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 Modulation type classification is a part of waveform estimation required to employ 
spectrum sharing scenarios like dynamic spectrum access that allow more efficient 
spectrum utilization. In this work multiple classification features, feature extraction, and 
classification algorithms for modulation type classification have been studied and 
compared in terms of classification speed and accuracy to suggest the optimal algorithm 
for deployment on our target application hardware. The training and validation of the 
machine learning classifiers have been performed using artificial data. The possibility to 
use instantaneous values of the time domain signal has shown acceptable performance for 
the binary classification between BPSK and 2FSK: Both ensemble boosted trees with 30 
decision trees learners trained using AdaBoost sampling and fine decision trees have shown 
optimal performance in terms of both an average classification accuracy (86.3 % and 
86.0 %) and classification speed (120 0000 objects per second)  for additive white gaussian 
noise (AWGN) channel with signal-to-noise ratio (SNR) ranging between 1 and 30 dB. 
However, for the classification between five modulation classes demonstrated average 
classification accuracy has reached only 78.1 % in validation. Statistical features: Mean, 
Standard Deviation, Kurtosis, Skewness, Median Absolute Deviation, Root-Mean-Square 
level, Zero Crossing Rate, Interquartile  Range and 75th Percentile derived from the wavelet 
transform of the received signal observed during 100 and 500 microseconds were studied 
using fractional factorial design to determine the features with the highest effect on the 
response variables: classification accuracy and speed for the additive white gaussian noise 
and Rician line of sight multipath channel. The highest classification speed of 170 000 
objects/second and 100 % classification accuracy has been demonstrated by fine decision 
trees using as an input Kurtosis derived from the wavelet coefficients derived from signal 
observed during 100 microseconds for AWGN channel. For the line of sight fading Rician 
channel with AWGN demonstrated classification speed is slower 130 000 objects/s.  
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1. Introduction  

This paper is an extension of the work “Multiple Machine 
Learning Algorithms Comparison for Modulation Type 
Classification for Efficient Cognitive Radio” originally presented 
in Milcom 2019 [1].  

The global market of mobile devices and services actively using 
the electromagnetic spectrum is continuously growing. 

Traditionally the electromagnetic spectrum utilization has been 
performed using a robust static approach developed almost a 
century ago: it rations access to the spectrum in exchange for the 
guarantee of interference-free communication spectrum is divided 
into the rigid, exclusively licensed bands, allocated over large, 
geographically defined regions. In conditions when some of these 
license bands are being nearly unused, while the others are 
overwhelmed, the problem of spectrum scarcity arises [2]. To 
cope with the increasingly populated spectrum, the 
electromagnetic spectrum utilization policies have been reformed 
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in recent years with the objective to allow the unlicensed 
secondary users to access licensed bands without causing 
interference to the licensed primary users [3].  

Blind waveform estimation techniques can be used with an 
intelligent transceiver, yielding an increase in the transmission 
efficiency by reducing the overhead. Waveform information is 
critical to implement spectrum sharing scenarios like frequency 
hopping spread spectrum (FHSS) and dynamic spectrum access 
(DSA). Modulation type classification is a part of the waveform 
estimation together with the central frequency and symbol rate 
estimation. Multiple artificial intelligence algorithms have been 
successfully applied to solve the modulation classification 
problems. The availability of abundant data, breakthroughs of 
algorithms, and the advancements in hardware development 
during recent years have been driving forward vibrant 
development of deep learning [4]. Modulation classification using 
convolutional NN has been presented in [5] and [6]. Mathworks 
deployed a hands-on practical implementation of deep learning-
based modulation classification in [7]. In [8], the authors have 
demonstrated successful launch of the optimized AlexNet on 
ZYNQ7045 FPGA: the inference execution times of CNNs in low 
density FPGAs has been improved using fixed-point arithmetic, 
zero-skipping and weight pruning. However, in this work the 
choice has been made to use less computationally demanding 
supervised ML algorithms. Conventional artificial intelligence 
(AI) algorithms like machine learning (ML) require preprocessing 
of the input signal and feature extraction. Received signal features 
used for the modulation classification could be classified into 
spectral-based and cyclostationary features. The spectral-based 
features exploit the unique spectral characters of different signal 
modulations in three physical aspects of the signal: the amplitude, 
phase, and frequency. The authors have summarized some of the 
well-recognized spectral features designed for modulation 
classification including the following and suggested a decision 
tree classification [9]. The authors have applied instantaneous 
amplitude, instantaneous phase, and spectrum symmetry together 
with the set of new features from both spectral and time domain 
including linear predictive coefficients, adaptive component 
weighting, zero-crossing ratio, linear frequency bank spectral 
coefficient for the classification of commonly used digital 
modulations including ASK, FSK, MSK, BPSK, QPSK, PSK, 
FSK4 and QAM-16 [10]. Gardner pioneered the area of 
cyclostationary signal analysis [11]. Gardner and Spooner first 
implemented cyclostationary analysis for modulation 
classification problems in [12]. 

 
 

 
 
 

Figure 1: Optimizing sensing and transmission times. 
The aim of this work is to determine the optimal modulation 

classification algorithm and suggest the subset of the strongest 
and robust features derived from the received signal that could be 
used to blindly classify the modulation type in our hardware 
application: a software-defined radio-based network consisting of 
multiple digital cognitive radio nodes. SDR-based nodes are 
operating in the frequency band from 70 MHz to 6 GHz with up 

to 56 MHz of instantaneous bandwidth are used as the hardware 
platform for the cognitive functionality deployment with FHSS 
capabilities. Available computational resources are Dual-core 
ARM Cortex A9 CPU, 2x512 MB of DDR3L RAM, and 512 MB 
of QSPI flash memory. The operation system is Embedded Linux. 
The radio part is based on Analog Devices AD9364 radio 
transceiver and Xilinx' Zynq-7020 FPGA. It is supporting 
multiple digital modulations including both linear: QPSK, BPSK, 
8PSK, 16PSK, and non-linear: 2FSK. Symbol rate could be also 
adjusted between 10 KSymbols/s and 1 MSymbol/s to generate 
the cognitive waveform. Our target application predefines most of 
the boundary conditions and operational requirements such as 
required decision-making speed and computational resources 
available. In this work time required for radio scene analysis 
tAnalysis is defined as a sum of time required for radio scene 
observation tObservation and processing tProcessing for the received 
signal on the receiver front end. Time allocated for the active data 
transmission is data transmission time, tTransmission and total time is 
the sum of observation and transmission time as illustrated by 
Figure 8. Allocating the sensing time and transmission time at the 
MAC layer is involving a tradeoff between ensuring the PUs 
user’s QoS requirements as opposed to maximizing the data 
throughput. To meet real-time operation requirements on the 
target hardware the following real-time performance 
characteristics must be met by the proposed algorithms. The 
maximum time available for radio-scene environment observation 
is tobservation=500×10-6 seconds. Our application is a time-slotted 
communication system, where 500 microseconds corresponds to 
one-time slot, also maximum processing time has been selected 
likewise tprocessing=500×10-6 seconds, which requires the minimum 
classification speed of 2000 objects per second. Modulation 
classification is required to be performed for SNR values above 
the demodulation threshold of 12 dB, which corresponds to bit-
error-rate BER=10-8 and BER=3.4×10-5 for BPSK and 2FSK, 
respectively. 

The frequency of the radio scene environment sensing (how 
often sensing should be performed by the cognitive radio) and 
sensing time (the duration the sensing is performed) are key 
parameters affecting the throughput. While higher sensing times 
ensure more accurate radio scene environment sensing, this may 
result in a comparatively smaller duration for actual data 
transmission during the total time for which the spectrum may be 
used, thereby lowering the throughput [13]. To achieve the 
optimum between sensing time and throughput, for example, in 
IEEE 802.22 two-stage sensing (TSS) mechanism is implemented 
that includes: fast sensing, done at the rate of 1 ms/channel, and 
fine sensing performed on-demand. In this work, we have 
evaluated the possibility to perform the classification based on 
instantaneous values to shorten the spectrum sensing time and 
reduce computational costs. To improve classification accuracy, 
classification based on spectral-based statistical features derived 
from the wavelet transform of the received signal observed during 
the certain observation time frame has been proposed. In this 
study observation times of 100 and 500 microseconds have been 
used. The lowest observation time has been selected 100 
microseconds to accommodate the lowest symbol rate of 10 
KSymbols/second supported in our target application for 
cognitive waveform generation. 
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Figure 2:  Modulation classification using a) instantaneous values of the time domain signal input; b) time series statistics input. 

 

 
Figure 3: Constellation plots for studies modulation classes BPSK, 2FSK, QPSK, 8PSK, 16PSK. 

 
Figure 4: Scalograms obtained from Haar transform. wavelet coefficients for BPSK, 2FSK, QPSK, 8PSK, 16PSK. Observation time 500 microseconds signal. 
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The highest: 500 microseconds that correspond to one time 
slot in our time-slotted target application. Wavelet transform has 
been used in this work for the feature extraction, since obtained 
wavelet coefficients could be reused also to detect the vacant 
frequency channels and estimate the symbol rate, what could 
potentially save time and computational resources spent on radio 
scene analysis.  Cyclostationary based algorithms have also been 
named in the literature as a powerful algorithm for modulation 
type and symbol rate estimation and vacant frequency channels 
detection. However, they are prone to cyclostationary noise and 
require longer observation time and is relatively computationally 
complex [14], and therefore this work has been focused on 
wavelet-based algorithms. Multiple supervised machine learning 
classifiers have been tested to perform classification based on 
instantaneous values and time-series statistics. The performance 
of tested classifiers has been evaluated in terms of classification 
accuracy and speed. 

2. Methodology 

Both feature extraction and classification algorithms applied 
in the literature to solve the modulation classification problem has 
been studied and evaluated. Primary, modulation type 
classification has been performed based on the input values of the 
instantaneous values of the in-phase and quadrature components 
of the time domain digital signal. Classification results have been 
satisfactory for the case of the binary classification between 2FSK 
and BPSK modulations. However, once the classification task has 
been extended to the higher-order modulations, the suggested 
classification approach has shown unacceptably low classification 
accuracy of 78.1 %. The highest classification accuracy of 84.9 % 
has been observed in the validation phase for classifying five 
modulations into two classes: linear and non-linear modulations 
using a fine SVM classifier.  

Therefore, to improve the classification accuracy for higher-
order modulations we have looked at multiple statistical features 
extracted from the time series containing the received signal 
observed during observation times of 100 and 500 microseconds. 
The following criteria have been considered when selecting 
classification features and feature extraction algorithm:  

1. Robustness to noise; 2. Computational complexity; 3. Possibility 
to reuse preprocessed data for solving other radio scene 
environments observation tasks such as vacant bands detection and 
symbol rate estimation. Nine spectral-based statistical features 
derived from Haar wavelet transform coefficients calculated from 
the frequency domain signal observed during the selected 
observation time. The Haar transform has been selected as the 
simplest and less computationally demanding of all wavelet 
families. From the vector of wavelet coefficients, nine statistical 
features have been derived. To determine the strongest features to 
be used as inputs to ML classifier fractional factorial design 
analysis has been performed.  

In statistics, a full factorial experiment is an experiment whose 
design consists of two or more factors, each with discrete possible 
values or "levels", and whose experimental units take on all 
possible combinations of these levels across all studied factors.  
Fractional factorial designs are experimental designs consisting of 
a carefully chosen subset or fraction of the experimental runs of a 
full factorial design. Significance is quantitively measured and 
referred to as the main effect [15]. A fractional factorial design 
approach has been used to analyze the main effects of every of nine 
statistical features and observation time on two studied response 
parameters: classification speed and accuracy in conditions of 
noise represented by two levels: AWGN and AWGN and 
multipath Rician channel model. Two levels have been applied and 
studied: first-level “-1” corresponds to not including the 
classification feature into classification and second level “+1” 
corresponds to including the studied feature into classification 
input. Observation time has also been varied according to two 
levels: first “-1“corresponds to 100 microseconds and the second 
level “+1” corresponds to 500 microseconds observation time. 
MATLAB and Simulink environment has been used for training 
and validation data sets generation including the modulator and 
propagation channel models, MathWorks classification learner 
ML Classification Learner tool has been used to train and validate 
classifiers. Twenty-four supervised ML classification algorithms 
have been studied and evaluated in terms of classification accuracy 
and classification speed for two studied channel models: AWGN 
and Rician multipath channels with AWGN. 

3. Input data and feature extraction 

To suggest optimal feature extraction and classification 
algorithms for our target radio application seven artificial data sets, 
consisting of signal samples modulated into 2FSK, BPSK, QPSK, 
8PSK, 16PSK have been generated. Data sets are described in 
detail in Section 4. Figure 3 presents the constellation plots of five 
studied modulation types.   

3.1. Classification using instantaneous values 

The classification performed using instantaneous values of the 
time domain signal and SNR as classification inputs does not 
require any feature extraction: the raw values of the in-phase and 
quadrature component and SNR (recorded by transceiver as RSSI)  
have been used directly as an input to the classifier.  

  
Figure 5: Generalized model used for data set generation. 

Table 1: Spectral-based features derived from time series used for modulation type classification 

 N Feature Factor Description 

1 Mean  A Mean value of the wavelet coefficients obtained from single-level discrete wavelet transform of the frequency 
domain signal.  

2 Standard Deviation  B Standard deviation of the wavelet coefficients obtained from single-level discrete wavelet transform of the frequency 
domain signal. 

Bernoulli 
Random 
Signal 
Generator 

Modulator:  
   -BPSK 
   -2FSK 
   -QPSK 
   -8PSK 
   -16PSK 

AD 
9364 

Tx 

Propagation 
Channel:   
   - AWGN 
   -Rician+AWGN 
   

AD 
9364 

Rx 
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Table 2: Classifiers performance reached in validation. Classification between FSK and BPSK modulations. AWGN channel (SNR ranging from 1 to30 dB). Data set 1 

Classifier With PCA   
(1 feature of 3) 

No PCA  
 (3 features of 3) 

No PCA   
(2 features of 3, No SNR)  

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, % 

Prediction 
speed, 

Objects/s 
Decision Trees: Fine 52.1 1600 000 86.0 1 200 000 84.2 2 000 000 
Decision Trees: Medium 51.3 1200 000 85.2 1 000 000 83.3 2 100 000 
Decision Trees: Coarse  50.7 1300 000 82.2 2 300 000 82.1 2 100 000 
KNN: Fine  55.5 770 000 82.3 310 000 78.9 300 000 
KNN: Medium  57.9 220 000 86.1 110 000 84.6 110 000 
KNN: Coarse  61.5 55 000 86.8 28 000 85.5 27 000 
KNN: Cosine  50.0 300 83.7 290 78.1 320 
KNN: Cubic  57.9 150 000 86.1 29 000 84.6 46 000 
KNN: Weighted  56.0 220 000 84.2 130 000 82.0 120 000 
SVM: linear  50.1 47 000 55.3 3000 63.8 120 000 
SVM: Quadratic 50.0 70 000 54.7 2300 42.8 92 000 
SVM: Cubic 50.0 160 000 58.8 34 000 62.8 40 000 
SVM: Fine  Gaussian 49.5 230 86.9 790 85.4 970 
SVM: Medium  Gaussian 49.8 190 86.5 610 84.3 750 
SVM: Coarse  Gaussian 49.8 240 49.8 240 81.4 600 
Ensemble Boosted Trees 51.3 110 000 86.3 120 000 85.0 120 000 
Ensemble Bagged Trees 55.5 19 000 85.4 44 000 83.1 33 000 
Ensemble Subspace Discriminant 49.8 100 000 50.3 86 000 50.5 120 000 
Ensemble Subspace KNN 55.5 34 000 80.5 6100 69.5 17 000 
Ensemble RUS Boosted Trees 51.3 120 000 85.1 150 000 83.3 130 000 
Logistic Regression 49.8 1600 000 50.9 1 200 000 50.5 3 200 000 
Linear Discriminant 49.8 1200 000 50.3 1 900 000 50.5 1 300000 

 

3.2. Classification using time-series statistics. 

Nine spectral-based statistical features have been derived from 
the received signal observed during the observation time.  Primary 
fast Fourier transform has been applied to switch to the frequency 
domain. Then discrete wavelet transform has been applied to the 
frequency domain signal using Haar wavelet. This transform cross-
multiplies a function against the Haar wavelet with various shifts 
and stretches. Figure 4 presents scalograms plots for studied 
modulations obtained by Haar wavelet transform. Then from the 

derived wavelet coefficients, nine spectral-based statistical 
features summarized in Table 1 have been calculated. 

4. Data set 

Seven data sets used for training and validation have been 
generated and are described briefly below. Three labeled artificial 
data sets consisting of three features:  instantaneous values of in-
phase and quadrature components of the time domain signal and 
SNR and four data sets consisting of nine statistical features 
extracted from time-series recorded during 100 and 500 

3 Kurtosis  C 
Kurtosis is a statistical measure that defines how heavily the tails of a distribution differ from the tails of a normal 
distribution calculated from the wavelet coefficients obtained from single-level discrete wavelet transform of the 
frequency domain signal [16]. 

4 Skewness  D 
Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its 
mean. Calculated from the wavelet coefficients obtained from single-level discrete wavelet transform of the 
frequency domain signal [16]. 

5 Median absolute 
deviation  E 

It is a measure of the statistical dispersion:  a robust measure of the variability of a univariate sample of quantitative 
data. It is more resilient to outliers in a data set than the standard deviation.  It is calculated from the wavelet 
coefficients obtained from single-level discrete wavelet transform of the frequency domain signal [17].  

6 Root-mean-square 
level  F The RMS value of a set of values (or a continuous-time waveform) is the square root of the arithmetic mean of the 

squares of the values, or the square of the function that defines the continuous waveform [18]. 

7 Zero crossing rate  G It is the rate of sign-changes along a signal: the rate at which the signal changes from positive to zero to negative or 
from negative to zero to positive [19]. 

8 Interquartile range  H The interquartile range (IQR) is a measure of variability: calculated based on dividing a data set into quartiles [20]. 

9 75th Percentile   I The percentile rank of a score is the percentage of scores in its frequency distribution that are equal to or lower than 
it [21]. 

10 SNR  J Signal-to-Noise ratio corresponds to RSSI value for the received signal measured by transceiver. 
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microseconds and SNR for two channel models: AWGN and 
Rician channel with AWGN. Figure 5 describes the generalized 
model used to generate data sets. 

Data Set 1: Binary classification between BPSK and 2FSK 
using instantaneous values. Data set for training and validation 
has been generated using a virtual model presented in Figure 5.  
The random input signal has been generated by Bernoulli binary 
random signal generator and modulated into BPSK or FSK. The 
modulated signal is transmitted by transmitter AD9364 TX. 
AWGN channel model has been selected to emulate the 
propagation environment, where SNR ranges from 30 to 1 dB.  
Data set consisting of 408000 rows and 4 columns, where two first 
columns correspond to the instantaneous values of the signal in 
the time domain: in-phase and quadrature components, the third 
column corresponds to SNR value and the fourth column 
represents the data label. 80 % of the data set has been used for 
training the classifiers and 20 % has been used for validation. 

Data Set 2:  Classification of BPSK, 2FSK, QPSK, 8PSK, 
16PSK into two classes linear and nonlinear using instantaneous 
values. Data set of total size 910000 rows by 4 columns consisting 
of BPSK, 2FSK, QPSK, 8PSK, 16PSK has been generated in a 
similar way as Data Set 1: two first columns are corresponding to 
the instantaneous values of the signal in the time domain: in-phase 
and quadrature components, the third column corresponding to 
SNR value and the fourth column represents the data label 
corresponding to two classes: linear or non-linear modulation. 
Also, 80 % of the generated data set has been used for training the 
classifiers and 20 % of the generated data set has been used for 
validation of the classifiers. 

Data Set 3:  Classification of BPSK, 2FSK, QPSK, 8PSK, 16PSK 
into five classes using instantaneous values. Data set 3 consisting 
of five modulations described above has been used to train 
classifiers to classify all five modulation types. In this data set only 
the fourth column corresponding to the label has been changed to 
accommodate five output classes. Also, 80 % of the data set has 
been used for training of the classifiers and 20% for validation. 
Table 3: Classifiers performance reached in validation. Classification between 
linear and non-linear modulations.  Non-Linear: FSK, linear:  BPSK, QPS, 8PSK, 
16PSK modulations. AWGN channel (SNR ranging from 1 to 30dB). Data set 2. 

Classifier  Average 
Accuracy, 
(%) 

Prediction 
speed, 
(Objects/s) 

Decision Trees: Fine 80.5 1 200 000 
Optimized Trees  83.0 3 400 000 
KNN: Fine  77.1 310 000 
KNN: Medium  82.6 110 000 
SVM: Fine Gaussian 84.9 790 
Ensemble Boosted Trees 80.9 120 000 
Ensemble Bagged Trees 81.8 44 000 
Ensemble Subspace KNN 80.5 6100 
Ensemble RUS Boosted Trees 78.1 150 000 

 

Data Set 4: Classification of BPSK, 2FSK, QPSK, 8PSK, 
16PSK into five classes using statistical features derived from time 
series observed during 500 microseconds for AWGN channel.  

Data set 4 consists of 1500 samples (300 signal samples for 
every modulation type) resulting in a matrix of 1500 rows by 11 
columns where the first nine columns correspond to statistical 
features column 10 corresponds to SNR and the last column 
corresponds to data class label.   Statistical features for every signal 
sample have been derived from the received signal observed 
during 500 microseconds in conditions of the AWGN propagation 
channel (SNR ranging from 1 dB to 30 dB). Also, 80 % of the data 
set has been used for training, and 20 % for validation. 

Data Set 5: Classification of BPSK, 2FSK, QPSK, 8PSK, 
16PSK into five classes using statistical features derived from time 
series observed during 100 microseconds. AWGN channel. Data 
set 5 consisting of 1500 samples (300 signal samples for every 
modulation type) resulting in a matrix of 1500 rows by 11 columns 
where the first nine columns correspond to statistical features, 
column 10 corresponds to SNR and the last column corresponds to 
data class label.  Statistical features for every signal sample have 
been derived from the received signal observed during 100 
microseconds in conditions of AWGN propagation channel with  

SNR ranging from 1 to 30 dB. Also, 80% of the data set has been 
used for training, and 20% for validation. 

Data Set 6: Classification of BPSK, 2FSK, QPSK, 8PSK, 16PSK 
into five classes using statistical features derived from the received 
signal observed during 500 microseconds for Rician multipath 
channel. Data set 6 consisting of 1500 samples (300 signal samples 
for every modulation type) resulting in a matrix 1500 rows by 11 
columns where the first nine columns correspond to statistical 
features, column 10 corresponds to SNR and the last column 
corresponds to data class label.  Statistical features have been 
derived from time-domain signal observed during 500 
microseconds in conditions of Rician multipath line-of-sight 
fading channel model with AWGN (SNR = 30). Three fading paths 
have been chosen with path delays selected for outdoor 
environments 0; 9×10-5 and 1.7×10-5. Path delay ranging 10-5 is 
suggested for the mountains area. Average path gains have been 
chosen [0 -2 -10]. The Rician K-factor has been selected K-factor 
= 4, it specifies the ratio of specular-to-diffuse power for a direct 
line-of-sight path, it is usually in the range [1, 10] and 0 
corresponds to Rayleigh fading. Maximum Doppler shift has been 
chosen 4 dB, which corresponds to a signal from a moving 
pedestrian [22]. Also, 80% of the data set has been used for training 
the classifiers and 20 % for validation. 

Data Set 7: Classification of BPSK, 2FSK, QPSK, 8PSK, 
16PSK into five classes using statistical features derived from time 
series observed during 100 microseconds. Rician multipath 
channel. Data set 7 consisting of 1500 samples (300 signal samples 
for every modulation type) resulting in a matrix 1500 rows by 11 
columns where the first nine columns correspond to statistical 
features column 10 corresponds to SNR and the last column 
corresponds to data class label.  Statistical features for every signal 
sample have been derived according to the steps summarized in 
feature extraction from time-domain signal observed during 100 
microseconds in conditions of Rician multipath channel model 
with AWGN with SNR = 30 dB. The properties of the Rician 
channel have been selected the same as in data set 6. 80% of the 
data set has been used to train classifiers, 20% for validation. 
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Table 4: Classifiers performance reached in validation. Classification between FSK, BPSK, QPSK, 8PSK and 16PSK modulations using statistical features derived from 
the wavelet transform of the time series recorded during 500 microseconds. AWGN (SNR ranging from 1 to 30 dB) channel. Data set 4. 

Classifier With PCA   
(1 feature of 10) 

No PCA   
(10 features of 10) 

No PCA   
(5 features of 10) 

No PCA   
Mean (1 features of 10) 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Decision Trees: Fine 100 15000 100 21000 100 20000 100 12000 
Decision Trees: Medium 89.3 13000 99.7 23000 90.6 21000 79.9 18000 
Decision Trees: Coarse  82.9 15000 88.1 19000 68.9 23000 67.5 19000 
KNN: Fine  100 22000 100 42000 100 48000 100 51000 
KNN: Medium  98.1 22000 96.6 26000 98.2 38000 97.2 56000 
KNN: Coarse  80.6 18000 61.1 13000 61.7 21000 69.1 36000 
KNN: Cosine  38.3 18000 96.9 22000 97.2 33000 21.3 38000 
KNN: Cubic  98.1 17000 96.6 7800 98.5 20000 97.2 52000 
KNN: Weighted  100 18000 100 36000 100 52000 100 52000 
SVM: linear  57.0 15000 93.8 18000 75.1 21000 63.8 28000 
SVM: Quadratic 51.2 20000 100 17000 98.0 17000 51.8 22000 
SVM: Cubic 59.5 16000 100 16000 100 17000 47.7 27000 
SVM: Fine Gaussian 79.9 13000 100 12000 99.2 16000 75.9 18000 
SVM: Medium Gaussian 81.4 9400 97.9 16000 85.0 18000 69.4 20000 
SVM: Coarse Gaussian 52.1 8200 88.9 14000 67.8 14000 65.9 16000 
Ensemble Boosted Trees 93.0 9200 52.8 27000 99.9 10000 82.1 11000 
Ensemble Bagged Trees 100 8200 100 11000 100 11000 100 12000 
Ensemble Subspace Discriminant 56.3 6100 69.9 5900 59.3 6200 70.6 9500 
Ensemble Subspace KNN 100 4400 100 4500 100 5000 100 6700 
Ensemble RUS Boosted Trees 90.5 9800 83.6 61000 95.3 13000 80.4 11000 
Linear Discriminant 56.3 13000 77.4 17000 62.5 17000 70.6 17000 
Naïve Bayes 48.8 28000 60.9 60000 86.0 4800 73.8 18000 

Table 5: Classifiers performance reached in validation. Classification between FSK, BPSK, QPSK, 8PSK and 16PSK modulations using statistical features derived 
from the wavelet transform of the time series recorded during 500 microseconds for Richian multipath with AWGN (SNR =30dB) channel model. Data set 5. 

Classifier With PCA   
(1 feature of 10) 

No PCA   
(10 features of 10) 

No PCA   
(5 features of 10) 

No PCA   
Mean (1 feature of 10) 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Decision Trees: Fine 100 21000 100 27000 100 150000 93.0 160000 
Decision Trees: Medium 49.5 98000 60.9 140000 55.6 150000 40.8 140000 
Decision Trees: Coarse  41.6 11000 45.2 110000 41.5 120000 31.1 150000 
KNN: Fine  100 22000 100 40000 100 79000 100 72000 
KNN: Medium  95.7 23000 96 25000 95.7 45000 95.4 71000 
KNN: Coarse  34.5 18000 36 16000 42.5 30000 37.7 36000 
KNN: Cosine  37.7 17000 95.7 36000 95.7 30000 21.3 34000 
KNN: Cubic  95.7 24000 95.6 2400 95.3 17000 95.4 54000 
KNN: Weighted  100 29000 100 35000 100 38000 100 81000 
SVM: linear  36.1 21000 36.6 26000 36.1 26000 21.8 40000 
SVM: Quadratic 35.7 17000 66.6 21000 45.2 26000 23.5 29000 
SVM: Cubic 36.5 19000 100 21000 61.4 30000 23.2 33000 
SVM: Fine Gaussian 37.1 7800 91.8 11000 81.6 14000 38.0 11000 
SVM: Medium Gaussian 36.2 8700 46.0 10000 44.2 11000 29.6 12000 
SVM: Coarse Gaussian 35.0 8500 35.1 9700 34.9 11000 24.3 9700 
Ensemble Boosted Trees 56.8 9400 86.4 12000 85.4 9700 49.9 12000 
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Ensemble Bagged Trees 100 9300 100 14000 100 8700 100 10000 
Ensemble Subspace Discriminant 35.8 7800 39 8100 35.0 6400 22.5 8400 
Ensemble Subspace KNN 100 5700 100 5300 100 4100 100 6100 
Ensemble RUS Boosted Trees 61.7 11000 80.5 14000 86.0 14000 47.5 13000 
Linear Discriminant 35.8 8600 37.9 18000 34.7 110000 22.5 100000 
Naïve Bayes 39.9 9700 37.6 74000 37.9 110000 24.9 140000 

 

5. ML classifiers training and validation results 

Selected twenty-three classifiers have been trained and 
validated multiple times using every data set described above to 
investigate the effect of the extracted features and observation time 
on classification accuracy and speed. Among the trained classifiers 
we have studied decision trees, KNN with the various kernels, 
support vector machines (SVM), ensembles with bagging and 
boosting sampling, and discriminant methods. Also, principal 
component analysis PCA has been applied to keep enough 
components to explain 95 % of data variance for the dimension 
reduction. To protect against overfitting five-fold cross-validation 
method was used. 

5.1. Classification using instantaneous values 

Modulation type classification has been performed based on 
the input values of the instantaneous values of the in-phase and 
quadrature components of the time domain digital signal. Primary 
Classifiers have been trained three times using data set 1: 1. using 
PCA, 2. Using all three features: in-phase, quadrature components 
and SNR 3. Using two features including in-phase, quadrature 
components. Table 2 summarizes the validation results for the 
AWGN channel with SNR ranging from 1 to 30 dB. The effect of 
input features available in the data set 1 on classification accuracy, 
and speed has been studied. The highest classification accuracy 
has been achieved using all three available features: in-phase, 
quadrature components, and SNR. However, removing SNR from 
classification resulted in a reduction in the average classification 
accuracy by only 3 %. The highest average classification accuracy 
of 86.9 % was observed for the Fine Gaussian SVM, which on the 
other hand has been observed to be the slowest. Ensemble boosted 
trees with 30 decision trees learners trained using AdaBoost 
sampling and 20 splits and fine decision trees have shown optimal 
performance in terms of both classification accuracy and speed 
with an average classification accuracy of 86.3 % and 86.0 %, 
classification speed of 1200000 objects per second, which is faster 
than required 2000 objects per second. 

Data set 3 containing also instantaneous values of the time 
domain signal and SNR consisting of five modulations has been 
used to train classifiers to classify all five modulation types. 
However, the average classification accuracy has not met the 
requirement of 85 %. The highest classification accuracy of 78.1 
% has been reached by customized decision trees with the number 
of splits set to 2689, Gini’s diversity index has been used as a split 
criterion.   

Among the other tested classifiers, there were ensemble 
bagged trees, ensemble boosted trees, RUS boosted trees which 
have demonstrated even worse classification accuracy than 
decision trees. To capture more of the fine differences between the 
received signal modulated into different linear modulations it is 

suggested to use the spectral features derived from the signal 
observed during the selected observation time.  

5.2. Classification using time-series statistics. 

Training and validation for both propagation channels AWGN 
(SNR from 1 dB to 30 dB) and AWGN (SNR = 30 dB) with Rician 
fading have been performed using data sets 4-7. Primary, the 
training of the studied classifiers has been performed using time 
series recorded during observation time corresponding to 500 
microseconds using data sets 4 and 5 for AWGN and Rician 
channel with AWGN, respectively. Classifiers have been trained 
four times: 1. using PCA, 2. Using all ten spectral-based statistical 
features 3. Using five features including mean, standard deviation, 
root-mean-square level, zero crossing rate, 75th percentile of a 
data set, and 4. Using only one input feature: the mean value of 
the wavelet coefficients. Tables 4-5 summarize the validation 
results for the AWGN channel with SNR ranging from 1 to 30 dB 
and Rician multipath with AWGN (SNR = 30 dB) channel. The 
best performing classifiers that have reached 100% classification 
accuracy have been retrained on the features derived from the time 
series observed during 100 microseconds. Tables 6 and 7 present 
the validation results for AWGN and multipath Rician channel 
trained and validated four times as for the time series recorded 
during 500 microseconds. Tables 6 and 7 show that four out of the 
five selected classifiers including fine decision trees, fine KNN, 
ensemble bagged trees, and ensemble subspace KNN that 
demonstrated classification accuracy of 100 % on the time series 
recorded during 500 microseconds have demonstrated 
classification accuracy close to 100 % when trained using PCA, 
using all ten features and using five features for both AWGN and  
multipath channel also when have been trained on time series 
recorded during 100 microseconds. However, SVM has shown 
worse performance when trained with a reduced number of 
features. 

Applying PCA has resulted in a drastic decrease in the 
classification accuracy for ensemble subspace KNN for both 
AWGN and multipath Rician channels. For most classifiers, like 
fine decision trees, ensemble bagged trees applying PCA has 
resulted in the decreased classification speed. Fine KNN has 
shown 100% classification accuracy for classification using only 
one input to the classifier: mean value and the highest classification 
speed of 56000 and 91000 objects/s for AWGN and multipath 
fading channel, respectively. However, KNN is still slow even 
using only one feature than fine decision trees using five features 
classifying 110000 and 120000 for AWGN and multipath channel. 

6. Classification feature analysis using fractional factorial 
design 

The fractional factorial design has been applied to determine 
the most significant classification features referred to as the design. 
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Table 6: Classifiers performance reached in validation. Classification between FSK, BPSK, QPSK, 8PSK and 16PSK modulations using statistical features derived from 
the wavelet transform of the time series recorded during 100 microseconds for AWGN (SNR ranging from 1 to 30 dB) channel. Data set 6 

Classifier With PCA   
(1 feature of 10) 

No PCA   
(10 features of 10) 

No PCA   
(5 features of 10) 

No PCA   
Mean (1 feature of 10) 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Decision Trees: Fine 100 9500 100 18000 100 110000 100 120000 
KNN: Fine  100 21000 100 37000 98.6 19000 100 56000 
KNN: Weighted  100 22000 100 34000 100 47000 100 58000 
SVM: Cubic 95.7 23000 100 19000 100 24000 38.7 31000 
Ensemble Bagged Trees 100 7600 100 8700 100 6800 100 11000 
Ensemble Subspace KNN 36.4 5500 100 4700 100 4800 100 5400 

 
Table 7: Classifiers performance reached in validation. Classification between FSK, BPSK, QPSK, 8PSK and 16PSK modulations using statistical features derived 

from the wavelet transform of the time series recorded during 100 microseconds for Rician multipath with AWGN (SNR = 30dB) channel model. Data set 7 

Classifier With PCA   
(1 feature of 10) 

No PCA   
(10 features of 10) 

No PCA   
(5 features of 10) 

No PCA   
Mean (1 feature of 10) 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Prediction 
speed, 
Objects/s 

Average 
Accuracy, 
% 

Predictio
n speed, 
Objects/s 

Average 
Accuracy
, % 

Prediction 
speed, 
Objects/s 

Decision Trees: Fine 100 15000 100 23000 100 120000 94.2 160000 
KNN: Fine  100 27000 100 24000 100 55000 100 91000 
KNN: Weighted  100 25000 100 27000 100 48000 100 58000 
SVM: Cubic 100 7900 100 16000 69.9 28000 69.9 28000 
Ensemble Bagged Trees 100 5700 100 9900 100 11000 100 11000 
Ensemble Subspace KNN 36.4 6900 100 5200 100 5000 100 6500 

 
Table 8: Experimental factors and levels 

N Factor Unit Sym-
bol 

Coded 
level 
-1 +1 

1 Mean - A on off 
2 Standard Deviation - B on off 
3 Kurtosis - C on off 
4 Skewness - D on off 
5 Median absolute deviation - E on off 
6 Root-mean-square level - F on off 
7 Zero crossing rate - G on off 
8 Interquartile range - H on off 
9 75th percentile of  data set - I on off 

10 SNR dB J on off 
11 Observation time μs K 100 500 

 
factors that have the highest main effect on the response 
parameters: classification accuracy and speed We have been 
looking at both the main effects of the independent variables and 
interactions between the input parameters (A-J) and observation 
time (K) for the best performing classifier in terms of accuracy and 
speed. We have 10 design factors corresponding to the features 
referred as (A-J) and observation time referred to as (K) with 2 
levels for each design factor corresponding to: high (+1) the feature 
is used for classification or low  (-1) the feature is not used for 

classification. Observation time has been also varied at two levels 
(+1) high corresponding to 500 microseconds and (-1) low 
corresponding to 100 microseconds. We have considered one 
noise factor corresponding to the propagation channel model with 
two levels corresponding to the AWGN (-1) channel with SNR 
ranging from 1dB to 30 dB and Rician multipath propagation and 
AWGN with SNR=30 dB (+1). The full factorial design will result 
in 210 number of experiments, to reduce the number of experiments 
this study has been limited to fractional factorial design with 13 
experiment runs performed, where the first ten runs with only one 
feature used for classification independently from the others for 
100 microseconds observation time, since we are mostly interested 
to study the performance for the shortest observation time. The 
eleventh run has been selected to investigate the effect of 
observation time; the twelfth and thirteenth runs have been 
included to study the effect of observation time independently 
from the classification features with all nine spectral-based 
statistical features used as classification input. 

The main effect is defined as the overall effect of an 
independent variable in the complex design. The definition of an 
effect is the difference in the means between the high (+1) and the 
low level (-1) of a factor. From this notation, A is the difference 
between the mean values of the observations at the high level of A 
minus the average of the observations at the low level of A. 
Interaction is defined here as the effect of one independent variable 
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depending on the other independent variable, i.e it describes the 
combined effect of the independent variables considered 
simultaneously [15]. Tables 9-13 summarize the experimental 
design and results: main effect of every factor on classification 
accuracy and speed for five best performing classifiers: fine 
decision trees, fine KNN, weighted KNN, ensemble bagged trees 
with 59886 splits, and 30 learners and ensemble subspace KNN 
with 9 subspace dimensions and 30 learners. 

The overall highest main effects on classification accuracy and 
speed have been observed for the fine decision trees classifier. In 
tables 9-13, we have obtained a relatively high main effect for 
using/not using SNR for classification. In tables 9-13, 
summarizing the performance of the classifier, it is possible to see 
that removing the SNR value as an input to the classifier does not 
affect the response parameters significantly, on the other hand 
using SNR value only for classification as in the experiment run 
N10  (what in reality does not make any sense) result in the very 
low classification accuracy. Since the main effect is a difference 
between the mean values of the high and low, we observe here the 
high main effect of SNR as a classification input parameter. For 
example, the main effect of using SNR (J) as classification input 
on classification accuracy for fine decision trees is –20.0, while for 
Kurtosis (C) it is 19.6. Classification accuracy if we use only (C) 
for classification experiment run N3 is 100% for both Rician and 
AWGN channels and if we use only (J) for classification is 8.6% 
for both Rician and AWGN channels. This makes the highest main 
effect of SNR input a questionable result for practical application. 
Also, the value of the main effect should be interpreted only in 
combination with the value of the response parameter: 
classification accuracy and speed.  

The highest classification speed of 170 000 objects per second 
for 100% classification accuracy has been demonstrated by fine 
decision trees using only one classification input the skewness of 
the wavelet coefficients derived from signal observed during 100 
microseconds for AWGN channel model. For Rician and AWGN, 
channel classification speed has been slower 130 000 objects/s. 
Both skewness and kurtosis has shown the highest main effect on 
classification accuracy for fine trees. Using mean value as the only 
input parameter to fine trees classifier, however, has shown less 
robust results in terms of the classification accuracy: 94.5% has 
been demonstrated for Rician and AWGN channel, while for 
AWGN channel 100%. The mean value shows the second-highest 
main effect on the classification accuracy 19.5 for the fine decision 
trees and the highest main effect of 10.9, 11.1, 11.5, and 10.9 for 
the other four classifiers including fine KNN, weighted KNN, 
ensemble bagged trees and ensemble subspace KNN, respectively. 
It also shows the highest main effect on the classification speed for 
all five selected classifiers. 

Slightly slower classification speed has been demonstrated by 
KNN classifiers: 110000 objects per second have been observed 
for fine KNN for AWGN channel and 89000 objects per second 
for AWGN channel with Rician multipath. The slowest from all 
studied are ensembles, for example, ensemble subspace KNN has 
demonstrated a classification speed of 4500-6800 objects per  

second. However, classification speed for ensembles does not 
decrease as much as for the fine trees with the increasing number 
of features. For ensemble bagged trees for AWGN channel the 
same classification speed of 11000 has been demonstrated for 
classification using only mean A and using all calculated features 
(A-J).  
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Figure 6: Main Effects and interactions between factors (A-J) and observation time (K) for fine decision trees 

Table 9: Experimental design and results of fractional factorial design limited to 13 experimental runs for fine decision trees classifier 
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                             Factors. Fine Trees AWGN AWGN + Rician Mean 
Accuracy 

STD 
Accuracy 

Mean 
Speed 

STD 
Speed Run A B C D E F G H I J K Speed Accuracy Speed Accuracy 

1 + - - - - - - - - - - 100000 100 160000 94.5 97.3 3.9 130000 113068 
2 - + - - - - - - - - - 140000 100 140000 92.9 96.5 5.0 140000 98927 
3 - - + - - - - - - - - 110000 100 150000 100 100.0 0.0 130000 105995 
4 - - - + - - - - - - - 170000 100 130000 100 100.0 0.0 150000 91853 
5 - - - - + - - - - - - 130000 93.8 98000 78.9 86.4 10.5 114000 69235 
6 - - - - - + - - - - - 110000 100 140000 92.9 96.5 5.0 125000 98927 
7 - - - - - - + - - - - 170000 75.4 130000 74.5 75.0 0.6 150000 91871 
8 - - - - - - - + - - - 130000 72.9 160000 74.9 73.9 1.4 145000 113085 
9 - - - - - - - - + - - 120000 73.4 99000 74.1 73.8 0.5 109500 69951 

10 - - - - - - - - - + - 110000 8.6 180000 8.6 8.6 0.0 145000 127273 
11 + - - - - - - - - - + 12000 100 160000 93 96.5 4.9 86000 113069 
12 + + + + + + + + + + - 18000 100 23000 100 100.0 0.0 20500 16193 
13 + + + + + + + + + + + 21000 100 27000 100 100.0 0.0 24000 19021 

Main 
Effects 
Accuracy 

19.5 16.5 19.6 19.6 13.7 18.3 8.7 8.3 5.4 -20.0 15.7 

Main 
Effects 
Speed 

-69.2 -29.6 -29.5 -27.5 -35.6 -31.1 -35.8 -36.7 -40.3 -58.4 -24.7 
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Table 10: Experimental design and results of fractional factorial design limited to 13 experimental runs for fine KNN classifier 

                                                          Factors Fine KNN AWGN AWGN + Richian  Mean 
Accuracy 

STD 
Accuracy 

Mean 
Speed 

STD 
Speed Run A B C D E F G H I J K Speed Accuracy Speed Accuracy 

1 + - - - - - - - - - - 73000 100 91000 100 100.0 0.0 36500 64276 
2 - + - - - - - - - - - 69000 100 41000 100 100.0 0.0 55000 28921 
3 - - + - - - - - - - - 83000 100 65000 100 100.0 0.0 74000 45891 
4 - - - + - - - - - - - 54000 100 77000 100 100.0 0.0 65500 54377 
5 - - - - + - - - - - - 91000 100 84000 100 100.0 0.0 87500 59326 
6 - - - - - + - - - - - 110000 100 86000 100 100.0 0.0 98000 60740 
7 - - - - - - + - - - - 72000 79.9 69000 80.6 80.3 0.5 70500 48734 
8 - - - - - - - + - - - 80000 100 110000 100 100.0 0.0 95000 77711 
9 - - - - - - - - + - - 83000 100 110000 100 100.0 0.0 96500 77711 

10 - - - - - - - - - + - 93000 21.3 83000 21.3 21.3 0.0 88000 58675 
11 + - - - - - - - - - + 51000 100 72000 100 100.0 0.0 61500 50841 
12 + + + + + + + + + + - 37000 100 30000 100 100.0 0.0 33500 21142 
13 + + + + + + + + + + + 42000 100 40000 100 100.0 0.0 41000 28214 

Main 
Effects 
Accuracy 

10.9 9.8 9.8 9.8 9.0 9.8 1.3 9.8 9.8 -24.3 9.0        

 
Main 
Effects 
Speed 

-38.0 -34.1 -25.9 -29.6 -20.1 -15.5 -27.4 -16.8 -16.2 -19.8 0.0      
   

Table 11: Experimental design and results of fractional factorial design limited to 13 experimental runs for weighted KNN classifier. 

                  FactorsWeighted AWGN AWGN + Rician Mean 
Accuracy 

STD 
Accuracy 

Mean 
Speed 

STD 
Speed Run A B C D E F G H I J K Speed Accuracy Speed Accuracy 

1 + - - - - - - - - - - 62000 100 58000 100 100.0 0.0 60000 40941 
2 - + - - - - - - - - - 63000 100 67000 100 100.0 0.0 65000 47305 
3 - - + - - - - - - - - 90000 100 63000 100 100.0 0.0 76500 44477 
4 - - - + - - - - - - - 62000 100 77000 100 100.0 0.0 69500 54377 
5 - - - - + - - - - - - 66000 100 55000 100 100.0 0.0 60500 38820 
6 - - - - - + - - - - - 73000 100 79000 100 100.0 0.0 76000 55791 
7 - - - - - - + - - - - 60000 79.4 67000 100 89.7 14.6 63500 47313 
8 - - - - - - - + - - - 71000 100 79000 80 90.0 14.1 75000 55798 
9 - - - - - - - - + - - 68000 100 72000 100 100.0 0.0 70000 50841 

10 - - - - - - - - - + - 56000 20.4 73000 21.3 20.9 0.6 64500 51604 
11 + - - - - - - - - - + 52000 100 81000 100 100.0 0.0 66500 57205 
12 + + + + + + + + + + - 34000 100 23000 100 100.0 0.0 28500 16193 
13 + + + + + + + + + + + 36000 100 35000 100 100.0 0.0 35500 24678 

Main Effects 
Accuracy 11.1 9.9 9.9 9.9 9.9 9.9 5.5 5.6 9.9 -24.4 9.0 

Main Effects 
Speed -21.3 -25.2 -20.2 -23.3 -27.2 -20.4 -25.9 -20.9 -23.0 -25.4 -14.1 

Table 12: Experimental design and results of fractional factorial design limited to 13 experimental runs for Ensemble bagged trees classifier. 

                                      FactorsEnsemble Bagged Trees AWGN AWGN + Rician Mean 
Accuracy 

STD 
Accuracy 

Mean 
Speed 

STD 
Speed Run A B C D E F G H I J K Speed Accuracy Speed Accuracy 

         1 + - - - - - - - - - - 11000 100 11000 100 100.0 0.0 11000 7707 
2 - + - - - - - - - - - 9400 100 9600 100 100.0 0.0 9500 6718 
3 - - + - - - - - - - - 11000 100 12000 100 100.0 0.0 11500 8415 
4 - - - + - - - - - - - 10000 100 11000 100 100.0 0.0 10500 7707 
5 - - - - + - - - - - - 10000 100 10000 100 100.0 0.0 10000 7000 
6 - - - - - + - - - - - 11000 100 10000 100 100.0 0.0 10500 7000 
7 - - - - - - + - - - - 12000 76 7700 100 88.0 17.0 9850 5382 
8 - - - - - - - + - - - 9800 100 8500 100 100.0 0.0 9150 5940 
9 - - - - - - - - + - - 7600 100 7700 100 100.0 0.0 7650 5374 

10 - - - - - - - - - + - 14000 8.9 1200 8.7 8.8 0.1 7600 842 
11 + - - - - - - - - - + 12000 100 10000 100 100.0 0.0 11000 7000 
12 + + + + + + + + + + - 8700 100 9900 100 100.0 0.0 9300 6930 
13 + + + + + + + + + + + 11000 100 14000 100 100.0 0.0 12500 9829 

Main Effects 
Accuracy 11.5 10.3 10.3 10.3 10.3 10.3 5.1 10.3 10.3 -29.2 9.4 

Main Effects 
Speed 1.4 0.6 1.4 1.0 0.8 1.0 0.7 0.4 -0.2 -0.3 2.1 
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Table 13: Experimental design and results of fractional factorial design limited to 13 experimental runs for Ensemble subspace KNN classifier 

                                           FactorsEnsemble Subspace KNN AWGN AWGN + Rician Mean 
Accuracy 

STD 
Accuracy 

Mean 
Speed 

STD 
Speed Run A B C D E F G H I J K Speed Accuracy Speed Accuracy 

1 + - - - - - - - - - - 6100 100 6500 100 100.0 0.0 6300 4525 
2 - + - - - - - - - - - 6200 100 6200 100 100.0 0.0 6200 4313 
3 - - + - - - - - - - - 6800 100 7100 100 100.0 0.0 6950 4950 
4 - - - + - - - - - - - 5600 100 6400 100 100.0 0.0 6000 4455 
5 - - - - + - - - - - - 6700 100 6800 100 100.0 0.0 6750 4738 
6 - - - - - + - - - - - 6600 100 6200 100 100.0 0.0 6400 4313 
7 - - - - - - + - - - - 6500 79.9 7800 100 90.0 14.2 7150 5452 
8 - - - - - - - + - - - 6100 100 5900 80.6 90.3 13.7 6000 4108 
9 - - - - - - - - + - - 6800 100 5500 100 100.0 0.0 6150 3818 

10 - - - - - - - - - + - 6200 21.3 5300 21.3 21.3 0.0 5750 3733 
11 + - - - - - - - - - + 6700 100 6100 100 100.0 0.0 6400 4243 
12 + + + + + + + + + + - 4700 100 5200 100 100.0 0.0 4950 3606 
13 + + + + + + + + + + + 4500 100 5300 100 100.0 0.0 4900 3677 

Main Effects 
Accuracy 10.9 9.8 9.8 9.8 9.8 9.8 5.5 5.6 9.8 -24.3 9.0 

Main Effects 
Speed -0.7 -1.0 -0.7 -1.1 -3.0 -0.9 -0.6 -1.1 -1.1 -1.2 -0.6 

Since the decision trees are the fastest classifier reaching an 
accuracy of 100%, the study of the interactions has been limited 
only to fine decision trees. Interaction between observation time 
and every of the spectral-based statistical feature (A-J) has been 
studied and plotted in Figure 6. Non-parallel lines corresponding 
to the main effects in Figure 6 indicate the presence of interaction 
between spectrum observation time and all the studied features. 
The study of interactions between extracted features has been 
discarded because they have been extracted from the same source: 
Haar transforms coefficients derived from frequency domain 
signal and therefore are not considered to be fully independent 
variables. The most prominent interactions are observed between 
75th percentile and observation time, SNR as a classification 
feature and observation time, root-mean-square level and 
observation time, skewness and observation time, kurtoses, and 
observation time. 

7. Conclusions and future work 

In the scope of this work we have studied the possibility to classify 
the modulation type using instantaneous values of the time 
domain signal and SNR as inputs to the classifier. The main 
advantage of this approach is that it has potential to increase 
throughput by shortening the spectrum observation time and 
decreases the computational complexity: the raw values of in-
phase and quadrature components of the signal are used as an 
input to the classifier and therefore there is no need for any 
preprocessing or feature extraction. This approach is applicable 
for binary classification between BPSK and 2FSK modulations, 
however it fails in case the classification task is extended to 
multiple classes containing higher order modulations. The 
possible reason for this is the missing data that is not included in 
the pair of in-phase and quadrature component. If the input values 
pair lies on the x axis the modulation could be classified as any of 
four types: BPSK, 2FSK, 8PSK or 16PSK. In case of the input 
pairs are located on the y axis it could be classified as any of three 
modulation classes: 2FSK, 8PSK, 16PSK. We have confirmed 
that to reach the classification accuracy of at least 85% or higher 
for classification between multiple high order modulations it is 
required to observe the received signal and perform feature 
extraction. In this study we have studied nine spectral/based 

statistical features derived from the wavelet coefficients obtained 
by applying the Haar wavelet transform to the frequency domain 
received signal.  The highest classification speed of 170 000 
objects/second and 100 % classification accuracy has been 
demonstrated by fine decision trees using as the single input 
kurtosis (C) derived from the wavelet coefficients derived from 
signal observed during 100 microseconds for AWGN channel. 
For line-of-sight fading Rician channel with AWGN 
demonstrated classification speed is slower 130 000 objects/s. 
Skewness and kurtosis have shown the highest main effect on 
classification accuracy for fine decision trees. The mean value 
demonstrated the highest main effects on classification speed for 
fine decision trees, fine KNN, weighted KNN, ensemble bagged 
trees, ensemble subspace KNN.     

In the scope of the future work it is planned to implement the 
proposed fine decision trees classification algorithm on our target 
application hardware. Also, it is intended to extend this work to 
the multiple propagation channel models including Rayleigh and 
Rician for doppler shifts corresponding to target application 
embedded in the ground and aerial unmanned platforms moving 
with speeds 100-200 km/hour.  
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