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This article presents an analytical model of a single-phase ferromagnetic core power in-
ductor (reactor) based on a magnetic equivalent circuit (MEC). The MEC model consists
of magnetomotive forces (MMFs) and reluctances for all flux paths: magnetic core and
leakage flux paths. The MEC elements are found established on the characteristics of the
ferromagnetic material and the reactor’s dimensions. Then the inductances of the reac-
tor are determined using the MEC for a group of Silicon Steel (Si-Fe) sheets, which are
juxtaposed with the inductances obtained using the finite element analysis (FEA) method.
This comparison corroborates the MEC presented here. Furthermore, for the unsaturated
(linear) region of the B-H characteristics of the same sets of Si-Fe materials, the induc-
tive reactance closed-form solution of the reactor is obtained as a function of the design
parameters. As an application example of the presented analytical model, reactor design
optimizations (single-objective and multi-objective) are formulated and solved based on
the derived closed-form reactance expression resulting in a reactor not only optimized in
reactance but also in terms of material use and size.

1 Introduction

This article augments the underlying work initially introduced in
the 2019 North American Power Symposium (NAPS) [1].

Inductors (or the reactors in power engineering) are fundamental
and most uncomplicated circuit elements that provide economical,
sturdy, and efficient solutions to a spectrum of power system in-
tricacies. The inductors have been used to limit fault and load
current, compensate reactive powers, filter harmonics, damp the
transients, and balance the loads, to mention a few applications in
the electric power system. As a result of the significant expense
and restricted usefulness for sufficient and optimal AC flow controls
with FACTS devices, inductors are considered a superior alternative
in power systems [2]. The use of reactors can be in conjunction with
improving electric power quality, especially in the ever-changing
contemporary power networks. The reactors can be connected either
in series or parallel with the network based on a particular appli-
cation. Contingent upon the voltage and power ratings, they can
be either dry-type or oil-submerged sort. Usually, dry-type series
reactors are made with air cores, and oil-immersed shunt types are
made with ferromagnetic cores. Powdered core reactors, which are
manufactured by the compression of the very fine particles of the
magnetic materials, are preferred for high-reliability military and

space applications because they are robust against shocks, vibra-
tions, and nuclear radiations. Also, flux containment is better in
powdered core compared to the ferromagnetic cores [3]. A simple
schematic of a single-phase (1 − Φ) ferromagnetic core reactor for
use in power systems is shown in Figure 1.

The inductor is symmetrical with non-ferromagnetic (air) gaps
in the center of the inner leg. Over the gaps, there is AC wind-
ing connecting to the AC circuit. The gaps are used to limit the
magnetic flux in order to prevent reactor’s saturation from the rated
operating supply. The core of ferromagnetic reactors is made of a
material with high permeability that acts as an excellent conduc-
tor for magnetic flux. The ferromagnetic core’s ability to conduct
and concentrate the magnetic flux flow and, consequently, the re-
actor’s inductance is dictated by its permeability. The relationship
between the flux flow in the ferromagnetic core and the current sup-
ply through the coils of an electromagnetic device (like the reactor)
is nonlinear. The rate-of-change (ROC) of flux for the field strength
shifts from moderate to rapid to low when the operating condition
shifts from the inception to linear to the saturated region. Gener-
ally, magnetic power devices’ operation is not recommended in the
saturation region, where more increment in MMF supply produces
a minuscule change in flux. The operation of such devices in the
saturation region increases the magnetizing current, responsible for
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increased losses and possible hazardous operating conditions. For
some applications which work on the principle of the magnetic am-
plifier (MA), like continuously varying series reactor (CVSR) and
fault current limiters (FCL), the inductance of the device is changed
without any moving parts. The inductance variation is achieved
with the help of DC bias supply by controlling the permeability and
saturation of the ferromagnetic core as described in [2, 4]. The use
of the laminated ferromagnetic core is the general practice to lower
core losses; the ferromagnetic core in Figure 1 is shown as a solid
rectangular core for simplicity only.Placing non-ferromagnetic gaps
with magnetic properties similar to free space in the ferromagnetic
core is also common. The effective permeability and the inductance
of the device get reduced by such non-ferromagnetic gaps. However,
the device’s usable range of operation gets increased with dominant
reluctance in the magnetic circuit. Likewise, the non-ferromagnetic
gaps assume a crucial part in making the flux flow sensitivity lower
to external conditions like temperature. The adequate selection of
the air gap dimension is an essential job of the reactor designer
because there is a need to struck an equilibrium between avoiding
core saturation with a significant gap and imposed constraints to
achieve the desired value of the inductance.

Figure 1: Ferromagnetic core reactor and its dimensions

FEA based methods are usually adopted for accurate parameter
calculations and characterization of the electromagnetic devices.
This numerical method can be tedious with a tremendous computa-
tional burden. It also lacks closed-form solutions. Therefore, it is
not suitable for the repetitive design processes and dynamic anal-
yses of magnetic power devices [5, 6]. In [7] and [8], the authors
introduced the magnetic equivalent circuit (MEC) based method
a long time ago. MEC is an alternative magnetic field modeling
method for electromagnetic devices with a considerably reduced
computational resources requirement. The MEC approach is based
on the design inputs, material characteristics, and physical device
geometry. It represents such devices with lumped magnetic circuit
components: magnetomotive forces (MMFs) and reluctances. The
MEC representation is considered coarser than the FEA but more
acceptable than the electrical-equivalent lumped parameter models,

which are based on fundamental equations. Hence, MEC is consid-
ered a bargain between those approaches in terms of computational
resource need and accuracy [9, 10]. MEC approach is based on the
design inputs, material specifications, and geometry of the device.
The inductance calculation of a device is straightforward with this
approach. MEC has the ability to accommodate local saturation
effects; however, because of the eddy current and skin effects, the
MEC representation becomes challenging. A comprehensive under-
standing of the device in consideration and a significant engineering
judgment is required to generate a reluctance network with spatial
discretization [9]–[13].

A great deal of engineering time and experience can be avoided
with the optimization-based design process, which can produce a
better design with less engineering effort [14]. A reactor’s design
can involve many performance targets, some more important than
others, with a set of constraints. With multi/many-objective design
optimization, the feasible solution space might be discontinuous
and non-convex. The evolutionary algorithms are typically cho-
sen for such problems. A large number of design evaluations are
necessary to produce a Pareto optimal front, and approximate ana-
lytical models make such computations efficient. In this article, the
constrained single objective (SO) and multi-objective (MO) opti-
mization design formulations, coupled with the detailed MEC-based
analytical model that captures the reactor’s electromagnetic behav-
ior, are presented. These design examples signify the importance of
computationally efficient and accurate analytical MEC models for
the reactor’s design optimization.

The article is structured as follows. Section 2 proposes an ade-
quately precise yet simple MEC for a gapped ferromagnetic core
reactor. The inclusion of the fringing fluxes in the MEC proposed in
the previous section improves its accuracy. The methodology for the
confirmation of the MEC model is presented in Section 3. The next
section follows the methodology introduced with a case study for
a set of Silicon Steel (Si-Fe) ferromagnetic materials. The design
optimization examples are presented in Section 5, facilitated by
the reactance expressions obtained from the validated MEC. Based
on the proposed MEC, its validation, and optimization examples,
conclusions are drawn in Section 6.

2 Magnetic Equivalent Circuit

The dimensions of the simple single-phase gapped ferromagnetic
core reactor are shown in Figure 1. The gaps (air) in the core make
the leakage flux not influential for the reactor’s magnetostatic char-
acterization. For this reason, an arbitrary winding configuration
choice is made for this device. The reactor features two windows
of width ww and height hw. wo and wc are the widths of the exterior
and middle leg, respectively. The central leg has non-ferromagnetic
gaps of elevation g which stretches dc into the surface, which is the
same throughout the reactor. Both top and bottom yokes have the
same height of hy.

Figure 2 represents one of the simplest possible MECs of the
reactor. The reluctances (resembling resistors from electric circuits)
in the proposed MEC are positioned to interpret the accurate reactor
physical structure. Similarly, the MMF source position (resembling
voltage source from the electric circuit) in the MEC indicates the
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winding position in the reactor. The ferromagnetic core reluctances
are denoted by R1 − R7, dependent on the magnetic flux through the
corresponding elements. In MEC, these reluctance are shown to be
a function of flux.

Figure 2: Magnetic equivalent circuit

However, the non-ferromagnetic air gap reluctance (R8 in Fig-
ure 2) is fixed and does not depend on the corresponding flux. The
MMF source in the middle leg of the proposed MEC is the product
of the number of winding turns (N) and current supply through it
(I), i.e., F = NI. In Figure 2, loop fluxes are represented by φ1 and
φ2, making the inner leg branch flux to be (φ1 − φ2) in the specified
direction.

For a representative branch k, the generalized reluctance is:

Rk =
lk

Akµ
(1)

In equation (1), Ak and lk are cross-sectional area normal to the
flux flow direction and length of branch element, respectively, and
µ is the permeability (absolute) of the material used. The absolute
permeability depends on the type of flux path, based on which the
reluctances can be categorized into:

2.1 Core Piece Reluctance

The reluctances of ferromagnetic core pieces are intrinsically non-
linear. The reluctance of each ferromagnetic element in the MEC
depends on the material property, physical geometry, and supply
through the winding around the core. The core piece’s absolute per-
meability can be demonstrated as a function of either flux density
(B) or flux intensity (H). Considering the symmetry of the reactor,
based on (1), the characteristic core piece reluctances can be written
as:

R1(φ) =
2ww + wo + wc

2dchyµB( φ
dchy

)
(2a)

R3(φ) =
hy + hw

dcwoµB( φ
dcwo

)
(2b)

R7(φ) =
hy + hw − g

dcwcµB( φ
dcwc

)
(2c)

Also, R1(φ) = R2(φ) = R4(φ) = R5(φ) and R3(φ) = R6(φ). Each
branch reluctance in (2) has absolute permeability represented as the
functions of flux density through them. In [15], the author describes
the process of finding these absolute permeabilities, which can be
summarized by the following expressions.

µB(B) = µ0
A(B)

A(B) − 1
(3)

where,

A(B) =
µr

1 − µr
+

K∑
k=1

{
αk |B| +

αk

βk
log

(
e−βkγk + e−βk |B|

1 + e−βkγk

)}
(4)

In equation (4), B represents the magnetic flux density; µr and
µ0 are the relative and absolute permeabilities, respectively. Here,
anhysteretic characteristics are considered with the reactor operat-
ing in the linear region. Moreover, α, β, and γ are the permeability
function parameters for select core materials.

An iterative numerical search is needed for each branch of the
MEC corresponding to the core piece ferromagnetic components
to find a value of reluctance, given some initial values for the flux
density. Figure 3 shows the flowchart summarizing this iterative
process. The absolute permeability calculation is the first step of
the iterative process. For mesh circuit analysis, permeability as a
function of flux density is preferred. Using the absolute permeability
(µ ≡ µB(B)), the reluctance of each piece can be calculated using (1).
In the next step, each branch is represented in the standard general
form: a series combination of an MMF source and the reluctance.
Based on the complete circuit element formation, mesh analysis is
carried out to find the fluxes through each loop. Except for the first
iteration, as indicated in the flowchart, the stopping criteria for the
iterative process are the maximum number of iterations and branch
flux relative error between consecutive iterations.

2.2 Air Gap Reluctance

In the MEC model of Figure 2, the reluctance R8 is the air gap
reluctance. It is a constant reluctance without any dependence on
the flux passing through it. Following (1), the reluctance of the air
gap is given by:

Rg =
g

dwwcµ0
(5)

While getting reluctance in (5), it is assumed that the cross
sectional flux flow between the top and bottom of the air gap is
streamlined. However, there exists a portion of a flux that flows
in the vicinity of the air-gap corners spreading in all directions,
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which is known as the fringing flux. Because of this flux, the ef-
fective cross-sectional area of the air gap is increased, resulting in
decreased air gap reluctance. The fringing fluxes should be incor-
porated into the air gap reluctance computation to make the MEC
highly accurate.

Start

Initialization

Is

 iteration =1 or ( Error> 0  & 

iteration < iteration limit)

 ?

µB(B) 

Calculation

Branch 
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Figure 3: Iterative non-linear reluctance calculation flowchart

Figure 4: Fringing permeance calculation

The Ampere’s circuital law, which relates the current to the
associated magnetic field, can be described by (6) representing the
magnetic field intensity H(A/m) over a closed path c to be equivalent
to the current enclosed by that path (Ienclosed.)∮

c
H · dl = Ienclosed (6)

The fringing effect can be captured by applying Ampere’s law
for the uniformly flowing flux from surface node NA to NB along
the expanse of the flux route shown in Figure 4 as:

H(g + πr) = F (7)

In (7), H and F(= NI) are the magnetic field strength (intensity)
and the MMF source respectively. Based on the relationship with H,
the magnetic flux density (B = µH) can be represented as:

B =
µ0F

(g + πr)
(8)

The surface integration of the flux density gives the flux coming
out of surface node NA, given by (9).

φ =

∫
BdS =

∫ (hw−g)/2

0

µ0F
(g + πr)

dcdr (9)

Also, the fringing flux incorporated with the designated path
can be linked to fringing permeance (P f ring) and MMF source as:

φ = P f ringF (10)

From equations (9) and (10):

P f ring =
µ0dc

π
log

{
1 +

π(hw − g)
2g

}
(11)

For the central leg with air gap, the depth and the width are the
same; therefore, the total fringing permeance is four times the P f ring.
Hence, the air gap reluctance can be given by:

Rair−gap = R8 = Rg||
1

(4P f ring)
=

Rg

1 + 4RgP f ring
(12)

3 MEC Validation Methodology
A meshed circuit analysis based on Kirchhoff’s laws from electric
circuits can be adopted to solve the proposed MEC once each MEC
element is determined. This analysis gives flux through each branch
and loop of the MEC. The physical law of energy conversation holds
for the MEC. Therefore, a balance between the energy generated
by the MMF source(s) and energy dissipated into the reluctances
always exists. The energy balance principle can be exploited to find
the overall equivalent inductance of the inductor directly. From [16]
the reactor’s inductance is:

LMEC =
1
I2

n∑
k=1

φ2
kRk (13)

Here, 1 ≤ k ≤ n is the index representing each branch in the
MEC with a total number of branches being n; while Rk and φk are
the reluctance and flux through the branch k respectively. Further-
more, the winding coil has current I following through it.
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By performing different analyses (magnetostatic/transient) using
the software packages based on FEA can give the inductance of
a reactor. A three-dimensional (3-D) model of an inductor with
minimal error tolerance set up can compute the inductance (appar-
ent/incremental) accurately in the FEA software package.

The proposed MEC of the reactor is verified by comparing the
equivalent inductances obtained from MEC as described in (13)
using MATLAB R©1, and the FEA based approach using ANSYS
Maxwell R©2. The following case study presents the comparative
analysis.

4 Case Study

A contextual analysis for the affirmation of the presented analytical
model is carried out in this section, followed by the closed-form
reactance calculation based on the validated model.

Figure 5: Candidate ferromagnetic material characteristics

4.1 MEC Validation

A single-phase reactor considered for the MEC validation has the
parameters, as shown in Table 1.

Table 1: Gapped core reactor parameters

Parameters Symbol Value
Window height hw (m) 0.374
Window width ww (m) 0.056

Leg width wo = wc (m) 0.076
Yoke/base height hy (m) 0.076

Core depth dc (m) 0.076
Number of turns N 39

Rated current i (A) 25
√

2

A set of magnetic core materials (Si-Fe) is considered with
accompanying qualities (relative permeability, permeability func-
tion parameters, and maximum flux densities) extracted from [17].
The magnetic properties (B-H curves) for these materials generated
according to [18] are shown in Figure 5. The two approaches de-
scribed in the previous section are applied to calculate and compare
the inductance of the reactor made up of each of the given materials.

For both linear and non-linear regions of the magnetization
characteristics of Si-Fe, it is clear that the anhysteretic curve of
Hiperco50 is considerably different from the others, as can be seen
in Figure 5.

(a) Adaptive mesh plot (b) Flux density plot

Figure 6: FEA simulation Results for Si-Fe Hiperco50 core

Figure 6 shows 3-D FEA results for the reactor with the Si-Fe
Hiperco50 core with the parameters from Table 1. The adaptive
meshing has been applied to the model to make the simulation more
accurate. The figure also shows the flux density distribution through-
out the core, and it can be seen that the middle leg has the highest
flux density.

For every core materials from the group, the inductances using
both approaches and relative error between them are summarized in
Table 2. The errors are within 1% for each of the materials. This
minimal range of errors across a group of Si-Fe materials confirms
the accuracy of the proposed MEC.

Table 2: Inductance comparison

Si-Fe Materials Inductance (mH) % ErrorMEC FEA
M19 7.853 7.880 0.348
M36 7.905 7.871 -0.427
M43 7.910 7.935 0.310
M47 7.831 7.904 0.925

Hiperco50 8.012 8.081 0.850

4.2 Reactance Calculation

For a 60 Hz system, a single-phase inductor’s reactance can be
expressed as:

1https://www.mathworks.com/products/matlab.html
2https://www.ansys.com/products/electronics/ansys-maxwell
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XL = 120πL (14)

where,

L =
N2

Rm
(15)

here, Rm is the equivalent reluctance of the reactor. A circuit re-
duction on MEC can be applied to obtain it, as shown in Figure
7.

Ry(ϕ)/2

Rl (ϕ)/2

Ry(ϕ)/2

R8

R7(ϕ)

F

(a) Step I

RmF

(b) Step II

Figure 7: MEC reduction

As the design of the reactor is symmetrical, a circuit simplifica-
tion by the parallel combinations of the reluctances corresponding
to the yoke and vertical leg transforms the MEC from Figure 2 to
Figure 7a. Furthermore, the series reluctances in a single loop MEC
in Figure 7a can be combined to achieve the simplest MEC as in
Figure 7b. Accordingly:

Rm = Ry(φ) + 0.5Rl(φ) + R7(φ) + R8 (16)

In Figure 7, Ry ≡ {R1 = R2 = R4 = R5} and Rl ≡ {R3 = R6}.
A further break down of (16) for a linear operation region (in the
magnetization characteristic curve) returns:

Rm =
6.25 × 105g

0.7854dcwo + gdclog
(
−0.5708 +

1.5708hw
g

)
+

X
{
−hyg + wo(wo + ww)

}
+ Yhy(hy + hw)

dchywo
(17)

A symbolic mathematical computation program called
MATHEMATICA R©3 has been used to obtain this simplified ex-
pression. For different core materials, the coefficients X and Y in
(17) are summarized in Table 3.

Table 3: Reactance coefficients

Si-Fe Materials Coefficients
X Y

M19 44.324 66.486
M36 58.996 88.494
M43 51.342 77.012
M47 86.369 129.554

Hiperco50 36.473 54.710

5 Design Optimization

5.1 Single Objective Optimization

An example of a single objective optimization problem is set up
using the expression for the reactance of the reactor. The use of
minimal material for the core is the objective while complying
with several design constraints. Here, it is assumed that the reactor
core is made up of Si-Fe M36 material. The design constraints
include the target reactance, flux density limits for each element of
MEC (n = 8), and minimum and maximum limits for the design
parameters. The design parameter vector (19) consists of all design
parameters. Their ranges and the initial points are summarized in
Table 4.

minx V = dc{2hwwo + wc(hw − g) + 2hy(2ww + 2wo + wc)

s.t. XL = xdesign,

Bk ≤ Bmax, ∀k ∈ n,

xmin ≤ x ≤ xmax

(18)

In (18), Bmax = 1.25 T is the maximum flux density in the linear
region of the B-H curve for Si-Fe M36, and xdesign = 2 Ω.

Table 4: Domain of design parameters

Parameters xmin (m) xmax (m) xinitial (m)
wo 0.0762 0.1016 0.0889
ww 0.0559 0.0762 0.0635
hy 0.0762 0.1016 0.0889
hw 0.3739 0.5080 0.4572
dc 0.0762 0.1016 0.0889
g 0.0015 0.0023 0.0020

wc 0.0762 0.1016 0.0889

x = [wo ww hy hw dc g wc]T (19)

A non-linear solver called ’Knitro’ with YALMIP toolbox from
MATLAB R© has been used to solve this non-linear optimization
problem. Table 5 summarizes the optimization results.

3https://www. wolfram.com/mathematica/
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Table 5: SO optimization results

Parameters Value (m) Parameters Value (m)
ww 0.0559 wo = wc 0.0762
hy 0.0762 hw 0.3739
g 2.286 × 10−3 dc 0.0762

The optimal (minimum) ferromagnetic core material volume
is found to be 1.0452 × 10−2m3. An approximate ’back-of-the-
envelope’ calculation for the volumetric minimization of the reactor
with some educated guess regarding the constraints verifies the pre-
sented results. The air-gap (g) is very sensitive towards the reactance
and the flux density in the core; however, it has a minimal impact on
the reactor’s total ferromagnetic volume. Therefore, the constraint
set x other than g can be guessed towards the minimum limit to get
the minimum ferromagnetic volume. If x is chosen to be xmin, the
ferromagnetic volume would be 1.0457 × 10−3m3.

The optimal ferromagnetic volumes for different Si-Fe materi-
als are summarized in Figure 8. In the figure, the ferromagnetic
volumes are very near each other; however, the price difference
between the materials will impact material selection.

Figure 8: Optimal core volume comparison

5.2 Multi-Objective Optimization

Reactance is the most important characteristic of the ferromagnetic
core inductor. In addition to the core material volume minimization,
an additional objective of reactance maximization is introduced here.
The multi-objective (MO) optimization searches a vast design space
and is quite effective in finding optimal machine designs. An evolu-
tionary population-based genetic algorithm [19] is implemented to
solve a MO reactor optimization problem. A genetic algorithm (GA)
can find multiple solutions from a population of solution candidates
in one execution, which is not possible with classical optimization
[14].

The goal of this design example is to come up with a single-
phase power reactor design that has a reactance of at least Xmin, and
maximum ferromagnetic core flux density below Bmax. It is desir-
able to minimize the reactor’s ferromagnetic core material volume
and maximize the reactance at the rated system conditions.

minx

[
V

1
XL

]
s.t. XL ≥ XLmin,

Bm ≤ Bmax,

xmin ≤ x ≤ xmax

(20)

The ferromagnetic core material used in this optimization prob-
lem is the same material used for single objective optimization
problem described in the previous section (Si-Fe M36). The optimal
reactor would have a reactance of at least 1.5 Ω (Xmin) and the flux
density of the 1.25 T (Bmax) so that the operation of the reactor is
within the linear region of the characteristics curve of the selected
core material for the rated supply. In 20, the flux density has been
bounded only for the middle leg flux density because it is the domi-
nant flux density region. The gapped middle leg flux density can be
approximated by:

Bm =
φm

A
=

Ni
RmA

≈
µ0Ni

g
(21)

The parameter bounds are the same as in the previous section,
given in Table 4. The free parameter vector is represented by (19).
The symbols in parameter vector are as defined in Table 1. It is
assumed that the window spaces are sufficient for the winding.

The fitness function for the MO optimization problem can be
defined as:

f =

 ε(c̄ − 1)[1 1]T , c̄ < 1[
1
V XL

]T
, c̄ = 1

(22)

In (22), ε–a small positive number (in order of 10−10)– does not
have an influence on the optimization outcomes but is appropriate
for the observation of the optimization progress.

And, c̄ is the aggregate constraint of the MO problem, which is:

c̄ =
1
nc

nc∑
i=1

ci =
c1 + c2

2
(23)

where, nc is constraint number (here, nc = 2). Once XL and Bm

have been evaluated using (14) and (21), constraint functions can
be put together as (24):

c1 = gte(XL, XLmin ) (24a)

c2 = lte(Bm, Bmax) (24b)

where, gte() and lte() are greater-than-or-equal-to and less-than-
or-equal-to functions, respectively. These functions are defined
as:

lte(x, xmax) =

 1, x ≤ xmax
1

1+x−xmax
, x > xmax

(25a)

gte(x, xmin) =

 1, x ≥ xmin
1

1+xmin−x , x < xmin
(25b)

The MO optimization is carried out using GOSET [20], a
MATLAB-based genetic optimization toolbox. The optimization
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has been performed with a population size of 1500 over 2000 genera-
tions with the specifications described by Table 6, and the parameter
bounds given in Table 4.

Table 6: Genetic algorithm parameters

Parameters wo ww hy hw dc g wc

Encoding log log log log log log log
Chromosome 1 1 1 1 1 1 1

Table 7 summarizes the GA options carried out in the different
steps of the MO optimization.

Table 7: Summary of GA options implemented

GA Elitist nondominated sorting GA(NSGA-II) [21]
Selection Tournament selection

Death Random replacement
Gene repair Hard limiting

Scaling Offset scaling

Figure 9 represents the objective space at the end of the optimiza-
tion, where each point represents the objectives of the corresponding
design. The objective space plot is according to the fitness function
definition. Therefore, reactance is plotted against the reciprocal of
the ferromagnetic core material volume. The design points can be
divided into nonviable, dominated, and nondominated design sets.
The nonviable designs are near the origin and the negative axes of
the objective space. The figure indicates the distinct design sets
which are viable but dominated or nondominated.

Figure 10 shows only the nondominated designs with the axes
representing the reactance and the material volume. This plot clearly
shows the tradeoff between the objectives. A sample design on the
Pareto optimal front is also indicated. The parameters representing
the sample design are summarized in Table 8.

Figure 9: Objective design space

Figure 10: Pareto frontier boundary

Table 8: Sample design results

Parameters Values (m) Parameters Values (m)
wo 0.085 ww 0.05589
hy 0.076233 hw 0.3739
dc 0.0762 g 0.001524
wc 0.0762

For the sample design, the ferromagnetic material volume is
0.011176 m3, and the reactance of the inductor is 3.32 Ω. This
reactance is above the minimum limit XLmin, and the flux density is
found to be 1.137 T , which is less than the flux density limit Bmax.

To check the validity of the sample design obtained above, a 3-D
FEA model is created again with the parameters from Table 8. The
magnetostatic analysis from FEA shows that the reactance of the
sample design is 2.96 Ω, which is ≈ 12% off from the MO optimiza-
tion results. It is a fairly good result considering the simplicity of
the model used, and more accurate than a spreadsheet-based design
typically used by manufacturers.

6 Conclusions
In this article, a systematic analytical representation was proposed
for a 1-Φ ferromagnetic core air-gapped inductor based on MEC.
For a set of Si-Fe materials for core, the proposed MEC was substan-
tiated after collating the inductances obtained by using the 3-D FEA
method. The minuscule error of the inductance values throughout
the entire group of materials validated the proposed model. Fur-
thermore, when the ferromagnetic core is in the unsaturated (linear)
region of the operation, an inductor reactance expression was de-
rived as a function of design parameters. To illustrate one of the
applications of the suggested systematic model, both SO and MO
optimization problems were formulated and solved. They prove
the MEC’s applicability for obtaining optimal reactor designs for a
specific application and highlight its efficiency and importance.
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The future work will include reactor design improvements with
more complex models, including more detailed flux leakages, and
analyses (loss and thermal), as well as data from tests on the phys-
ical device with comparison of computational and experimental
results.
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