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The optimum performance of power plants has major technical and economic benefits. A case
study in one of the Malaysian power plants reveals an escalating harmonic failure trend in
their Continuous Ship Unloader (CSU) machines. This has led to a harmonic filter failure
causing performance loss leading to costly interventions and safety concerns. Analysis of the
harmonic parameter using Power Quality Assessment indicates that the power quality is stable
as per IEEE standards; however, repetitive harmonic failures are still occurring in practice.
This motivates the authors to explore whether other unforeseen events could cause harmonic
failure. Usually, post-failure plant engineers try to backtrack and diagnose the cause of power
disturbance, which in turn causes delay and disruption to power generation. This is a costly and
time-consuming practice. A novel event-based predictive modelling technique, namely, Event
Modeller Data Analytic (EMDA), designed to inclusive the harmonic data in line with other
technical data such as environment and machine operation in the cheap computational effort is
proposed. The real-time Event Tracker and Event Clustering extended by the proposed EMDA
widens the sensitivity analysis spectrum by adding new information from harmonic machines’
performance. The added information includes machine availability, utilization, technical data,
machine state, and ambient data. The combined signals provide a wider spectrum for revealing
the status of the machine in real-time. To address this, a software-In-the-Loop application
was developed using the National Instrument LabVIEW. The application was tested using two
different data; simulation data and industrial data. The simulation study results reveal that
the proposed EMDA technique is robust and could withstand the rapid changing of real-time
data when events are detected and linked to the harmonic inducing faults. A hardware-in-
the-Loop test was implemented at the plant to test and validate the sensitivity analysis results.
The results reveal that in a single second, a total of 2,304 input-output relationships were
captured. Through the sensitivity analysis, the fault causing parameters were reduced to 10
input-output relationships (dimensionality reduction). Two new failure causing event/parameter
were detected, humidity and feeder current. As two predictable and controllable parameters,
humidity and feeder velocity can be regulated to reduce the probability of harmonic fluctuation.

1 Introduction

This paper is an extension of work originally presented in the confer-
ence Proceedings of the 2019 IEEE/SICE International Symposium
on System Integration (SII) [1]. Power Quality (PQ) monitoring
has been the focus of research and development for many years.
Recently, [2]–[3] addressing the PQ issues in various industry and
proposing different methods in tackling this issues.The main focus
is to protect the equipment and minimize the losses while increasing
the levels of operational safety. However, systems are becoming
more complex as they are being further developed for improvement.
Huge numbers of control drive and other non-linear loads have been

installed to satisfy the demands of modern lifestyles. It has led to
instability of the power system, creating high noise levels in the
system grids and decaying the electrical distribution system. Even
worse, climate change has an impact on the environment that the
system operates in. In some cases, particularly for hot countries, the
electrical distribution system requires air conditioning to protect the
electrical equipment in the substation. In normal circumstances, if
the air conditioning fails, it may surpass the permitted set point and
may not protect the equipment. When the global temperature rises,
the potential rate of failure also increases. Research has shown that
the long-term average global temperature is increasing, which has a
significant negative impact on the performance of the machines [4].
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Figure 1: Various techniques of Power Quality Classification

The arrangement of the three principal stages in PQ Classification: (1) Feature extraction - a key transformation of the fundamental signals into time-frequency based
information. A broad selection of Fourier Transform, Wavelet Transform, Stockwell Transform, Hilbert-Huang Transform, Gabor Transform and others. (2) Feature
Selection - a key method in selecting the most suitable features from the feature extraction stage while discarding the redundant features. Few main optimizers include
Genetic Algorithm, Particle Swarm Optimization and Ant Colony Optimization. (3) Classifier – a selection of artificial intelligence tools in classifying PQ disturbances such
as artificial neural network, support vector machines, and fuzzy expert.

Earlier, conventional methods use manual configurations and
visual inspection to monitor the quality of the power supply in
the system. This method was too difficult to interpret and time-
consuming. Later, an automated classification system, which uses
the signal processing technique was developed and currently advanc-
ing with various Machine Learning and Deep Learning approach.
Various combinations of features extraction and classifiers have
proven to locate PQ disturbances accurately while using synthetic
data. However, this is not the case with real industry data. Real
industry data are complex and much more complicated when there
are external or environmental factors that could potentially influence
the state of the system. This creates a gap in existing techniques,
which motivates authors to investigate the relevance of the environ-
mental parameter to the issue of PQ disturbances. In addition, with
the current emergence of big industrial data, system engineer must
ensure that the system is robust and capable of performing ML/DL
techniques in real-time applications. Disturbance data exists in the
order of microseconds, which greatly enhances the record data [5].In
consequence, it will burden learning classifiers to run unimportant
parameters that result in high computation. The authors, therefore,
suggest a method that could minimize the dimensional by selecting
the most relevant data to be trained automatically, while incorpo-
rating a new unknown parameter that was previously considered
irrelevant in the system state.

The aim of this paper is to introduce event-based analysis as a
technique for detecting harmonic failure in real time. The technique
is capable of grouping together high correlation system parameters,
forming an input-output relationship that is not limited to internal
parameters only. As such, the homogenized correlation system will
indicate the possible root cause of harmonic failures, while eliminat-
ing non-important parameters in real-time [6]. This paper presents
a real-time simulation of CSU machines, which shows the changes
in the output parameters of the input activity. The data will be used
to measure the suitability and applicability of event modelling tech-
niques in the power system environment. It is then extended to the
actual plant data, exploring the integration of this dynamic platform
with the Key Performance Indicator (KPI) in order to recognize the

system operating pattern. This data analytics technique expects to
predict the homogenized system parameter that could present the
current state of the system in real time.

1.1 Power Quality Disturbance

A number of PQ disturbance types are implicated: voltage sag, volt-
age swell, transients, harmonics, fluctuations, flickering, voltage
imbalance, interruption, DC offset and notches. A high level of
engineering expertise [7] is needed to effectively diagnose these
PQ disturbances. Preventing PQ disturbances is critical to mini-
mize power interruptions between the power utility and the end user.
With modern technology, a substantial amount of research has been
devoted to alleviating these problems using signal processing tech-
nique. This technique has three principal stages which incorporate
feature extraction, feature selection and classification.

Feature extraction is a key transformation of the fundamental
signals into time-frequency based information. It can be extracted
directly from the original measurement either from a transformed
domain or from the signal model parameters [8]. Several approaches
include short-time Fourier transform [9], wavelet transform [10],
wavelet packet transform [11], Hilbert Huang transform [12], Stock-
well transform [13], Gabor-Wigner transform [14], and other hybrid
transform-based [15].

Feature selection is a key method in selecting the most suitable
features from the feature extraction stage while discarding the redun-
dant features. Based on the extraction data, optimization techniques
such as Ant Colony Optimisation [16], Genetic Algorithm [17], and
Particle Swarm Optimisation [18] are the common algorithm used
in locating PQ disturbances.

Classification is the process of predicting the class of data points.
It uses an algorithm to implement classification by approximating
the mapping function from the input variable to the output variable.
One of the most popular and influential types of machine learning
algorithms is the Artificial Neural Network. Other machine learning
includes Support Vector Machine [19] and fuzzy expert system [20].
Figure 1 illustrates the three main phases of the PQ classification.
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[21]–[22] provide a detailed review of these techniques.

1.2 Power Quality Standards

Harmonic assessments of utility systems require procedures in place
to ensure that the efficiency of the voltage supplied to all consumers
is adequate [23]. However, most of the harmonic issues arise at
the end of the consumer. Their devices contain non-linear loads
resulting in resonance conditions [23]. These non-linear loads are
the current harmonic sources. The system voltage appears stiff to
individual loads, and the loads draw distorted current waveforms. It
is therefore important to maintain the PQ International standard, to
provide the guidelines and limits for the acceptable levels of com-
patibility, between consumer equipment and the system utilities.

The International Standard IEEE 519-1992 sets the limit for both
harmonic voltages and currents at the Point of Common Coupling
(PCC) between the end-user and the utility supplier. It limits Voltage
Total Harmonic Distortion (THD), defined as the ratio of the RMS
value of the harmonic voltage to the RMS value of the fundamental
(50Hz) voltage, to a maximum of 5%. Individual voltage harmonic
magnitudes are limited to 3% of the fundamental voltage value [24].
The International Standard IEC 61000-3-4 sets the limits for the
emission of harmonic currents in low-voltage power supply systems
for the requirement with rated current greater than 16A [25].

1.3 Environmental Parameters

Compliance with the International PQ Standards is the policy for
both utilities and customers. In order to maintain a good PQ system,
an enormous amount of research and PQ analysis has been under-
taken to ensure it complies with the standards. However, in some
cases, the machine still fails, although it complies with the standard.
It is important to note that most of these research focuses on the
fundamental of the electrical system and leave behind the external
parameters that may have a substantial effect on the problem. In
[26], the authors suggest that there could be further environmental
and operational factors that could also affect the performance of
power systems.

1.4 Problem Statement

In this article, we intend to investigate what possible factors that
could link a well-maintained machines with a proper operation to
a frequent harmonic failure incidents. While PQ parameters are
eliminated by its healthy measurement, an alternative technique to
solve this harmonic failure mystery is required to evaluate if there is
an existence of a different parameter that could lead to this failure.
Therefore, the authors are proposing the Event Modeller techniques
which could link the internal and external parameters together, to
create a cause-effect relationship, while updating the system status
in near real-time before the machine fails. The implementation of
the event modeller technique recently has shown positive practical
findings in various area and application such as high-speed causal
prediction modelling [27, 28], real-time Remaining Useful Life
(RUL) estimation [29], and as a middleware to highly coupled in-
put variable in zero-defect manufacturing [30], and predicting N2O
Emission [31].

1.5 Contribution & Advantages

The first contribution of this paper is to proposed a robust system
engineering tools that be able to formulate a piece of new knowledge
information in the diagnosis of PQ disturbances in real-time. This
tool is found robust, workable with the dynamic and autonomous
environment while being able to withstand real industry data which
is non-linear and highly influenced with various factors. The sec-
ond contribution of this paper is that the proposed technique could
visualize the group of highly correlated variables in the form of
occurrence matrices in real-time, proposing a mathematics equation
that represents the current state of the system. This is optimum to
system operators who can make a quick decision before the system
fails.

1.6 Challenges

However, implementing this technique in solving PQ problems has
its challenges. The harmonic readings (THD) is taken from the
Multi-Function meter, which is installed at the electrical switchgear.
The reading will not be as accurate as of the conventional method,
but the measurement is sufficient to prove that the PQ parameters
can be eliminated. Another challenge is to determine the threshold
setting. In general, a scenario of events in the actual system varies
according to the system characteristic and its system deterministic.
An event could happen instantaneously, or it may have some delay
before it reached to the target output. For example, the scenario of a
room temperature does not change immediately when the heater or
air conditioner was switched on. In comparison, a dark room will
be immediately bright when the switch was turned on. Both of the
scenarios have made changes to the system state at a different pace.
In order to detect this, a data benchmarking is required which were
decided based on historical data and system expert point of view.

2 Event Modeller Technique
The event modeller technique is designed to investigate the associa-
tion between the observable events (Output Data) with the causal
events (Input Data) through a data mapping concept [30]. It clusters
the system parameters with the highest correlation in the form of
matrices and places them into mutually exclusive blocks. This cre-
ates an input-output relationship, which considers both internal and
external factors. One significant difference between the proposed
event modeller and other traditional data modelling techniques is
how the input data assumes its output data. The traditional method
assumes the input-output relationship as a true representation of a
known data series, while the event modeller technique makes no
assumption about it (unbiased) [32]. This fundamentally makes
the approach non-unbiased vis-à-vis input-output relationship. The
proposed Event Modeller Data Analytic (EMDA) is designed to
find any interceptions between the known influential parameters
(reported in previous literature) and new operational and environ-
mental data by expanding the spectrum and reassessing the relation-
ship between influential parameters on harmonic behaviour. It is a
proven, computationally effective method of analyzing harmonic
behaviour without bias. Borrowing from the Event Tracker [33]
and Event Clustering [34] method, the proposed EMDA extends
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Figure 2: Event Modeller Techniques

The arrangement of the three principal stages in Event Modeller: (1) Event Tracker – A collection of input-output cause-effect detection of a system state with highly
sensitivity index in real-time. (2) Event Clustering – A rank order grouping technique based on the interpretation of the changes of input-output data in the previous stage.
(3) Look-up Table - A population table that links the Key Performance Indicator with the Sensitivity Indexes.

the previous authors’ correlation map by adding the information
from the machine performance metrics. Information such as ma-
chine availability, utilization and performance are combined with
other technical data, to group the highly correlated individual data
together, revealing the machine’s status in real-time. Figure 2 illus-
trates the event modeller techniques, including Event Tracker, Event
Clustering and a Look-up table. Details of each stage will be briefly
discussed in the following subsection.

2.1 EventTracker Algorithm

EventTracker algorithm was introduced [35] to construct a discrete
event framework for online sensitivity analysis (SA). This algorithm
was designed to be applied to highly volatile environments with
real-time scalar data acquisition capabilities (e.g. Internet of Things
(IoT). It uses a cause-effect detection algorithm to dynamically track
events’ triggers and their interrelationship with one another in a
given system. It generates a sensitivity index that measures the rela-
tionship between the triggered data and the event data pairs. High
sensitivity index score will be indicated while the lesser impact
relationship will be eliminated. This will reduce the computational
effort while achieving dimensional reduction. The Event Tracker
is a computationally efficient technique that focuses on the state
changes of the involved system components. It merely takes a snap-
shot of the system states, which helps engineers observe system
performance [6]. Further details on the description and four Event-
Tracker functional parameters (Search Slot, Analysis Span, Event
Threshold and Trigger Threshold) can found in [35].

2.2 Event Clustering Algorithm

Event Clustering Algorithm (EventiC) [34] is designed to improve
the real-time sensitivity analysis, by automatically re-arranging the
input-output relationship in rank order of its importance and rel-
evance. The algorithm applied the Rank Order Clustering (ROC)
technique, which was initially introduced by King, (1980) [36].
This technique interprets the changes in input-output data’s value at
the given level, detecting the coincidence and finally groups it as a
related event. The process of calculating the number of coincidence
occurs at a specified scan rate time interval, to ensure a relationship
weight is established for modelling and control purposes [32]. De-
spite filtering the unimportant relationship between the input-output
relationship, event clustering can identify new influencing parame-
ters that were previously thought irrelevant, making it unique and
interesting to improve the data quality. One key advantage of Even-
tiC compared to EventTracker is that EventiC can assess multiple
input/ output relationship in every single scan, whilst EventTracker
considers multiple input single output relations. A detailed explana-
tion of EventiC algorithm and the basic concept is discussed in [34].
Algorithm 1 shows the main procedure of Event Modeller.

2.3 Look-up Table

A look-up table is an array of data to map input values to output
values. It is used to transform the input data into a more desirable
output format. The look-up table allows replacing run-time com-
putation or logic circuitry with a simpler array indexing operation
[37]. Retrieving a value from a look-up table is faster rather than
examining it from the whole database. With the advantage of the

www.astesj.com 1346

http://www.astesj.com


F.Z.M. Fadzil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1343-1359 (2021)

logical separation of data, it makes it relevant to prepare the data for
machine learning purposes. This EMDA technique’s novelty can be
found in this look-up table, thus a rapid response to changes in the
system’s stability (i.e. the KPIs).

Algorithm 1: Event Modeller

Set Event Modeller Limit (EML);
Set Threshold Setting (Th);
Populate ULTh and LLTh;
Populate All Input Data (TD1, TD2...TDn);
if Triggered Data = Dynamic TD then

Compute TDx = TDn - TDn-1;
Compare TDx with ULTh and LLTh;
if (LLTh<TDx<ULTh) then

TDx = 0;
else

TDx = 1;
end

else
Triggered Data = Static TD;
TDx = TD1,TD2...TDn.;

end
repeat

repeat
Populate All Output Data (ED1,ED2...EDn);
Compute EDx = EDn - EDn-1;
Compare EDx with ULTh and LLTh;
if LLTh<EDx<ULTh then

Set EDx = 0;
else

Set EDx = 1;
end
Populate the models input-output event coincidence

matrix with binary weighting values of exclusive
NOR function;

Average each input-output event coincidence;
Sort rows of the resultant binary matrix into

decreasing order of their decimal weights;
until for every column;

until position of each element in each row and column does
not change;

Calculate the weight for each row i and column j (in a m by
n matrix) using Equation 1 and Equation 2.

Row : Wi =

m∑
j=1

ai j2m− j (1)

Column : W j =

m∑
i=1

ai j2n−i. (2)

2.4 Key Performance Indicator

The use of existing shop-floor in modern manufacturing to measure
and monitor industrial KPIs has been a trend. In [38], the author
used Object Linking and Embedding (OLE) which integrates with
Discrete Event Simulation (DES) modelling capabilities to measure

the KPIs for brewery industry. In [39] the author used data-driven
scheme of KPIs prediction and diagnosis for hot strip mill industry.
In [40], the author proposes an analytics solution for calculating
statistical KPIs in the Human Machine Interface (HMI) layer. There
is a need to translate a suitable KPI that suit the type of operation.
Basic KPIs are calculated directly from the output operation data,
and they serve as the foundation for Overall performance KPIs [41].

Time-based KPIs are data related to time duration, defining
activities associated with production and maintenance. The calcu-
lation of KPI has to consider all these factors to reflect accurate
metrics. Hence it is important to understand the KPI interrelation-
ship. A hierarchical structure for KPI categorization is proposed
by [41]. The time-based KPIs studied in this paper are Availability,
Instantaneous Utilization, Schedule Utilization and Performance.

To complement the Time-Based KPIs, it is useful to look at the
energy consumption and emission contribution that could poten-
tially harm the environment. In general, energy consumption can be
calculated by multiplying the motor rating (kW) with the duration
it operates. There are three states of motor known as run, idle and
stop. During running state, the motor is capable of operating at
its 100% loading while in idle state, the motor operates at 25% of
its loading. Obviously, there is no loading when it stops. Having
the total energy consumption, it is easier to calculate the carbon
footprint; Carbon Dioxide Emissions (kgCO2, kgCO2e), Methane
(kgCH4) and Nitrous Oxide (kgNO2) using the formula in [42].

3 A Case Study
A Continuous Ship Unloader (CSU) is one of the leading bulk ma-
terial handling machine. In a coal-fired power plant, this machine
is used to transport coal from the vessel to the pulverized boiler
through a series of belt conveyors. It has been reported that the
CSU machine in one of the power plants in Malaysia has a fre-
quent harmonic failure. The repetitive incidents lead to catastrophic
failure, which harms the electrical devices. Besides having a vast
replacement cost for the faulty parts, it is also affecting the plant
availability, which concerned the management team. Even worse, it
could pose a potential hazard, to the personnel working in the area
if it is happening again in the future. A thorough Power Quality
(PQ) assessment within the electrical distribution system has been
assessed, but the results have not given any indication of internal
disturbance or fault. Table 1 shows the assessment result for the
CSU machine. To mitigate the problem, an effort to analyze both
internal and environment parameter that has a significant impact
on the system is highly desirable. The authors are keen to embrace
the event modeller techniques, to evaluate the significant correla-
tion between the output and input, which could cause harmonic
failures in the system. A real-time simulation which incorporates
the CSU machine parameters and the event modeller algorithm was
developed using National Instruments LabVIEW.

3.1 Experiment 1: CSU Real-time Data Simulation

The purpose of a real-time simulation is to measure the suitability
and applicability of the event modeller technique in the power sys-
tem environment. To ensure the system incorporates the industrial
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Table 1: Assessment Results for CSU Machine

Parameters Units Min Max Avg

Voltage
Vab 385.9 V 424.0 V 411.2 V
Vbc 216.8 V 423.8 V 382.4 V
Vca 241.8 V 424.1 V 381.5 V

Current
Ia 32 A 1718 A 525.8 A
Ib 46 A 1870 A 639.9 A
Ic 30 A 1568 A 217.6 A

Voltage Unbalance % Unbalance 0.10 % 41.60 % 2.60 %
Current Unbalance % Unbalance 8.80 % 16.70 % 52.80 %
Total Harmonic
Distortion Voltage
(THDV)

THDvab 0.40 % 1.60 % 1.00 %
THDvbc 0.30 % 1.50 % 1.00 %
THDvac 0.50 % 1.90 % 1.10 %

Total Harmonic
Distortion Current
(THDi)

THDia 1.90 % 20.80 % 4.50 %
THDib 1.80 % 25.80 % 3.70 %
THDic 1.90 % 82.20 % 12.00 %

Total Demand
Distortion Current
(TDDi)

TDDia 0.10 % 2.60 % 1.30 %
TDDib 0.10 % 1.80 % 1.20 %
TDDic 0.10 % 2.20 % 0.80 %

Frequency f 49.77 Hz 50.13 Hz 49.98 Hz

Figure 3: Experiment Strategy for Event Modeller Simulation

The arrangement of the three principal stages in the Experiment Strategy for Event Modeller Simulation: Pre-process Data, Analysis and Display.

case study, the requirement specification has been set based on the
following:

1. 8 Event Data (ED’s). This synthetic event data is simulated us-
ing Normal Distribution which represents the CSU Machine
Output Data which includes Voltage, Humidity, Harmonics,
Slewing Movement, Luffing Movement, Travel Movement,
Temperature and Wind Speed;

2. 8 Triggered Data (TD’s). This synthetic TD’s is simulated us-
ing Normal Distribution which represents the CSU Machine
Input data which includes Busy Slew, Busy Luff, Busy Travel,
Busy Bucket Elevator, Slewing Motor Run Bit, Hydraulic
Motor Run Bit, Travel Motor Run Bit and Bucket Motor Run
Bit;

3. Threshold Setting. For the purpose of examining the Trigger
Threshold, an arbitrary 5% threshold setting was set, that
could later be adjusted;

4. Event Modeller Limit. This setting reduces the complexity

of an input-output relationship by its correlation confidence
level. An arbitrary 80% was set, that could later be adjusted;

3.1.1 Experiment Strategy

Sixteen input/output system parameters of a CSU Machine were
sampled from the Allen Bradley PLC-SCADA system using the Fac-
toryTalk view. Once it is proven to be suitable, it will be extended
to 120 parameters, which will be discussed further in Section 3.2.
Data collection was conducted over a single day shift of a machine
operation period, collecting approximately 43,200 lines of 12-hour
data samples.

The sampling frequency follows [43] by applying the right band-
width, time constant and settling time. Having this data in hand,
synthetic data was constructed to have the same nature and prop-
erties as the real CSU machine. The overview of the experimental
methodology is shown in Figure 3. Details of the dataset arrange-
ment will be discussed in the following section.
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Table 2: CSU Real-time Data Simulation Results (Weight) Based on Disturbance

Description Voltage Humidity Harmonic Temperature Wind Speed
Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Overall Maximum 0.8387 0.9996 0.8364 0.9996 0.8370 0.9997 0.8360 1.0000 0.8340 1.0000
Overall Minimum 0.5000 0.6288 0.5000 0.6371 0.5000 0.6360 0.5000 0.6312 0.5000 0.6325
k-Disturbance (Pre) 0.8345 0.9890 0.8287 0.9790 0.8181 0.9791 0.8306 1.0000 0.8424 1.0000
k-Disturbance (Dur) 0.7615 0.8065 0.7781 0.8304 0.7637 0.8137 0.7977 0.8976 0.7848 0.8103
k-Disturbance (Post) 0.7813 0.8667 0.8011 0.8789 0.7897 0.8650 0.8087 0.9310 0.8035 0.8654

3.1.2 Dataset Arrangement

ED is defined as a series of data that represent the state of the system
at a given time [35]. In this simulation, the ED consists of simulated
voltage, humidity, harmonics, machine positioning (slewing, luffing
and travelling), temperature and wind speed. The simulation data
is based on the actual operation and environment data of the CSU
machine events by considering the assessment result in Table 1 and
the location of the power plant located in Malaysia. The plant is
located near to the seaside, which is hot and humid throughout the
year and may tend to have strong winds. On the other hand, the
machine movements are simulated based on the 3-axis movement,
which includes slew (x-axis), luffing (y-axis) and travel (z-axis).

In Discrete Event System, any input variable whose value tran-
sition register as an event is defined as a TD [35]. In this simu-
lation, the TD consists of machine status (slewing, luffing, travel
and bucket) and motor run feedback (slewing, hydraulic, travel and
bucket). For comparison purposes, two types of TD are presented
here known as Static TD and Dynamic TD. Static TD registered
the original TD signal from the source while Dynamic TD multiply
the changes of TD with a threshold setting defined by the system
engineer. Both types of TDs were used in this experiment to investi-
gate which source of data to be selected. This will ensure the event
modeller algorithm provides an accurate sensitivity index or weight
output.

Meanwhile, the threshold level could be adjusted based on the
expert point of view. In this simulation, the threshold level is set at
5% (0.05); thus, the Upper Limit and Lower Limit will automatically
set to 1.05 and 0.95 consecutively. The limits will be multiplied
to the individual data computationally, to calculate the changes of
the current data to the previous data and reflects the algorithm for
weight score using X-NOR logic. The event modeller limit is the
desired weight limits which also could be adjusted based on the
expert point of view. In this simulation, the event modeller limit is
set at (0.8). The weights who score above the Event Modeller Limit
is shaded in the ROC Output table, indicates a significant correlation
between the ED and the TD.

The sequence of TD’s and ED’s is updated every second and
are re-arrangeable according to the weighted score. The weighted
score can take a value of 0.5 and 1. The value is 1 when both or
none of the input/output are triggered. Otherwise, it is 0.5. The
weighted score is then averaged based on the number of iteration.
Having the weight score in real-time, system engineers could easily
notify the management team if there is any disturbance occurs in
the system state by looking at the sequence and the weights. For
trending purposes, a waveform chart is presented to improve the
visibility of the data.

3.1.3 Disturbance Signal

The purpose of this simulation is to test the applicability of the
Event Modeller algorithm in the handling of real-time data, thus
observing the reaction of the system to the abnormal events. To
ensure the system is sensitive to this abnormality, a k-Disturbance
signal is introduced to the system. In this simulation, the data
is simulated in 3 stages known as pre-disturbance, k-disturbance
and post-disturbance. The pre-disturbance refers to the warm-up
stage, which represents the machine normal steady state. The k-
disturbance refers to the fluctuation of the k-event data, in such
generating disturbance to the system. The post-disturbance refers to
the reaction of the abnormal system back to normal steady state. A 5
minutes time interval is selected for each stage, which accumulates
to 15 minutes of sampling time.

In this simulation, 5 ED’s signal, which represents the internal
and environment parameter, has been chosen to be disturbed. This
includes voltage, humidity, harmonic, temperature and wind speed.
The signal data are simulated based on random fluctuation with 5%
disturbance limit from normal operation data capability.

3.1.4 Simulation Results

Table 2 compares the results obtained from the simulation of the
CSU machine against the k-disturbance signal. To present the find-
ings, the performance is measured from the score of the sensitivity
index from two main perspectives, which includes the overall max-
imum and minimum weight, and the average score for each stage.
What stands out in the table is that the value of the weight has
changed drastically between the pre-disturbance and during distur-
bance for all case. For e.g., when the k-disturbance is applied to
the machine voltage using Static TD, the weight value drops from
0.83450 to 0.76154. However, when the k-disturbance is removed,
the weight value rose to 0.78132. These indicate that the system
parameters are sensitive to the disturbance signal introduced in the
system.

It is interesting to note that all ten cases of this study have a com-
mon finding. The transition of average sensitivity index (weight)
from Pre-Disturbance to k-Disturbance have the same reduction
trend with an average of 8.2% reduction for Static TD and 15.94%
reduction for Dynamic TD. Alternatively, when the k-Disturbance
recovers, there is also a trend of increased weight with an average of
3.218% increment for Static TD and 6.023% increment for Dynamic
TD. This finding confirms the interrelation between the triggered
data and the k-disturbance event data, where different TD types have
different performance. The Dynamic TD has a higher percentage of
changes compared to Static TD.
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Figure 4: Tabulation of CSU Machine Failure vs REGEN Failure

The bar chart reveals that the highest number of REGEN faults was reported in October 2018, followedby August 2018, September 2018 and January 2019 consecutively.

On the other hand, it has been observed that the minimum weight
for Static TD is fixed at 0.5000 while Dynamic TD has different
minimum weight scores for each experiment. A possible explana-
tion for this might be that the Dynamic TD captured the changes of
input sensitivity rather than a direct Boolean signal from the input
itself.

3.2 Experiment 2: CSU Real-time Machine Failure
Analysis with KPIs

Harmonic filter failure can be influenced by various factors, such
as faulty device, operator handling, and environmental factors in
which the machine operates. It has also occasionally been affected
by the combination of these factors. Based on the CSU machine
expert point of view, the harmonic problem is associated with the
occurrence of Regenerative Drive (REGEN) fault. In order to access
the REGEN fault events, the abnormal dataset was selected. The
frequency of the REGEN failure was compared with other types of
fault, as presented in Figure 4. The bar chart reveals that the highest
number of REGEN faults was reported in October 2018, followed
by August 2018, September 2018 and January 2019. Although
the highest number of REGEN failures was recorded in October
2018, no report indicated that the REGEN drives had been replaced.
However, the January 2019 reports indicated that the maintenance
team had replaced the REGEN during this month due to a fault.
The January dataset was therefore chosen to further explain the
relationship of the variables using the proposed technique.

3.2.1 Experiment Strategy

Building a solution capable of translating engineering data auto-
matically into high-level management information is the principal
motivation for this experiment. The KPIs shall be calculated based
on the operation of the machine during the selected period. The
method used in [1] is borrowed to run a fault dataset with a time
interval of 5 minutes. The first 5 minutes are the events before the
fault occurs, followed by the fault, and end with the last 5 minutes
that accumulate up to 15 minutes of sampling time. The reason
why this method was adopted is to prove that the event modeller
could instantly solve a complex system without having to run the
system for a longer period. It is easy to sample data in a simulation
environment, as the user can decide when the fault may occur, but
this is not the case with industrial data. The dataset was therefore an-
alyzed to determine which data was almost equivalent to the setting.
The experiment strategy is summarised in Figure 5. The results are
presented in two phases. First, the event modeller was used as a tool
to reduce the dimensionality of the data being observed. Second,
the relationship between the observed data and the KPIs has been
compared. The results will be explained as follows.

3.2.2 Dataset Arrangement

In this example, a homogenous dataset representing REGEN failure
of the predictive model population was sampled for 16 minutes. The
dataset of 30th January 2019 was sampled between 12:47 pm and
13:03 pm. The dataset arrangement indicated that there were 96
TDs to be grouped against 24 EDs in the form of matrices to show
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Figure 5: Experiment Strategy for KPIs Analysis

The arrangement of the three principal stages in the Experiment Strategy for KPI Analysis: Pre-process Data, Analysis and Display.

which system parameters were highly correlated. It is noteworthy
that the 96 X 24 matrices are too complex for a correlation analy-
sis; therefore, the 96 TD was divided into 4 clusters. For each TD
cluster, 24 X 24 matrices were analyzed using the event modelling
technique.

The sensitivity index of each input-output relationship has been
measured and updated every second. The ROC pattern was observed
in real-time and captured every minute. As a result, four-quadrant
windows representing four key states were presented: Initial, Pre-
Fault, Fault and Post Fault for each TD cluster. This analysis intends
to examine how TDs influence the pattern of the ROC. It is nec-
essary to clarify what happens during this 16-minute time stamp
before presenting the chart. Based on the report, the machine is
running at its optimum level before it is fully phased out after 10
minutes. The reason why machine trips are unknown, which left the
proposed method to be concluded further.

3.2.3 Dimensionality Reduction using Event Modeller

One advantage of using Event Modeller is to reduce the dimension-
ality of a complex system. As the main objective is to identify the
root cause of the failure, this technique is capable of highlighting
the ROC pattern based on its correlation analysis. One important
finding was that the first four EDs were the same for all clusters.
They comprised of E-House Humidity (ED24), Portal Conveyor Cur-
rent (ED18), Wind Speed (ED 12) and Portal Speed Drive (ED14).
This indicates that one of these EDs would have been the cause of
failure. However, it has been noted that Cluster 2 and Cluster 3
consistently remain the same pattern with or without fault happened.

Therefore, we have eliminated Cluster 2 and Cluster 3 from the
analysis. Moving to the ROC patterns for Cluster 1 and Cluster 4,
major changes were observed after the fault in this quadrant. From
this observation, it is suggested that the TDs could have originated
from these clusters. Equation 3 indicates the possible root cause of
Cluster 1. If we overlap both relationships, the new equation for
Cluster 1 is expressed in Equation 4.

ρ0.95 = (ED18) × (T D6,T D7,T D11,T D8,T D9,T D10)+
(ED24) × (T D8,T D9,T D10,T D24,T D21,T D2,

T D22,T D23,T D20,T D13,T D12)
(3)

ρ0.95 = (ED18 + ED24) × (T D8,T D9,T D10) (4)

On the other hand, the following equation 5 indicates the pos-
sible root cause of Cluster 4. If we overlap both relationships, the
new equation for Cluster 4 is expressed in Equation 6.

ρ0.95 = (ED18) × (T D15,T D18,T D16,T D17,T D20)+
(ED24) × (T D16,T D17,T D14,T D13,T D19,

T D12)
(5)

ρ0.95 = (ED18 + ED24) × (T D16,T D17) (6)

Combining Equation 4 with Equation 6, the sensitivity index is
expressed in Table 3. With that, Event Modeller has reduced the
dimensional to a smaller scale that will help the system engineer
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Figure 6: Rank Order Clustering - Cluster 1

ROC Pattern on four quadrant: Initial, Pre-Fault, Fault and Post-Fault for Cluster 1. The blue shaded region with red boxes represent the cluster of a high correlation value
between 0.95 to 1.00.

Table 3: Summary of Sensitivity Index

Description TD8 TD9 TD10 TD16 TD17
ED18 0.97919 0.97138 0.96878 0.98337 0.96881
ED24 0.95838 0.96982 0.996982 0.95842 0.97089

decide which relationship is liable to this fault. The following sec-
tion will be discussed on the relationship between the observed data
and the KPIs to validate the findings of the Event Modeller. Figure
6 and Figure 7 represent the pattern of the ROC system state for
Cluster 1 and Cluster 4, respectively.

3.2.4 Relationship between the observed data against Key Perfor-
mance Indicators

The KPIs are the translated index of the machine operation. It
provides operational information for the decision-making of both
the machine and the system operator. Four main KPIs have been
adapted in this experiment known as Availability (A), Instantaneous
Utilization (IU), Schedule Utilization (SU) and Performance (P).
Having these four KPIs in line with CSU machine data, the possible
root cause of frequent harmonic failure could be determined.

The following steps have been taken to analyze the data: (1)
Select fault dataset from the Predictive Model Dataset. (2) Identify
the fault observed data location. (3) Distinguish observed data ac-
cording to Environment Variables, Electrical Variables and Motor
Variables. (4) Plot Environment Variables data against KPIs. (5)
Plot Electrical Variables data against KPIs. (6) Plot Motor Variables

data against KPIs.
The easiest way to identify fault events is by exploring the main

incomer trip data. Theoretically, the entire electrical system will
be tripped when there is a REGEN fault. Although it may conflict
with other events in which the operator may trip the main incomer
on purpose, the system could automatically distinguish between the
actual fault and the simulated fault using the translated KPIs data.

For example, when a fault occurred during the operation, the
data of the KPIs will hold the value in percentage. This verifies
that the fault that occurred is genuine. If the machine is stopped
or not operated, the value is either zero or hold to a specific value.
In this example, the same dataset used in the previous experiment
was chosen. This is to compare the relationship between the data
observed using both techniques. The dataset dated 30th January
2019 was therefore sampled between 12:47 pm and 13:03 pm. The
target data was then divided into three and plotted against the KPIs
as follows:

Figure 8 shows the observed electrical data against the KPIs
when electrical faults occurred. This graph is quite revealing in
several ways. First, the main fault has been observed. The chart
reveals that the main fault occurred at 09:50. This is the turning
point of all events. Next, the four KPIs are observed. The perfor-
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Figure 7: Rank Order Clustering - Cluster 4

ROC Pattern on four quadrant: Initial, Pre-Fault, Fault and Post-Fault for Cluster 4. The blue shaded region with red boxes represent the cluster of a high correlation value
between 0.95 to 1.00.

Table 4: Summary of Electrical Variables

Description ED1 ED2 ED4
Min 427.33 V 9.66 A 1.84 %
Max 427.47 V 242.93 A 2.19 %
Average 427.44 V 73.13 A 2.00 %

mance was initiated at 100% and remained for 1 minute. It was then
exponentially reduced to 16% when the main fault occurred. This
indicates that the unloading of coal has stopped immediately after 1
minute.

On the other hand, both Instantaneous Utilization and Schedule
Utilization started at 58% and gradually decreased to 35% at 04:24.
At this point, Schedule Utilization bounces back to 39%, but In-
stantaneous Utilization remains reduced to 30% until the main fault
event occurs. The availability started at 95% and remained until
04:24 before it gradually decreased when the main fault occurred.
These trends have shown that there is a relationship between the
main fault and the KPIs. Table 5 summarised the KPI results.

Moving to electrical variables, the main input voltage (ED1)
remains at 427V for the entire time. Although the fault occurred,
the main input voltage does not respond to this. This validates that
the fault is not caused by power disturbances from the supply, such
as transient, interruption, under-voltage or over-voltage. The Main
Incomer Current (ED2) pattern was then observed. Before the fault,
ED2 shows the current drawing of the electrical distribution. The
pattern is based on loads of the motor during machine operation.

However, when the fault occurred, trends show that ED2 is re-

sponding to the event. An instantaneous drop was discovered during
this period. ED2 does not fall to zero because the energy was still
drawn from the maintenance feeder for essential loads. The main
incoming THD (ED4) has also been observed. ED4 has been gener-
ated assuming that there will be no harmonic distortion during these
events. The ED4 pattern remains at an average of 2.0% throughout
the sampling time, indicating that the THD remains at IEEE 519
Standards. Table 4 summarised the electrical variables.

Meanwhile, to further explain the relationship between the mo-
tor variables and the KPIs, Figure 9 shows the current drawing of
five main processes in the CSU machine. These include Bucket
Elevator Current (ED17), Portal Conveyor Current (ED18), Travel
Current (ED19), Boom Conveyor Current (ED20) and Hydraulic
Power Pack (ED21). In order to validate the ED2 from the previous
graph, this chart reveals that ED2 has a linear relationship with all
motor variables within this graph. For example, when ED17 was
drawn at the beginning of the sampling and all other motor loads
were added during that period the ED2 measurement reached its
peak value. Some attention is given to the small circle in the chart.
It is clear that there was some instability happening at 01:48, which
could be linked to the fault.
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Figure 8: Electrical Variables vs KPIs

This figure illustrates the relationship between the Machine KPIs (Availability, Instantaneous Utilization, Schedule Utilization, and Performance) against the observed
electrical data (Voltage, Current, Harmonic, Incomer and Regen) when the same event of electrical faults occurred at Time: 09:50.

Table 5: Summary of KPIs

Description A IU SU P
Min 64.37 % 25.01 % 34.82 % 11.52 %
Max 91.67 % 58.33 % 58.33 % 100.00%
Average 76.43 % 32.48 % 39.59 % 26.72 %

ED18 had an impulsive signal and remained zero after that event.
On the other hand, ED19 has also revealed some dramatic changes.
Just after ED18 had an impulsive signal, ED19 experienced some
negative distortion for 12 seconds, followed by an interruption for
48 seconds and a further positive distortion for 60 seconds com-
pletely before it stopped. Another attention has to be made at ED17.
In the beginning, ED17 had drawn some fluctuation current and
had spiked for a few seconds before stopping at 00:40. The trend
shows that ED17 is struggling to recover, but ends up stopping when
the main fault has occurred. Otherwise, all other motor variables
are operating in their normal state. Table 6 summarised the motor
variables.

Figure 10 displays the environment data observed against the
KPIs when the same electrical faults have occurred. Five environ-
mental data were reported, including Panel Humidity (ED3), Panel
Temperature (ED5), E-House Temperature (ED6), Wind Speed
(ED12) and E-House Humidity (ED24). Attention must be given to
the humidity and temperature of the electrical room where the elec-
trical distribution panel is located. The pattern has shown an instant
increase of ED24 at 02:36. The humidity builds up and reaches its
highest peak at 58% and slowly decreased with two spikes before
the fault occurred. On the other hand, ED3 has also been increased

but not as much as ED24. ED5 has an average temperature of 33.13
degrees Celsius, while ED5 has an average temperature of 17.82
degrees Celsius. Eventually, ED12 fluctuates within the normal
range. Table 7 summarised the environment variables.

3.2.5 Discussion

The main outcome of the experiment is to show how the proposed
technique can be used as a tool to reduce the dimensions of a highly
complex system. In this case study, 96 TDs were analyzed against
24 EDs in real-time to help system engineers visualize any changes
to the system state. The EMDA implementation will group high
correlation system parameters in the form of matrices and place
them in mutually exclusive blocks. Having a huge matrix, however,
will make things difficult. The matrix needs to be presented as a
square for clear visibility. Thus, the 96 TDs were divided into 4
clusters, where each cluster has a relationship with 24 EDs. The
example accessed a 16-minute dataset that belongs to a fault pop-
ulation. The result for each cluster was shown in a four-quadrant
to show the pattern change. In this example, there is a significant
change in the pattern observed in Cluster 1 and Cluster 4. Further
analysis of the two clusters suggested a new formula representing

www.astesj.com 1354

http://www.astesj.com


F.Z.M. Fadzil et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1343-1359 (2021)

Figure 9: Motor Variables vs KPIs

This figure illustrates the relationship between the Machine KPIs (Availability, Instantaneous Utilization, Schedule Utilization, and Performance) against the Five Main
Electrical Motors (Bucket Elevator Current, Portal Conveyor Current, Travel Current, Boom Conveyor Current and Hydraulic Power Pack) when the same event of electrical
faults occurred at Time: 09:50.

Table 6: Summary of Motor Variables

Description ED17 ED18 ED19 ED20 ED21
Min 0.00 A -2.96 A -133.97 A 0.00 A 0.05 A
Max 119.31 A 25.67 A 97.87 A 54.41 A 52.05 A
Average 5.41 A 0.69 A 2.49 A 5.03 A 30.60 A

the state of the system. After the fault event, the new formula for
Cluster 1 and Cluster 4 is expressed in Equation 4 and Equation 6,
respectively. As a result of these equations, the main culprit of the
fault was identified. The ED variables were reduced from 24 EDs to
2 EDs (a decrease of 91.76%) while the TDs variable was reduced
from 96TDs to 5TDs (a decrease of 94.79%). As listed in Table 3,
the possible root causes of the fault are the combination of:

1. Portal Conveyor Current (ED18) with Rotary Feeding Table
Motors (TD8), Bucket Elevator Motors (TD9), Bucket Ele-
vator Brake Motors (TD10), Busy Rotary Table (TD16) and
Busy Bucket Elevator (TD17) or

2. E-House Humidity (ED24) with Rotary Feeding Table Mo-
tors (TD8), Bucket Elevator Motors (TD9), Bucket Elevator
Brake Motors (TD10), Busy Rotary Table (TD16) and Busy
Bucket Elevator (TD17)

Further analysis with the KPIs will validate the existence of
unknown events that could be linked to a harmonic problem. In nor-
mal circumstances, electrical variables such as voltage, current and
THD should have a linear relationship with the KPIs. As the KPIs

responded to the fault, the electrical variables should also respond.
However, the voltage and the harmonic measurement remain con-
stant after the fault has occurred. Although current measurements
have responded to this fault, trends show that the current value is
not zero. It indicates that there was still a current drawing for the
essential loads. Therefore, this eliminates the possibility of machine
failure due to electrical variables.

Moving to the motor variables, as explained in the result, ED17,
ED18 and ED19 showed some undiscovered events that could lead
to fault. When comparing the performance trend to ED17, the per-
formance measurement falls in line with the activity of the bucket
elevator. Although the trends for ED17 fluctuate before it stops,
this could be explained from the perspective of uneven coal inside
the bucket. On the other hand, ED18 has experienced an impulsive
signal that leads to an immediate stop. However, looking at the
timing of this event, it took about 9 minutes for the fault to happen.
The same goes for ED19, which experienced negative and positive
distortions right after ED18. This can be claimed as a result of
an event. However, when it comes to the type of operation, ED19
is a travel motor that operates in two directions. Although some
distorted measurements were made, this could be explained by the
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Figure 10: Environment Variables vs KPIs

This figure illustrates the relationship between the Machine KPIs (Availability, Instantaneous Utilization, Schedule Utilization, and Performance) against the Environment
Variables (Panel Humidity, Panel Temperature, E-House Temperature, Wind Speed and E-House Humidity) when the same event of electrical faults occurred at Time: 09:50.

number of motors that were operating. There were ten motors in
service working at different efficiency levels. Having said that, the
motor variables are also excluded from being the root cause of the
fault.

Turning to environment variables, the trends in Figure 10 have
shown some indications that the humidity could be related to the
fault. The rise in humidity up to 58.06% shows that the state of the
system has been compromised. Although high humidity patterns
started 7 minutes before the fault, the measurement continuously
retained above 40 % after the fault. This type of phenomena takes
a fixed amount of time to reach the fault level. To explain this
phenomenon, we take an example of preheating an oven. When a
person decides to bake a cake, the oven needs to be heated to the
right temperature before putting the cake inside the oven. Although
it takes a few seconds to turn the oven on, it may take a few minutes
to get the right temperature. This phenomenon is referred to as a
fixed time delay deterministic event. However, if the person warms
up the oven, without shutting the oven door, it may take longer to
get to the right temperature. This phenomenon is referred to as a
deterministic sequence of different input events. The heat produced

in the oven was cooled by the amount of cold air present in the
surroundings, which would delay the oven pre-heating process.

When we relate this to our case study, the power electronic com-
ponent such as choke, rectifier, REGEN and control drives produce
an excessive amount of heat during operation. To ensure that the
heat is kept at certain limits, two units of air conditioners were de-
signed to combat this heat. However, after considering the amount
of heat generated in the room along with the hot and humid climate
of Malaysia throughout the year, experts have reviewed and decided
to install two additional air conditioners to cater for this amount
of heat. As a result, when CSU machine is fully operational, the
four-unit air conditioners are sufficient to cool down the electrical
room. However, when the machine stops at intervals, the air con-
ditioners are found oversized to the power electronic component.
As a consequence, the humidity increases; the component becomes
wet, resulting in machine failure. The humidity in the electrical
switchgear room must be maintained at an elevated temperature
relative to the ambient inside the room. Condensation is usually
considered a problem only if the humidity in the switchgear room is
65% or greater [44]. Although the humidity in this example does
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Table 7: Summary of Environment Variables

Description ED3 ED5 ED6 ED12 ED24
Min 10.35 % 31.41 degC 17.12 degC 2.22 m/s 30.64 %
Max 18.52 % 35.54 degC 18.16 degC 9.19 m/s 58.06 %
Average 14.95 % 33.13 degC 17.82 degC 6.74 m/s 39.21 %

not reach 65%, considering the machine has been running for a
decade, the efficiency of the machine may decrease as the humidity
may be the contributing factor. This finding suggests that there is a
relationship between the humidity and the fault.

As mentioned earlier, this paper’s main outcome is to show how
the EMDA can be used as a tool to reduce the dimensions of a
highly complex system. 96 Triggered Data were scanned against
24 Event Data, which then formulated an equation representing the
system state in a single second. This sort of like a ”scanner” that
will keep converting a complex relationship into a simple equation
(a huge reduction of dimensionality) in a low computational effort.
The results in Table 3 shows that the complex relationship has been
reduced to 2 EDs against 5 TDs. Further analysis with the KPIs has
validated the existence of unknown events that linked to the frequent
harmonic failure. The rise in humidity level shown in Figure 10 has
proven that the system state has been compromised. In comparison,
other variables such as electrical variables, motors and other envi-
ronment do not show any evidence that compromises the system
state. Besides, the relationship between the observed data and the
KPIs appears to be consistent. The suggested finding was tested at
site, and the operators confirmed the importance of humidity factor
(environmental factor) in the machine’s performance. A humidity
regulator has been suggested to be installed at the site. The control
of the regulator was linked to the plant automatic control system.

4 Conclusions
Managing repetitive harmonic failures in an industrial application
is a recursive, costly and time-consuming exercise. Industrial data
are multidimensional and random in nature. The problem with ana-
lyzing this data is that many events do not necessarily repeat often
enough to have statistical significance. Still, they cause minor or
major faults and need to be captured and understood. Identical ma-
chines perform differently in different environments and conditions.
In most cases, PQ engineers focus on the fundamental problem,
transforming the power system signal into various signal processing
methods to locate the fault. An Event Modeller technique, which is
low in the computational effort, has been considered to solve this
problem. This technique, which is extremely computational effec-
tive, managed to reduce system state definitions’ complexity into a
simpler formulation. Also, the performance metrics translated from
the machine operation are now automated and require minimum
operator intervention. It reduces wrong interpretations and possible
mistakes in decision making. However, one of the method’s weak-
nesses is its reliance on technical expert judgement on adjusting the
threshold settings. One of the ongoing research endeavours of the
authors is to automate the trigger detection phenomena.

In this present work, authors focused on reducing dimensionality
while collectively including the modelling equation’s performance

metrics parameter to verify the system state. Two approaches were
taken to validate and verify the propose EMDA algorithm. First was
the simulation process (SiL). It considered the voltage, humidity,
harmonic, slewing movement, luffing movement, travelling move-
ment, temperature, and wind speed as system output variables. Two
types of triggering data, i.e. Static TD and Dynamic TD were con-
sidered. K-disturbance signal was generated for the five (excluding
movements) output variables. The results show that, as the distur-
bance is induced, the sensitivity indices were reduced by an average
of 8.2% for Static TD and 15.94% for Dynamic TD. However, when
the disturbance was removed, the sensitivity indices regained by
an average of 3.218% and 6.023% for Static TD and Dynamic TD
consecutively. As a result, the Dynamic TD was chosen for the field
experiments. In the field experiment (HiL), 914 data series in real-
time were acquired from the SCADA. Each dataset is containing
96 Input vs 24 Output parameters. The results show that two new
parameters were detected to significantly impact Harmonic Filters;
humidity and portal conveyor current (velocity of the conveyor).
The tests proved that humidity as an environmental factor is linked
to the frequent harmonic problems. This revelation was also verified
by looking up the historical evidence of humidity data against the
frequency of failures and the variation in the feeder’s speed (con-
veyor). In the future, the proposed EMDA will be integrated as a
vehicle for training supervised machine learning models to predict
the remaining useful life of the filter as a predictive
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