
Advances in Science, Technology and Engineering Systems Journal
Vol. 6, No. 1, 1334-1342 (2021)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

SEA: An UML Profile for Software Evolution Analysis in Design Phase
Akram Ajouli1,2,*

1Department of Computer Science, College of Computer and Information sciences, Jouf University, Sakaka 2014, KSA
2High Institute of Applied Sciences and Technology of Gafsa, Gafsa University, Gafsa, 2100, Tunisia

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 25 December, 2020
Accepted: 14 February, 2021
Online: 28 February, 2021

Keywords:
Software Evolution
Tyranny of decomposition
Modular Maintenance
Software Concerns
UML Profile

Software evolution is one of the software process activities that occupies a major percentage of
software development cost. Since requirements change continually and new technologies emerge,
software should be adapted to satisfy these new changes to continue to survive. Despite software
evolution being performed after software validation and deployment, software developers should
predict at earlier stages how software would evolve in the future to avoid surprises. Although
many works focus on how to enhance the program structure to facilitate maintenance tasks,
only few works treat software evolution in earlier phases of software development process. In
this direction, we propose an UML profile that permits to tackle software maintenance issues
at the early phases of software development process. The proposed approach helps software
developers to predict in design phase the kind of maintenance tasks that could occur in the
future.

1 Introduction

According to [1], software evolves and changes continually in or-
der to support new emerging technologies and satisfy customers
and business needs. Some studies estimate that software evolution
could reach more that 60% of software development total cost [2].
This issue pushes software engineering community to focus on how
optimizing software evolution cost.

In fact, software maintenance cost varies depend on the kind
of maintenance tasks that will be performed. For example, if the
source code to be maintained is crosscutting among software mod-
ules, maintenance tasks performed on that source code are as well,
the thing that could generate an extra cost. But, if the source code
to be maintained is encapsulated in a single module, software main-
tenance applied to that source code is modular (less time and less
cost).

Duality among crosscutting maintenance and modular mainte-
nance motivates the community to provide solutions to keep soft-
ware maintenance being modular. For example, some design pat-
terns [3] and some program structuring/decomposition [4]–[8] fa-
cilitate software reuse and maintenance. But, even though some
solutions could assure modular software maintenance, the challenge
still existing since software maintenance could be modular for the
same program with respect to a given architecture/structure but not

with respect to another. A such problem is known as tyranny of de-
composition or expression problem [9] (see Sect. 3 for more details).
To resolve this problem, many works ([10]–[14]) tried to attenuate
the effect of tyranny of decomposition on software maintenance
but results still relative and they treat this issue only in source code
level.

In this paper, we illustrate how software developers could tackle
software maintenance issues at the design phase of software devel-
opment process. The early treatment and analysis of software main-
tenance tasks that could occur later permits to get a clear overview
about how the program will evolve in the future. The main goal is
to specify from the beginning the program structure that is more
adaptable for future maintenance tasks. This could be realized by:
first, identifying what kind of maintenance tasks is more probable
to occur and then recommending the program architecture that is
more adaptable to this kind of maintenance tasks. To concertize our
approach, we define an UML profile that helps software developers
to analyze and predict the kind of future software maintenance tasks
that could occur.

The rest of this paper is organized as follows: first, we explore
some related works (Sect. 2). Then, we give some explanations
about tyranny of program decomposition problem. We show also
how this problem affects modular maintenance (Sect. 3). Next, we
present how we have defined SEA UML profile (Sect. 4). After that,

*Corresponding Author: Akram Ajouli, Department of Computer Science, College of Computer and Information sciences, Jouf University, Sakaka 2014, KSA , Contact
No: +966547205946 & Email: asajouni@ju.edu.sa

www.astesj.com
https://dx.doi.org/10.25046/aj0601153

1334

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj0601153

A. Ajouli / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1334-1342 (2021)

we show how we validated SEA by applying some stereotypes in a
real case study (Sect. 5). Finally, we resume our contributions and
we propose some future works (Sect. 6).

2 Related work

In fact, this paper is an extension of the paper [15] (presented in the
International Conference on Computer and Information Sciences
(ICCIS) in 2019). In [15], the approach consists of proposing an
UML profile called MODEM used to model maintenance tasks in
design phase. This profile provides some UML stereotypes that
permits to software developers to model and analyse maintenance
tasks before occurring. The extension we propose in this work con-
sists of adding more details and semantics to the previous work. We
have modified some stereotypes, added new stereotypes and added
tagged values in order to better analyse and predict in design phase
future maintenance tasks that could occur. Further more, comparing
to the previous work, we validate the extended UML profile by
apply it to a real case study.

In [16], the author proposed a process of eight steps helping
to supervise maintenance tasks that could occur later. Their ap-
proach simulates communications between stakeholders in order
to design maintenance tasks, apply them and test software again
before delivering the final version. In [17], the author proposed also
an approach that aims to treat maintenance tasks in early phases of
software development. They propose a software maintenance life
cycle model that relies on a process of four steps. During this pro-
cess, stakeholders interact between each other to study and analyze
maintenance tasks to do in order to guarantee a consistent planning
for performing maintenance tasks. The process is incremental and
iterative and it stops when maintenance tasks analysis proves that
software maintenance requests percentage becomes under a given
threshold.

Although these works show a relevant contribution in planning
maintenance tasks at earlier stages of software development, both of
them involve different stakeholders to express needed maintenance
tasks which could disturb software development process. In addi-
tion, maintenance issue is not expressed explicitly in models as we
propose in our approach.

In [18], the author proposed an UML profile that permits to
support requirements evolution. Their method is tool supported
and consists of extending requirements engineering process by mak-
ing it supporting requirements evolution. Although this approach
facilitates requirements changes management, it still limited to spec-
ification phase. In our work, we focus more on design phase because
we treat a problem which is related to software architecture rather
than software requirements.

Some other works like [19]–[22] focus on analyzing and ex-
pressing design patterns explicitly at early phases of software de-
velopment by defining the appropriate UML profiles. These works
aim to enhance design patterns implementation comprehension for
programmers since design pattern does not appear explicitly on
source code. These works focus more on improving software com-
prehension rather than treating software evolution issue.

Some other works such as [13] and [23] treat maintenance issues
in implementation phase by providing reversible transformations

among dual design patterns (composite and visitor) in order to keep
maintenance tasks modular. In [24], the author proposed also a
relevant approach that treats software maintenance issue in source
code level. Their approach consists first of exploring the best ma-
chine learning techniques used for predicting software maintenance
and then improving their performance. Although these works show
important contributions in treating software maintenance issues,
they still limited to implementation phase while we focus more on
tackling this issue in earlier software process activities.

3 Background

We present in this section an overview about potential challenges
that software evolution could face. One of the issues that could
affect software evolution is tyranny of decomposition or expres-
sion problem [9]. In fact, although software modularity enhances
program structure and facilitates software maintenance, a modular
program structure could be biased to one kind of modular mainte-
nance and not to another. A maintenance task is called modular
when changes are mostly encapsulated in one module. Contrary
to this, if changes touches many modules at the same time, the
maintenance task is called crosscutting.

For example, Figure 1 illustrates a program composed of two
classes Circle and Rectangle that extend an abstract class Shape.
The program contains also two methods print() and show() which
represent the business code of the program. The structure of the
program is a base form of Composite design pattern in which each
data type is encapsulated in a module. A such program structure
decomposes the program with respect to data-types axis.

The decomposition of the program (Figure 1) permits to perform
modular maintenance with respect to data-types. For instance, if we
add a new shape (a Triangle for example) to the hierarchy of shapes
shown in Figure 1, we first create a new class, then, we redefine the
code of methods print() and show() only in this new class. In this
case, the maintenance task is modular (low cost). But, if we add a
new feature to the program (for example a method color()), we have
to implement it in all classes which causes a crosscutting mainte-
nance (extra cost). We deduce that the architecture of the program
shown in Figure 1 allows a modular maintenance with respect to
data-types and not with respect to functions (methods). Hence, the
program structure is dominated by the data-types decomposition
axis (a tyranny of decomposition according to data-types).

Another axis of decomposition of the program described above
is illustrated in Figure 2. This program represents the Visitor design
pattern implementation of the program shown in Figure 1. The
Visitor pattern encapsulates each business code in a single module:
the business code print is encapsulated in module/class Print and
the business code show is encapsulated in module/class Show. This
program structure decomposes the program with respect to func-
tions which permits to add a new function without touching other
modules: for example if we add a feature color to the program, we
add a new class in which we implement this new feature for all
shapes. Thus, Visitor design pattern permits to perform modular
maintenance with respect to functions since it provides a functions
decomposition axis.

www.astesj.com 1335

http://www.astesj.com

A. Ajouli / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1334-1342 (2021)

Modular code with
respect to data-types

Crosssscutting code
with respect to functions

Figure 1: Decomposition axis of a simple variety of Composite design pattern.

But, if we add a new shape to the program shown in Figure 2,
many modules would be changed since the new shape should be
visited by both print and show business codes. In this case, the
program maintenance is crosscutting. We say that the program
structure is dominated by functions decomposition axis (a tyranny
of decomposition according to functions).

The above two examples explain well the problem of tyranny
of decomposition. A such issue still always a main problem that
affects software evolution. In this work, we aim to contribute in
attenuating tyranny of program decomposition effect on software
maintenance. Our target is to help software developers in analyzing
and predicting in earlier phases of software development the kind of
maintenance tasks that could occur later and in recommending the
right architecture (decomposition axis) of the program that could
keep maintenance being modular.

Modular code
with respect to functions

Crosscutting code
with respect to data-types

Figure 2: Visitor structure corresponding to the program shown in Figure1.

4 SEA specification

4.1 Overview

Many works have treated software evolution issue at the implemen-
tation phase. In this work, we tackle this issue in design phase
of software development process. Since UML (Unified Modeling
Language) [25] does not provide customized semantic constructs
related to software maintenance, we propose an UML profile [26]
that supports analyzing and predicting maintenance tasks that could
occur in the future.

The UML profile we propose is called SEA (in short SEA for

Software Evolution Analysis) (see Fig. 3) . SEA is defined in Pa-
pyrus [27] EMF-based editor and it provides the following features:

• tracing software evolution history by adding some informa-
tion to each software version. This feature could help to get
an overview about maintenance tasks characteristics, the thing
that could provide some recommendations about choosing
the right program structure.

• studying and deciding which parts of a given software are
more stable than others. This feature could help to predict at
earlier phases the program structure evolution.

• expressing explicitly some semantic terms related to software
maintenance in class diagrams such as data-type module,
function module, composite design pattern...etc. This feature
enhances software comprehension and helps to identify the
decomposition axis of a given software.

«Profile»
SEA

«Stereotype»
stable_module

«Stereotype»
non_stable_module

«Stereotype»
data_type_module

«Stereotype»
function_module

«Stereotype»
used_design_pattern

«Stereotype»
evolution_history

 + date_from_to: String [1]
 + versions: String [*]

«Stereotype»
business_function

«Stereotype»
stable_business_function

«Stereotype»
non_stable_business_function

«Stereotype»
version

 + name: String [1]
 + number_of_total_functions: Integer [1]
 + number_of_total_data_types: Integer [1]
 + number_of_added_functions: Integer [1]
 + number_of_added_data_types: Integer [1]
 + number_of_changed_functions: Integer [1]
 + number_of_changed_data_types: Integer [1]

«Metaclass»
Class

«Metaclass»
Package

«Metaclass»
Comment

«Metaclass»
Operation

Figure 3: SEA: an UML profile for analyzing software evolution.

4.2 Stereotypes for analyzing software modularity

Marking modular and crosscutting software parts. Modular-
ity in software architecture helps to optimize software maintenance
cost. It permits also to encapsulate concerns and minimize crosscut-
ting concerns effect. Thus, expressing modularity concepts explic-
itly in models and diagrams helps software developers to explore
at early stages of software development the decomposition axis
that is dominant. This helps to recommend the right kind of fu-
ture maintenance tasks that are modular and to avoid those which
are crosscutting. In this direction, SEA permits to mark explicitly
in class diagram which elements represent modular concerns and
which elements represent crosscutting concerns.

Until now, SEA supports two concerns (or two decomposition
axes): data-types concern and functions concern. In this context, we
propose the following stereotypes:

• <<data type module>>: it extends the meta class Class and
it is used to precise classes that belong to data-types concern
when software architecture is built according to Composite
design pattern.

• <<function module>>: it extends the meta class Class and
it is used to precise classes that belong to functions concern

www.astesj.com 1336

http://www.astesj.com

A. Ajouli / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1334-1342 (2021)

and that encapsulate program business code when software
architecture is built according to Visitor design pattern.

• <<business function>>: it extends the meta class Operation
and it is used to mark methods that contain program busi-
ness code. It could be used especially in Composite pattern
structure to show that business code is crosscutting among
different modules. This feature helps software developers to
be aware of the cost of maintenance tasks performed with
respect to functions.

Fig 4 shows an example of how to precise explicitly mod-
ules/classes that belong to the concern data-types by applying
<<data type module>> to class diagram. In the example, we see
explicitly that classes Rectangle and Circle are marked as data-type
modules. In the same example, methods print() and show() are
marked explicitly as business code. This shows visually that busi-
ness code is crosscutting among program modules which gives an
indication that maintenance tasks performed with respect to func-
tions are costly.

Shape

 + print()
 + show()

«data_type_module»
Rectangle

«business_function» + print()
«business_function» + show()

«data_type_module»
Circle

«business_function» + print()
«business_function» + show()

Figure 4: Use of SEA in marking modular data-types concern.

Shape

 + print()
 + show()
 + accept(in v: Visitor)

Rectangle

 + accept(in v: Visitor)

Circle

 + accept(in v: Visitor)

Visitor

 + visit(in r: Rectangle)
 + visit(in c: Circle)

«function_module»
Show

 + visit(in r: Rectangle)
 + visit(in c: Circle)

«function_module»
Print

 + visit(in r: Rectangle)
 + visit(in c: Circle)

Figure 5: Use of SEA in marking modular functions concern.

Fig 5 shows how to use <<function module>> stereotype to
indicate that business code is encapsulated. This is used when the
program is structured with respect to Visitor design pattern. We re-
mark that classes Show and Print encapsulate respectively show and
print business codes. The fact that these two classes are marked ex-
plicitly as functions indicates that software maintenance performed
with respect to functions is not costly.

Precising modular program decomposition visually on diagrams
helps to guide software developers to perform the right kind of main-
tenance that respects the existing concern. If they have to perform a
crosscutting maintenance, they could be at least ready early to apply
some tools or techniques that transform automatically the actual

architecture to another one that supports modular maintenance (for
example using reversible transformations among Composite and
Visitor [13]).

Marking stable and changeable software parts. In order to pre-
dict future software evolution at early stages, one should predict
which software parts tend to change sharply. For this purpose, we
propose the following stereotypes:

• stable business function vs non stable business function:
these two stereotypes extend the meta class Operation. The
former is used to mark functions/methods that would not be
sharply changed. The latter marks probable functions that
could change drastically in the future.

• stable module vs non stable module: these two stereo-
types extend the meta class Class. The former is used to
mark classes/modules that would not be sharply changed, or
will have small changes that do not influence the software
architecture. The latter marks classes/modules that could
radically change.

Fig. 6 shows how to apply stereotypes mentioned above to a
class diagram. For example, after marking software parts as stable
or non stable, one could identify which parts seems to be more stable
than others. In case of finding that stable data-types modules num-
ber is greater than stable functions number, then, the decision could
be biased to choose Visitor pattern as a future software architecture
(since business code tend to change more than data-types).

Shape

 + print()
 + show()

«stable_module»
Rectangle

«stable_business_function» + print()
«non_stable_business_function» + show()

«non_stable_module»
Circle

«stable_business_function» + print()
«non_stable_business_function» + show()

Figure 6: Use of SEA in marking changeable and stable software parts.

4.3 Stereotypes for software evolution history tracing

With time, software evolution could cause software architecture
degeneration [28]. So, having a backup for each version is neces-
sary and helps to get back to the non degenerated version. This
is already existing by saving old versions. In our approach, we
propose the stereotype <<evolution history>> (extends meta-class
Package) which permits to precise explicitly on a package including
all software versions that this package contains software evolu-
tion history. The proposed stereotype provides two tagged values:
<<date from to>> and <<versions>>. The former is used to indi-
cate visually the period of time during which versions included in a
package stereotyped <<evolution history>> are built. The latter is
used to list all versions that are built in the period of time indicated
by <<date from to>>. These tagged values permit to add valuable

www.astesj.com 1337

http://www.astesj.com

A. Ajouli / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1334-1342 (2021)

visual data that could be used to assess the stability of software
during a period of time.

Fig. 7 shows how to apply <<evolution history>> stereotype:
the package software X (stereotyped <<evolution history>>) in-
cludes three sub-packages that include respectively three versions
of software X.

Soft_X_V1 Soft_X_V2 Soft_X_V3

«evolution_history»
{date_from_to , versions=[] }

Software_X

Soft_X_V1 Soft_X_V2 Soft_X_V3

Figure 7: Tracing software evolution with <<evolution history>> stereotype.

The second stereotype that is related to software evolution his-
tory is the stereotype <<version>> which extends meta-class Pack-
age. It provides information about each version of a given software.
It contains seven tagged values:

• name: version name

• number of total data types: total number of classes of cur-
rent version

• number of total functions: total number of methods of cur-
rent version

• number of added data types: number of classes that have
been added to the previous version to get the current version

• number of added functions: number of methods that have
been added to the previous version to get the current version

• number of changed data types: number of classes that have
been changed to get the current version

• number of changed functions: number of methods that have
been changed to get the current version

Tagged values mentioned above permit to provide visual in-
formation about the behavior of software evolution. Getting a vi-
sual access to added classes and methods number during switching
among software versions helps to get an overview about the rec-
ommended software architecture that could optimize maintenance
cost. For example, if the percentage of number of added data types
comparing to number of total data types is always greater than
the percentage of number of added functions comparing to num-
ber of total functions and the current architecture is implemented
with respect to Visitor pattern, then it will be better to switch the pro-
gram structure into Composite pattern in order to keep maintenance
modular with respect to data-types (see more details in Sect. 5).

Fig. 8 shows how to apply <<version>> stereotype: the pack-
age soft X V1 (stereotyped <<version>>) shows the seven defined
tagged values that permits to note helpful information about soft-
ware evolution behavior related to soft X V1.

«version»
Soft_X_V1

«version»

name
number_of_total_functions=0
number_of_total_data_types=0
number_of_added_functions=0
number_of_added_data_types=0
number_of_changed_functions=0
number_of_changed_data_types=0

Figure 8: Adding helpful information to a software version by applying <<version>>
stereotype.

4.4 Visualizing design patterns

Many programmers face some difficulties when implementing de-
sign patterns. Thus, visualizing in design phase some information
about the design pattern that will be implemented later orients pro-
grammers early to cover any lack of knowledge about the indicated
design pattern. In addition, marking design patterns explicitly on
diagrams enhances software comprehension.

Marking information about chosen design patterns on diagrams
could also assist used techniques in design pattern detection [29]
and provide relevant data for data analysis and classification.

To reify this idea, we propose the stereotype <<used design-
pattern>> that extends the meta-class Comment. It could be asso-

ciated to the package that includes the hole software project and
indicates information about the chosen design patterns to implement.
Provided information includes pattern name, pattern uses, modular
maintenance tasks permitted, crosscutting maintenance tasks...etc.
Fig. 9 shows how to apply <<used design pattern>> on comments.

Software_X

«used_design_pattern»
name: Composite
modular maintenance: with respect to data-types
non-modular maintenance: with respect to functions

Figure 9: Use of SEA in visualizing information about chosen design patterns.

5 Application of SEA on a real software

5.1 An overview about JHotDraw evolutions

We study the utility of SEA in analyzing JHotDraw [30] evolutions.
JHotDraw is a framework for two-dimensional graphics used for
structured drawing editors. It is implemented in Java and it is based
on Erich Gamma’s JHotDraw, which is copyright 1996, 1997 by
IFA Informatik and Erich Gamma [31].

We define the following metrics to use them in the rest of this
section:

• Vi: a version i of JHotDraw where 1 <= i <= 13 (we study
here 13 versions of JHotDraw)

www.astesj.com 1338

http://www.astesj.com

A. Ajouli / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1334-1342 (2021)

• CNVi: classes number in version Vi

• MNVi: methods number in version Vi

• ACV1: added classes number to version V1 to obtain version
Vi

ACV1 = CNVi −CNV1

• AMV1: added methods number to version V1 to obtain ver-
sion Vi

AMV1 = MNVi − MNV1

• ACVi−1: added classes number to version Vi − 1 to obtain
version Vi

ACVi−1 = CNVi −CNVi−1

• AMVi−1: added methods number to version Vi − 1 to obtain
version Vi

AMVi−1 = MNVi − MNVi−1

• RACV1: rate of added classes number to version V1 to obtain
version Vi

RACV1 = ACV1
CNV1

• RAMV1: rate of added methods number to version V1 to
obtain version Vi

RAMV1 = AMV1
MNV1

• RACVi−1: rate of added classes number to version Vi − 1 to
obtain version Vi

RACVi−1 = ACVi−1
CNVi−1

• RAMVi−1: rate of added methods number to version Vi − 1
to obtain version Vi

RAMVi−1 = AMVi−1
MNVi−1

The table shown in Fig. 10(a) illustrates JHotDraw evolution
during 11 years. During this period of time, there were 13 versions
of JHotDraw (5.2, 5.3, 5.4 b1, 5.4 b2, 6.0 b1, 7.0.8, 7.0.9, 7.1, 7.2,
7.3.1, 7.4.1, 7.5.1 and 7.6). We call here each version by Vi where
1 <= i <= 13. The first column of the table mentions the version
name (V1, V2,...,V13), the second column mentions classes number
in Vi (CNVi) and the third column mentions methods number in Vi

(MNVi).
Like any software, JHotDraw is influenced by Lehman law [1]

as shown by the shape of both curves of CNVi progress (Fig. 10(b))
and MNVi progress (Fig. 10(c)). We remark that classes number,
which was 148 in V1, increases to reach 672 in V13, and methods
number jumps from 1229 in V1 to 5885 in V13. Considering these
evolutions, we apply some stereotypes of SEA profile to show its util-
ity in analyzing software evolution during earlier stages of software
process.

Vi CNVi MNVi

V1 148 1229
V2 208 1896
V3 296 2723
V4 301 2809
V5 301 2809
V6 343 2809
V7 487 4234
V8 463 4285
V9 621 5486
V10 638 5627
V11 639 5582
V12 669 5845
V13 672 5885

(a) Classes number and Methods
number of each version (data ex-
tracted from [32]).

C
N

0

200

400

600

800

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

(b) Evolution of JHotDraw classes number (CNVi) dur-
ing 11 years.

M
N

0

2000

4000

6000

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

(c) Evolution of JHotDraw methods number (MNVi)
during 11 years.

Figure 10: Variations of classes number and method numbers during JHotDraw
evolution.

5.2 Using SEA to trace JHotDraw evolutions

To make JHotDraw evolutions easy to analyze in the design activity
of software process, we apply stereotypes <<evolution history>>
and <<version>>. The former is applied to a package that includes
all versions of JHotDRaw during 11 years and the latter is applied
to each package that includes a version Vi of JHotDraw.

Application of <<evolution history>> stereotype The target of
applying <<evolution history>> stereotype is to add information
about the period of time in which JHotDraw versions are built and
also about number and names of versions. This information is rep-
resented by defined tagged values that characterize the mentioned

www.astesj.com 1339

http://www.astesj.com

A. Ajouli / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1334-1342 (2021)

stereotype.
Fig. 11 shows how <<evolution history>> stereotype and its

tagged values are applied. By using this stereotype, software devel-
opers could create a package that includes all versions of JHotDraw
and marks this package as a special package to trace JHotDraw
evolutions history. In addition, they could note information such
as ”date from to=2000 to 2011” and list different versions that has
been elaborated during this period.

«evolution_history»
{date_from_to=2000_To_2011 , versions=[V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13] }

JHotDraw_versions

Figure 11: Application of <<evolution history>> stereotype to JHotDRaw.

In fact, the expressiveness provided by the stereotype
<<evolution history>> permits to assess the stability of JHotDraw.
The stereotype <<evolution history>> provides information about
the rate of versions number of JHotDraw by a given period of time
(here 13 versions by 11 years) which could evaluate the impact of
JHotDraw evolution on total development cost. It motivates also
software developers to focus on studying the switch from Vi to Vi+1
and deduce lessons for future evolutions.

Application of <<version>> stereotype As detailed in Sect. 4,
the stereotype <<version>> has 7 tagged values. We consider here
only name, number of total functions, number of total data types,
number of added functions and number of added data types. For
each version Vi of JHotDraw, software developers could ap-
ply the stereotype <<version>> to the package that contains Vi

and they could assign a value to each tagged value. For ex-
ample, Fig. 12 shows the main package that is stereotyped as
<<evolution history>> and inside of it the set of packages stereo-
typed as <<version>> that represent the 13 versions of JHotDraw.

Figure 12: Application of <<version>> stereotype to JHotDRaw.

For each version Vi, we assume that software developers mark:

• name of the version (example: for version V1, name is 5.2)

• number of total data types (example: for version V13, num-
ber of total data types= 672)

• number of total functions (example: for version V13, num-
ber of total functions= 5885)

• number of added data types (example: for version V13, num-
ber of added data types= 524)

• number of added functions (example: for version V13, num-
ber of added functions= 4656)

5.3 Utility of SEA in JHotDraw evolutions analysis

As shown in the two last paragraphs, the application of stereotypes
<<evolution history>> and <<version>> adds explicit informa-
tion about each version of JHotDraw (the thing that UML does
not provide). This information makes packages that includes dif-
ferent versions being more expressive and informative about how
JHotDraw (or any other software) evolves. This helps software de-
velopers to analyze easily the growth of JHotDraw at design phase
and to take the right design decisions.

Let’s assume a scenario in which a software developer analyzes
information marked explicitly on packages that represents JHot-
Draw versions (each package is stereotyped as <<version>>):

JHotDraw evolution analysis scenario based on SEA applica-
tion We associate to each tagged value a metric from those pre-
sented above:

• number of total data types is represented by CNVi

• number of total functions is respresented by MNVi

• number of added data types is represented by ACV1

• number of added functions is respresented by AMV1

The table shown in Fig. 13(a) resumes values that are calculated
basing on data collected from packages stereotyped as <<version>>.
It shows variations of RACV1 and RAMV1 for each version Vi. The
curve shown in Fig. 13(b) visualizes the progress of RACV1 and
RAMV1 during 11 years. We remark that in all versions RAMV1
is greater than RACV1 which means that the percentage of added
methods in each version comparing to initial number of methods
in V1 is greater than the percentage of added classes comparing to
initial number of classes in V1.

The fact that RAMV1 is always greater than RACV1 during 11
years of JHotDraw evolution indicates that maintenance tasks are
applied more on methods. We could deduce in this case that soft-
ware developers should recommend to use Visitor design pattern if
it is not already used in JHotDraw.

www.astesj.com 1340

http://www.astesj.com

A. Ajouli / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1334-1342 (2021)

Vi RACV1 RAMV1

V2 0.4 0.54
V3 1 1.21
V4 1.03 1.28
V5 1.03 1.28
V6 1.31 1.64
V7 2.29 2.44
V8 2.12 2.48
V9 3.19 3.46
V10 3.31 3.57
V11 3.31 3.54
V12 3.52 3.75
V13 3.54 3.78

(a) Rates of added classes and meth-
ods number in a version Vi compar-
ing to first version of JHoDraw V1.

RAMV1RACV1

(b) Rates evolution of added classes and methods number in a version Vi comparing
to first version of JHoDraw V1.

Figure 13: Study of Rates evolution of added classes and methods number in a
version Vi comparing to first version of JHoDraw V1.

Let’s now interpret evolutions from one version to its succes-
sor version. The table illustrated in Fig. 14(a) shows variations
of RACVi−1 and RAMVi−1. We remark that RACV of version V2
is 0.4 and its RAMV is about 0.54 which means that version V2
of JHotDraw grows by 40% of V1 classes number and 54% of V1
methods number. Hence, maintenance tasks that switches V1 to V2
are applied more on methods (functions decomposition axis). This
case occurs 5 times against 7 times in which maintenance tasks are
applied more on classes (data-types decomposition axis). So, the
switch from version to version shows that maintenance tasks change
their behavior: they are applied 5 times with respect to functions
decomposition axis against 7 times with respect to data-types de-
composition axis. In this case, Composite design pattern seems to
be the best choice for the future versions.

Lessons By analyzing JHotDraw evolutions as done above, we
deduce that long-term evolution shows that Visitor design pattern
is the best choice to optimize maintenance cost. But, variation in
targeted decomposition axis due to the switch from version to ver-
sion indicates that JHotDraw should change its architecture in order
to keep maintenance being modular (software developers could use

automatic reversible transformations among Composite and Visi-
tor each time they remark that maintenance tasks would change
behavior when switching from version to version).

Vi RACVi−1 RAMVi−1

V2 0.4 0.54
V3 0.42 0.436
V4 0.017 0.031
V5 0.0 0.0
V6 0.14 0.15
V7 0.42 0.3
V8 -0.049 0.012
V9 0.34 0.28
V10 0.027 0.025
V11 0.002 -0.007
V12 0.047 0.039
V13 0.004 0.006

(a) Rates of added classes and methods
number in a version Vi comparing to ver-
sion Vi−1.

RAMVi-1RACVi-1

(b) Rates evolution of added classes and methods number in a version Vi comparing
to version Vi−1.

Figure 14: Study of Rates evolution of added classes and methods number in a
version Vi comparing to version Vi−1.

6 Conclusion and future work
We have defined an UML profile called SEA which could help soft-
ware developers to analyze and predict maintenance tasks in early
activities of software process. To reify our approach we defined
some stereotypes that support treating maintenance issue in design
phase of software development. SEA treats three main issues related
to software evolution:

• Analyzing and predicting maintenance tasks by defining
stereotypes that allow to trace software evolution history.
They permit also to precise software parts that are more prob-
able to change in the future and those which could stay stable.
This feature helps to recommend the right software architec-
ture that supports changes without extra cost.

• Marking explicitly on class diagrams software parts that are

www.astesj.com 1341

http://www.astesj.com

A. Ajouli / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1334-1342 (2021)

encapsulated in modules and those that are crosscutting. For
example, in Composite pattern, components classes represent
data-types modules and methods/functions represent cross-
cutting concern. This feature permits to precise visually and
easily modular concerns and crosscutting concerns, the thing
that permits to identify quickly which kind of maintenance
tasks is preferred.

• Visualizing in design phase design patterns that will be imple-
mented later. This feature enhances software comprehension
and helps to assimilate the chosen design pattern use and
properties before implement it (sometimes programmers face
difficulties to understand some design patterns). This could
also give an overview about maintenance tasks that could
be modular with respect to a given design pattern and those
which could not. In the last case, software developers could
use appropriate tools to switch program structure into another
design pattern that is more convenient (such as automatic re-
versible transformation among Composite and Visitor [13]).

SEA is partially validated by apply it on JHotDraw evolution.
This partial validation shows that it is possible to analyze software
evolution history and predict the kind of maintenance tasks that
could occur in the future. Our approach validation still partial until
applying all SEA stereotypes to JHotDraw and also to other case
studies. As a future work, we look for developing an algorithm
based on supervised data analysis and classification to exploit data
provided by SEA in models and diagrams to predict automatically
future maintenance tasks kind.

Conflict of Interest The authors declare no conflict of interest.

References
[1] M. M. Lehman, “Laws of software evolution revisited,” in 5th European Work-

shop on Software Process Technology (EWSPT’96), volume 1149/1996 of
LNCS, 108–124, Springer, 1996.

[2] L. Erlikh, “Leveraging legacy system dollars for e-business,” in IT Profes-
sional,, 17–23, 2000.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of
reusable object-oriented software, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[4] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Commun. ACM, 15, 1053–1058, 1972.

[5] G. M. Rama, N. Patel, “Software modularization operators,” in IEEE Interna-
tional Conference on Software Maintenance (ICSM), 2010.

[6] C. Szyperski, Component Software: Beyond Object-Oriented Programming,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
2002.

[7] G. Kiczales, E. Hilsdale, “Aspect-oriented Programming,” SIGSOFT Softw.
Eng. Notes, 26(5), 313–, 2001, doi:10.1145/503271.503260.

[8] A. Ajouli, “A Shadow Structure for Modularity of Java Program Evolution,”
in 2015 41st Euromicro Conference on Software Engineering and Advanced
Applications, 39–42, 2015, doi:10.1109/SEAA.2015.28.

[9] P. Wadler, “The Expression Problem,” 1998, note to Java Genericity mailing
list.

[10] K. B. Bruce., “Some challenging typing issues in object-oriented languages.”
Electronic Notes in Theoretical Computer Science,, 82, 2003.

[11] C. Clifton, T. Millstein, G. T. Leavens, C. Chambers, “MultiJava: Design
rationale, compiler implementation, and applications,” ACM Trans. Program.
Lang. Syst., 28, 517–575, 2006.

[12] J. Garrigue., “Programming with polymorphic variants.” in ML Workshop,,
1998.

[13] A. Ajouli, J. Cohen, J.-C. Royer, “Transformations between Composite and
Visitor Implementations in Java,” in Software Engineering and Advanced
Applications (SEAA), 2013 39th EUROMICRO Conference on, 25–32, 2013.

[14] J. Cohen, R. Douence, A. Ajouli, “Invertible Program Restructurings for
Continuing Modular Maintenance,” in Software Maintenance and Reengi-
neering (CSMR), 2012 16th European Conference on, 347 –352, 2012, doi:
10.1109/CSMR.2012.42.

[15] A. Ajouli, K. Henchiri, “MODEM: an UML profile for MODEling and Pre-
dicting software Maintenance before implementation,” in 2019 International
Conference on Computer and Information Sciences (ICCIS), 1–5, 2019, doi:
10.1109/ICCISci.2019.8716421.

[16] R. Yongchang, X. Tao, L. Zhongjing, C. Xiaoji, “Software Maintenance Pro-
cess Model and Contrastive Analysis,” 2011, doi:10.1109/ICIII.2011.324.

[17] H.-J. Kung, C. Hsu, “Software Maintenance Life Cycle Model,” 113 – 121,
1998, doi:10.1109/ICSM.1998.738499.

[18] I. Cote, M. Heisel, “A UML Profile and Tool Support for Evolutionary Require-
ments Engineering,” 161 – 170, 2011, doi:10.1109/CSMR.2011.22.

[19] H. Marouane, C. Duvallet, A. Makni, R. Bouaziz, B. Sadeg, “An UML profile
for representing real-time design patterns,” Journal of King Saud University -
Computer and Information Sciences, 30(4), 478 – 497, 2018.

[20] J. Dong, S. Yang, “Visualizing design patterns with a UML profile,” in HCC,
2003.

[21] G. M. Ana Garis, Daniel Riesco, “Defining the Proxy Design Pattern using
UML Profile,” in Software Engineering Project of National University of San
Luis, 2006.

[22] K. Ngee Loo, S. Peck Lee, “Representing design pattern interaction roles and
variants,” 6, 2010, doi:10.1109/ICCET.2010.5486125.

[23] J. Cohen, A. Ajouli, “Practical use of static composition of refactoring op-
erations,” in ACM Symposium On Applied Computing, 6 pages, Portugal,
2013.

[24] R. Malhotra, K. Lata, “An empirical study on predictability of software main-
tainability using imbalanced data,” Software Quality Journal, 28, 2020, doi:
10.1007/s11219-020-09525-y.

[25] M. Gogolla, Unified Modeling Language, 3232–3239, Springer US, Boston,
MA, 2009, doi:10.1007/978-0-387-39940-9 440.

[26] L. Fuentes, A. Vallecillo, “An introduction to UML profiles,” UPGRADE, The
European Journal for the Informatics Professional, 5, 2004.

[27] “Eclipse Papyrus,” https://projects.eclipse.org/projects/

modeling.mdt.papyrus.

[28] L. Hochstein, M. Lindvall, “Combating architectural degeneration: a survey,”
Inf. Softw. Technol., 47, 643–656, 2005.

[29] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. T. Halkidis, “Design
Pattern Detection Using Similarity Scoring,” IEEE Trans. Softw. Eng., 32,
896–909, 2006, doi:10.1109/TSE.2006.112.

[30] E. Gamma, I. Informatik, “JHotDraw as Open-Source Project,” http://www.
jhotdraw.org/.

[31] “Source Forge: JHotDraw project,” https://sourceforge.net/

projects/jhotdraw/.

[32] K. Johari, A. Kaur, “Effect of Software Evolution on Software Metrics: An
Open Source Case Study,” SIGSOFT Softw. Eng. Notes, 36(5), 1–8, 2011,
doi:10.1145/2020976.2020987.

www.astesj.com 1342

https://projects.eclipse.org/projects/modeling.mdt.papyrus
https://projects.eclipse.org/projects/modeling.mdt.papyrus
http://www.jhotdraw.org/
http://www.jhotdraw.org/
https://sourceforge.net/projects/jhotdraw/
https://sourceforge.net/projects/jhotdraw/
http://www.astesj.com

	 Introduction
	Related work
	Background
	SEA specification
	Overview
	Stereotypes for analyzing software modularity
	Stereotypes for software evolution history tracing
	Visualizing design patterns

	Application of SEA on a real software
	An overview about JHotDraw evolutions
	Using SEA to trace JHotDraw evolutions
	Utility of SEA in JHotDraw evolutions analysis

	Conclusion and future work

