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2Sistema Nacional de Investigación (SNI), SENACYT, Panamá
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In this article supervised classification methods for the analysis of local Panamanian rice
crops using Near-Infrared (NIR) spectral signatures are assessed. Neural network (Multilayer
Perceptron-MLP) and Tree based (Decision Trees-DT and Random Forest-RF) algorithms are
used as regression and supervised classification of the spectral signatures by rice varieties,
against other crops and by plant phenology (days after planting). Also, satellite derived spectral
signature is validated with a field collected spectral model. Results suggest that MLP networks,
either for regression or classification, were more efficient (RMSE of 8.78 and 0.068, respectively)
than either tree based methods to regress/classify the rice spectral signature (RMSE of 19.37,
19.09 and 0.979, respectively). The validation made using satellite derived spectral signatures
resulted in MLP models with RMSE of 0.216 and 7.318, respectively, leaving room for further
improvement of the models. This work aimed to present a practical example of the employment of
recent supervised classification algorithms for the determination of regression and classification
models from reflectance spectral signatures in local rice varieties.

1 Introduction

The electromagnetic spectrum interacts with matter in a balanced
relationship that indicates that the light reaching a body will be
proportional to the light that is transmitted (measured through trans-
mittance), absorbed (measured through absorbance) and reflected
(measured through reflectance) in the body per in a unit of time.
These measurements provide a signal that can be plotted, thus vi-
sually showing the relationship between the incident and reflected
radiation flux.

These measurements are generally called spectral fingerprints
or spectral signatures. Their measurement in agricultural crops is
of special interest in precision agriculture, since they can provide a
look into the crop health and phenological state. This information

allows to determine how acceptable are the growth and development
of the crop at a given planting stage.

This paper is an extension of the work originally presented in the
2019 XLV Latin American Computing Conference (CLEI) [1]. It
will address other ML methods to achieve supervised classification
of rice spectral signatures in Panama.

Supervised classification Machine Learning (ML) methods, such
as Artificial Neural Networks (ANN), are commonly used for the
analysis of Near-Infrared (NIR) spectral signatures [2]–[3]. ANN
allow a way to identify relevant characteristics from a set of inputs
(in this case spectral signal) and map them to corresponding output
targets (physical or logical values associated with the object of under
study). The model is learned through weight adjustments between
connected units, called neurons, which are arranged in different
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layers. ANN are well regarded method. Especially in agriculture
to determine quality parameters [4]–[5]. Deep neural networks
(DNNs), on the other hand a widely used in NIR spectral analysis
[6]–[7]. DNNs are basically ANN with a vast number of hidden
layers, which allow them to learn complex mapping relationships
between inputs and outputs [8, 9].

Other ML methods rely on tree structures that partitions sample
groups and the data set of features in order understand the relation-
ship between labelled samples. Among these methods the most
notable are: Decision Trees (DT) [10, 11] and Classification and
Regression Trees (CART) and Random Forest (RF) [12]. The latter
being of special interest since it is suited to understand massive
data sets, by aggregating/averaging decision trees [13]. As ANNs
and DNNs, tree based methods have been used to understand the
relationships between sets of NIR spectra [14]–[15].

The objectives of this study are twofold: 1) Explore methods for
the classification of spectral signatures of rice varieties, using net-
works and tree based algorithms; 2) Be able to train/test/validate a
model that relates to field acquired spectral signatures with satellite
signatures. The rest of this article is structured as follows: Section
2, presents the spectral database and the algorithms used for the
classification. Section 3, shows the results obtained and discusses
the implications to the model characterization. Section 4, provides
overall conclusions of the article and focuses on suggesting future
work that could be used as starting point for upcoming analysis.

2 Materials and Methods

2.1 Spectral Database

As described in [1], the spectral signatures were collected on-site
from 3 different plots locations using a portable Spectroradiometer.
The raw measurements were organized into a database consisting of
signatures in the 350 nm to 1050 nm wavelength range (447 wave-
lengths points per signature). For each one of these 1453 signatures
the database also contained information about the plot management,
including crop variety, and more importantly days after planting
(DAP), at which the spectral signature was collected.

The most prominent crop in the database is rice with 1348 sig-
natures, with onion and pimento having less than 60 signatures, and
other crops such as tomato, and maize having less than 15 signatures
in total. Three local varieties of rice were more prominent in the
plots: IDIAP-38, IDIAP 52-05 and FL137-11, the first two being
experimental varieties from the Instituto de Investigaciones Agroin-
dustriales de Panama (IDIAP), while the latter being a commercial
variety.

Spectral signatures were normalized using unit variance scal-
ing. Later, the total number of wavelengths (spectral features), was
reduced from the original 447 dimensions by using Principal Com-
ponents Analysis (PCA). Only the first 100 components were kept
for each signature.

2.2 Satellite Derived Spectral Signature Database

This study made use of satellite images from PlanetScope, as a
source of external signatures and among other reasons for models

validation. The exact polygons, where field spectral signatures were
acquired, were treated as a source for spectral signatures.

A successful comparison between the spectral signatures and
their satellite derived counterpart was made by normalizing match-
ing dates (or closest days available) in which there were also field
measurements and by integrating (summarize) the reflectance values
obtained in the field into the satellite 4 band format, as follows: blue
(455 - 515 nm), green (500 - 590 nm), red (590 - 670 nm), and
infrared (780 - 860 nm). Finally, all the satellite derived spectral
signatures were organized into a database for later use.

2.3 Regression and Supervised Classification of Spec-
tral Signatures

Since one of the goals of this study was to find a model capable of
predicting the days after planting (DAP), just by using the spectral
signatures two families of models were selected. The first being a
(continuous) regression models family in which the targets were nu-
merical values representing the DAP. The second being a (discrete)
binary classification model family, which makes possible to make
rice predictions from non-rice related signatures, coded as 0 and 1,

Three regression models were tested to predict the DAP of the
signatures:

1. Multilayer Perceptron Regressor (MLPR)

2. Decision Tree Regression (DTR)

3. Random Forest Regression (RFR)

Two classification models were test to predict the rice and non-
rice:

1. Multilayer Perceptron Classification (MLPC)

2. Random Forest Classification (RFC).

In all models, spectral signatures were divided as 70% and 30%
for training and testing purposes, respectively.

2.4 Cost functions and Evaluation Metrics

Two cost functions were compared for all models, the Mean Square
Error - MSE (1), and the Mean Absolute Error - MAE (2). Two mea-
sures were used to evaluate the performance of all models, the Root
Mean Square Error - RMSE (3), and the coefficient of determination,
also known as: R-squared - R2 (4).

MS E =
1
n

n∑
i=1

(yi − ŷi) (1)

MAE =

∑n
i=1|yi − ŷi|

n
(2)

RMS E =

√∑n
i=1 (ŷi − yi)2

n
(3)

R2 = 1 −
∑n

i=1 (ŷi − yi)2∑n
i=1 (ȳi − yi)2 (4)

For binary classification models, evaluation of their performance
was made via a different set of metrics. Generally, the performance
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of these models are tied to the model capacity to provide true predic-
tions: true positive (TP) and true negative (TN), but also, prediction
errors or false prediction is accounted via: false positive (FP) and
false negative (FN). These counts are organized into a confusion
matrix, shown in Table 1.

Table 1: Theoretical confusion matrix between actual and predicted classes.

Actual

Positive Negative

Prediction Positive TP FP

Negative FN TN

Using the confusion matrix, metrics that use the true predictions
and prediction errors can be determined, among them:

• Accuracy: a measure of the number of true predictions made
by the model. That can be calculated with the following
formula: #T P+#T N

#T P+#T N+#FP+#FN .

• Precision: a measure that can be used to evaluate the propor-
tion of positive predictions that were correctly classified. It
can be calculated using the formula: #T P

#T P+#FP .

• Sensitivity (Recall): a measure that can be used to evaluate
the proportion of the actual positive predictions (observations)
that were correctly classified. It can be calculated with the
formula: #T P

#T P+#FN .

• F1 Score: a measure of the model accuracy, but considering
both the precision and recall. In general, a model can have a
bad F1 Score (closer to 0) or a good one (closer to 1). It can
be calculated employing the formula: 2 ∗ Precision∗Recall

Precision+Recall .

2.5 Software Implementation

All plots were made using matplotlib. Database normalization,
dimensionality reduction, regressions and classification methods
and their errors were implemented using the Scikit-Learn library
in Python [16]. The trees structures generated by Decision
Tree and Random Forest algorithms were plotted using graphviz
(https://graphviz.readthedocs.io/).

3 Results and Discussion

3.1 Characteristics of the Spectral Signatures

Figure 1 shows the complete set of reflectance spectral signatures
present in the database. Figure 2 shows the reflectance spectral
response of the local varieties for the Juan Hombron plot.

Figure 2A, shows the spectral signal variation of the FL137-11
material, from 48 to 116 DAP. Figure 2B, shows the variation of the
IDIAP-38 material in 13 and 19 DAP, and also the variation of the
IDIAP 52-05 material from 13 to 116 DAP. In all cases, the spectral
signature has less variation in the visible range (400-700 nm) and
more activity in the near-infrared part of the spectrum (700-100 nm)
as the DAP increases.

Figure 1: Rice Spectral Signatures in the Database

A

B

C

Figure 2: Spectral signatures of Rice varieties in Juan Hombron. A) FL137-11, B)
IDIAP 38 and C) IDIAP 52-05.

Figure 3 shows the average spectra of rice (red) as compared
against other crops in the database. It is notable that rice and onion
have similar spectral signatures, with lower reflectance values in the
NIR region. While tomato, maize and onion have a similar signature
with higher reflectance values in the same range.
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Figure 3: Comparison between Spectral Signatures of Crops in the Database

3.2 Regression Models applied to Rice Spectral Signa-
tures

The Multilayer Perceptron Regressor network was set up to have
500 neurons in the hidden layer, tolerance of 1e−4 and using as
ADAM as optimizer. For the Decision Tree Regressor, MSE was
set to be the criterion, and the default settings were followed. The
Random Forest Regressor was set up to build 50 trees (estimators),
as in in the Decision tree, the default settings were followed. Error
metrics for the three algorithms are shown in Table 2.

Table 2: Resulting Errors for Regression Models

Metrics MLPR DTR RFR
R2 0.92 0.56 0.57

MAE 6.148 10.807 13.783
MSE 77.095 375.400 364.779

RMSE 8.780 19.375 19.099

The MLPR model achieved the higher R2 with 0.92 and the
lower RMSE values with 8.78. The two tree based regression mod-
els showed to behave similarly with R2 of 0.56 and 0.57, respectively.
Also, having RMSE values of around 19, in both cases. Figure 4
shows the loss curve per iterations for the MLPR model, with a final
loss of 0.08. The network training was stopped after 1492 iterations
and resulted in an overall MLP training score of 0.99.

Figure 4: Loss Curves for MLPR Model

3.3 Classification Models applied to Rice Spectral Sig-
natures

The Multilayer Perceptron Classifier network was set up to have
200 neurons in the hidden layer, tolerance of 1e−4 and using ReLU
as an activation function. As for the Random Forest Classifier was
set up to build 50 trees (estimators), here also, the default settings
were followed. Error metrics for the two algorithms are shown in
Table 3.

Table 3: Resulting Errors for Classification Models

Metrics MLP Classifier RFC
R2 0.94 0.47

MAE 0.005 0.039
MSE 0.005 0.039

RMSE 0.068 0.197
Acc. 0.995 0.961

F1 Score 0.998 0.979

The MLPC model achieved a better R2 than the RFC, with a
value of 0.94 and the lower RMSE of the two with a value of 0.006.
The two algorithms perform in the 90% having accuracy values of
0.99 and 0.96, respectively. Also having high F1 scores, with values
of 0.99 and 0.97, respectively. Figure 5 shows the loss curve per
iterations for the MLPC model, with a final loss of 0.006, after 166
iterations.

Figure 5: Loss Curve for MLPC Model

Figure 6 shows the final tree structure of the RFC. In warmer col-
ors it shows the statistically significant decision nodes. In general,
the RFC models were not as accurate as MLPC models, but they
help us determine the most relevant wavelengths for classification,
Table 4 provides a list of the Top-5 wavelengths that could be used
as to classify the signatures. Interestingly, all these wavelengths are
in the visible range between 400 and 600 nm.

A partial conclusions that can be addressed is that when pre-
dicting the DAP from the spectral signatures, it is very important
to reduce the parameters to increase the precision of the model. It
is important to notice that also, that when classifying crops (rice
or other), there was no need to apply PCA since the model is quite
accurate and has fewer losses. It even starts at a loss value of 0.4,
close enough to 0, in the first iterations, as shown in Figure 5.
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Figure 6: Resulting Tree and Rules learned by the Random Forest Classifier

Table 4: Summary of Top-5 Predictors from RFC model

ID Wavelength Importance (P-value)
111 534 0.031
95 508 0.028

118 545 0.023
34 409 0.023

139 579 0.028

3.4 Regression and Classification of Satellite Derived
Signatures

The database for this experiment was comprised of the satellite
spectral signatures and also the field (on site) spectral signals. The
satellite spectral signatures are the ones compared using the Spectral
Angle Mapper (SAM) method, as described in [1]. As for the (on
site) spectral signals they had to be integrated to four wavelength
bands that are used to represent satellite images. Table 5, shows
the distribution of the spectral signature in the expanded database,
with both spectral signatures collected on site and from the satellite
image.

Table 5: Distribution of Spectral Signatures

Signature Type Quantity
Rice spectral signatures (on site) 459

Rice spectral signatures (from satellite) 1303
Forest & road spectral signatures (from satellite) 337

A neural network model capable of distinguishing between the
rice, and not-rice (namely, forest and road satellite signatures) was
trained using a Multilayer Perceptron Classifier. The network was
set up to have 600 neurons in the hidden layer, tolerance of 1e−4

and using ReLU as an activation function. Figure 7A shows the loss
curve for the MLPC model, having a final loss value of 0.11 after
733 iterations.

Subsequently, a model was trained with the field spectral signa-
tures reduced to 4 bands and the satellite spectral signatures. The
field collected spectral signatures were used for training and testing
(calibration), while the satellite spectral signatures were used for
validation of the model. A Multilayer Perceptron Regressor was
used. The network was set up to have 1000 neurons in the hidden
layer, tolerance of 1e−4 and using as ADAM as optimizer.

A

B

Figure 7: Model Loss Curve fror the MLPC (A) and MLPR (B) methods

Figure 7A shows the loss curve for the MLPC model, having
a final loss value of 0.11 after 733 iterations. Figure 7B shows the
loss curve of the MLPR model, it had final loss value of 23.74 after
2884 iterations.

As it is shown in Table 6, the MLPR model achieved the highest
R2 with 0.88 and an overall score of 0.90. However, the MLPC
model had a lower RMSE value with 0.216.

Table 6: Resulting Errors for Satellite Derived Models

Metrics MLPC MLPR
R2 0.711 0.886

MAE 0.046 53.564
MSE 0.046 5.101

RMSE 0.216 7.318

The validation of the model, using satellite spectral signatures
resulted in having a R2 of 0.54, a MAE of 14.998, MSE of 413.237
and RMSE of 20.3282.

A result from this subsection is that when validating the model
to predict days after planting , the error is still quite large. It might
be possible to make it lower by having a larger amount of field
spectral signatures, since this would give more information to the
model longer learning time .

4 Conclusions
The aim of this work was to be able to train supervised classifi-
cation Machine Learning models in order to further understand
rice reflectance signatures. A database of spectral signatures col-
lected using a portable spectroradiometer and a set of satellite image
derived signatures were employed as input for these models. As
output or targets for the training of these models, few variables were
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used, among them: days after planting (DAP), and the possibility
of distinguishing rice from other crops or from other geographical
features.

In order to develop these regression and classification models,
neural network based algorithms (Multilayer Perceptrons) and tree
based algorithms (decision trees and random forest), were used.

For both cases, regression and classification of rice spectral sig-
natures, the use of Multilayer Perceptron models are recommended.
Our results suggest that MLPR is the best method to make a model
able to regress on the DAP just from the spectral signatures. For
the classification of rice and non-rice signatures MLPC was one
again the best resulting method. The tree based models, although
providing less useful models, were able t suggest a list of most rele-
vant predictors and a visualization of their results. It seems that the
most useful wavelengths to build this models are found mostly in
the 500-600 nm wavelength range, which corresponds to the green
and yellow colors of the visible spectrum. These wavelengths are in
line to changes in the panicle, as described by [17].

For the work on satellite derived signatures both MLPC and
MLPR show interesting results over 0.7 and 0.88, respectively.
However, the error metrics on the MLPR model are quite large.
A large error that can be attributed to normalization effect between
satellite and on site measurements, and total reflectance correction
that exist between both spectral signatures. Suggesting that more
samples should be added to the model to produce a more robust
model.

One of the limitations of this study was the relatively small size
of the database of spectral signatures employed. It is known that
Machine Learning algorithms need more samples in order to have
robust results. The need of more spectral signatures is evident by
the poor generalization obtained, especially for the validation of
satellite derived spectral signals.

For future work, few changes to the approach employed should
be done. For instance, having different percentages in the training
and testing splits. This work shows results only with 70%/30% split.
It could be beneficial to test the limit of prediction by changing the
percentages and/or using cross-validation techniques. Second, a
class imbalance is evident in the spectral database, due to the focus
on rice signatures by the original objective , leaving other crops
or other spectral signatures astray. In order to make this database
more balanced pseudo replicates need to be made from the non-rice
signatures. In [18], the author presents an interesting approach for
feature selection and replication using Variational Auto-Encoder
(VAE) type of network, that could be pursued. Also in this line,
the author presents a complete framework for Data Augmentation
(DA) approach for convolutional neural network (CNN) based deep
learning chemometrics [19], that seems worth exploring for this
application. Third, recent literature shows a shift from deriving
spectral signals from satellite images, to working directly over the
Hyperspectral images (HSI) [20]. Even using deep learning frame-
works for identifying soil characteristics [21], rice varieties [22],
rice phenology [23], and even focusing on data imbalance in the
image of domain [24].

The value of this work rest about on the fact that it presents
a practical example of using supervised classification algorithms
for the determination of regression and classification models from
reflectance spectral signatures of a local crop. This study provides

a basis for future works in deep learning based on chemometrics,
and in particular the possibility of predicting crop conditions and
characteristics from spectral signatures or satellite images.
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