
curves of µqk of control point qi,k at the same environment. It reveals

Figure 5: Trajectories of step-size µwk of coefficient vector wk with the different
initial step-size parameters µw(0), when ω = 0.75 and SNR = 20dB.

Figure 6: Trajectories of step-size µqk of control points coefficient vector qi,k with
the different initial step-size µq(0), when ω = 0.75 and SNR = 20dB.

that the proposed adaptive step-size algorithms for both µwk and µqk

can converge to equilibrium points using the real ECG dataset.

7 Discussion
The comparison over 100 Monte Carlo trials shows the robustness
and superiority of the proposed AAS-SNLMS algorithm over the
conventional LMS algorithm for HSAF model. The learning curves
of adaptive step-size µwk and µgk of the proposed AAS-SNLMS
algorithm after 10,000 iterations can expedite the convergence rate
even the initial values are varied.
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Figure 7: Trajectories of step-size µwk of coefficient vector wk with the different
initial step-size µw(0), when ω = 0.75 and SNR = 25dB.

Figure 8: Trajectories of step-size µqk of control points coefficient vector qi,k with
the different initial step-size µq(0), when ω = 0.75 and SNR = 25dB.

8 Conclusion

This paper presents a sign algorithm based on the normalised least
mean square with Hammerstein adaptive filtering by applying an
adaptive averaging step-size scheme. The proposed algorithm is
developed using the minimised absolute a posteriori squared error.
We modify an adaptive averaging step-size mechanism by using the
energy of the estimated a posteriori error to update the step-size
variant.

Furthermore, we derive the behaviour and mean square perfor-
mance analysis of a sign algorithm based on the normalised version
of least mean square algorithm for Hammerstein spline adaptive

Figure 9: Trajectories of step-size µwk of coefficient vector wk with the different
initial step-size µw(0), when ω = 0.75 and SNR = 30dB.

Figure 10: Trajectories of step-size µqk of control points coefficient vector qi,k with
the different initial step-size µq(0), when ω = 0.75 and SNR = 30dB.

filtering with the adaptive averaging step-size algorithm. That leads
to discover the relationship between the step-size parameter and the
mean square error from the analysis. Experimental results clearly
show that the proposed algorithm outperforms the conventional least
mean square based on the Hammerstein adaptive filter approach.

Hammerstein models are being particularly interested in fields
of engineering such as adaptive signal processing, biomedical engi-
neering and data analysis in the nonlinear processes.
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Figure 11: Electrocardiogram (ECG) input signal from MIT-BIH Atrial Fibrillation
Database at [24].

Figure 12: MSE of proposed AAS-SNLMS-HSAF and LMS-HSAF [3] using ECG
input signal, when ω = 0.15, 0.75 and SNR = 25dB.
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