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Cloud providers seek to maximize their market share. Traditionally, they 
deploy datacenters with sufficient capacity to accommodate their entire 
computing demand while maintaining geographical affinity to its 
customers. Achieving these goals by a single cloud provider is 
increasingly unrealistic from a cost of ownership perspective. Moreover, 
the carbon emissions from underutilized datacenters place an increasing 
demand on electricity and is a growing factor in the cost of cloud provider 
datacenters. Cloud-based systems may be classified into two categories: 
serving systems and analytical systems. We studied two primary workload 
types, on-demand video streaming as a serving system and MapReduce 
jobs as an analytical systems and suggested two unique energy mix usage 
for processing that workloads. The recognition that on-demand video 
streaming now constitutes the bulk portion of traffic to Internet consumers 
provides a path to mitigate rising energy demand. On-demand video is 
usually served through Content Delivery Networks (CDN), often scheduled 
in backend and edge datacenters. This publication describes a CDN 
deployment solution that utilizes green energy to supply on-demand 
streaming workload. A cross-cloud provider collaboration will allow 
cloud providers to both operate near their customers and reduce 
operational costs, primarily by lowering the datacenter deployments per 
provider ratio. Our approach optimizes cross-datacenters deployment. 
Specifically, we model an optimized CDN-edge instance allocation system 
that maximizes, under a set of realistic constraints, green energy 
utilization. The architecture of this cross-cloud coordinator service is 
based on Ubernetes, an open source container cluster manager that is a 
federation of Kubernetes clusters. It is shown how, under reasonable 
constraints, it can reduce the projected datacenter’s carbon emissions 
growth by 22% from the currently reported consumption. We also suggest 
operating datacenters using energy mix sources as a VoltDB-based fast 
data system to process offline workloads such as MapReduce jobs. We 
show how cross-cloud coordinator service can reduce the projected data-
centers carbon emissions growth by 21% from the currently expected 
trajectory when processing offline MapReduce jobs.
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1 Introduction

Over the past decade, cloud-based systems have been re-
quired to serve an increasing demand from users work flows
and data. Cloud-based systems may be classified into two
categories: serving systems and analytical systems. The
former provides low-latency read or write access to data.

For example, a user requests a web page to load online
or requests video or audio streaming. The latter provides
batch-like compute tasks that process the data offline that
are later sourced to the serving systems. The service level
objectives (SLO) for serving jobs are on the order of frac-
tions of a second, while the SLO for analytical jobs are on
the order of hours, sometimes days.

*Corresponding Author, ybiran@colostate.edu

www.astesj.com 1
https://dx.doi.org/10.25046/aj020601

http://www.astesj.com
http://www.astesj.com


Y. Biran et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 1-12 (2017)

Today, public cloud service providers (CSP) attempt to
process both of these workloads with a rich platform that
guarantees cost and SLO to their clients. Cloud comput-
ing is an emerging infrastructure with limited regulation
and compliance requirements [1]. Recently the Office of
Management and Budget issued a Federal Data Center Op-
timization Initiative that promotes increasing use of Green
Energy and increased utilization efficiency for all US Fed-
eral datacenters [2]. Specific target numbers are set for the
end of fiscal year 2018. This publication addresses how
those federal requirements may be attained and how feder-
ated cloud computing is a key enabler for attaining those
performance targets.

Beginning in 2013, the US government initiated a
carbon-tax on IT organizations to encourage major CSPs
to pursue green energy opportunities for their datacenters
operations [3]. US datacenters are projected to consume ap-
proximately 73 billion kWh by 2020 [3] with a correspond-
ing increase greenhouse gases. Green energy generation
growth is expected to triple by 2040 [4]. However, there
is no cohesive system existing to coordinate the rising data-
center energy demand with rising green energy supply. This
chapter utilizes Cloud-Federation as a multi-cloud resource
coordination system that matches computational resource
demands with available energy supply to maximize the uti-
lization of green energy for processing cloud-workloads.

Most CSPs seek more market share in competition with
other CSPs. One outcome of such competition is an ever-
growing infrastructure in the form of new datacenters across
the globe with no countervailing forces to meet user demand
more efficiently and satisfy societal environmental and en-
ergy requirements. This sub optimum use of infrastructure
increases the carbon footprint attributable to cloud comput-
ing services and also drives up costs to CSP’s. The fol-
lowing sections investigate two types of workloads, serv-
ing and analytical systems. This chapter will focus on two
workload types, On-demand streaming as a representation
of serving systems. It will also investigate analytical sys-
tems and present a unique model that allows optimal clean
energy usage.

1.1 Enabling Green Content Distribution
Network by Cloud Orchestration

On-demand streaming constitutes up to 85% of Internet
traffic consumption [5]. On-demand streaming content
is managed and distributed by content service providers.
It then cached and distributed by Content Delivery Net-
works(CDN) located at the edges of the Internet network
close to the consumers. Because streaming constitutes such
a large fraction of Internet resource consumption, this paper
will, of necessity, focus on methods to employ green energy
to better operate CDN instances of on-demand streaming
jobs, which include both video and audio content.

Meeting the Federally mandated approach of maximiz-
ing the utilization of green energy to operate CDN instances
(for government with recommendations for private sector
use as well) requires an energy source-demand coupling
scheme that insures SLO levels of power availability but
is structurally biased towards green energy sources over hy-
drocarbon fueled energy sources. A system to accomplish

this will have to provide seamless failover in the case of
sudden interruption of green energy to grid-energy sources
or vice versa i.e., fallback from grid-energy to green energy
when surplus green energy is available.

User expectations in on-demand streaming requires dif-
ferent service level requirements than other serving sys-
tems workloads. Serving systems workloads are com-
prised of interactive sessions that pivots on minimum la-
tency. However, low latency is less critical in analytical
on-demand streaming since application clients use buffering
techniques to mitigate long latency effects. Therefore, on-
demand streaming workloads fits, more closely than inter-
active workloads, with the observed intermittent and vary-
ing green energy availability characteristics.

Green energy supply is unpredictable and requires a
complex, adaptable, resource allocation system to provide
CDN services with steady energy supplies while concur-
rently seeking minimal carbon footprint. This dynamic
availability of green energy resources in a smart grid re-
quires real time communication of both short term and pre-
dictive energy needs from cloud service providers to green
energy providers. The green energy providers need to dis-
close availability dynamically to CSPs, who, in turn, dis-
close their changing energy demands for near term comput-
ing. SPs can then better maximize the use of green energy
for on-demand streaming processing.

This is a classical resource management and coordina-
tion problem [6, 7]. The following approach builds upon
prior work that was done in this area [8, 9], specifically
that done on alleviating the sudden lack of green energy
to meet low-latency workloads. The approach herein em-
ploys an application-buffering scheme that better allows for
opportunistic, green, on-demand streaming processing. It
requires an extended, cohesive, federated system that aggre-
gates supply and demand across multiple geographic loca-
tions employing the smart grid command and control infras-
tructure to achieve an optimal dynamic matching of green
energy sources and computing loads.

This chapter proposes an implementation that utilizes
a control component in a federated cloud that coordinates
and optimizes the resource allocation among the participant
CDN providers. It treats the volatile nature of green energy
resources as a resource allocation problem, the solution of
which is a resource orchestration system that is optimized
with the goal to operate increasingly near to the limit of
supply by green energy sources constrained by SLO relia-
bility requirements. This system will be demonstrated by
modeling a prototype that simulates resource allocation in
a micro federated cloud eco-system to achieve an energy
supply-computation demand match optimized within sec-
onds.

Since the focus of this work is on green energy utiliza-
tion in a federated cloud, the scheduling algorithms and re-
source management issues, while important, are discussed
only to the extent necessary to help the reader understand
the required architecture for heterogeneous energy compute
clustering. This work is meant both as a case study in en-
ergy utilization, and a presentation of a novel method of
coordinating high-velocity data streams, and extended to a
unified orchestration system, to optimize the performance
of federated cloud systems.
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The chapter starts, with the on-demand streaming eco-
nomics, increased green energy utilization and anticipated
smart grid progressions as applied to on-demand streaming.
Then it discusses the green energy utilization problem is
analyzed. Finally, we present a cloud coordinator prototype
that is built on Kubernetes [10, 11], an open source clus-
ter manger, and extend that prototype to discusses the need
for and requirements of a unified system that orchestrates
cluster compute resources in a federated cloud.

1.1.1 On-Demand Streaming and CDN

Over the last decade, video and audio traffic became the
dominant segment of consumer internet traffic. Cloud
service-providers such as Netflix, Amazon Instant and
YouTube disrupted the prior linear TV data distribution
model. Also, video streams delivered by mobile terminals
grew as mobile connectivity improved [12]. Video stream-
ing is expected to constitute up to 85% of Internet con-
sumers traffic [5] within a few years. The US portion of
video streaming is 14%1 and the number of US Unique IPv4
connected addresses is 17% [12]. The streaming work-
load is comprised of live streaming and on-demand stream-
ing, with the relative fractions of 6% and 94% respectively
[5]. Other predictions support similar ratios, 12% live-
streaming and 88% for on-demand.

A key driver for the rapid expansion of streaming video
was the shift from specialized streaming protocols and
infrastructures such as RTSP, and RTMP [13] to a sim-
ple HTTP progressive download protocol. This led to a
shift from proprietary streaming appliances to commodity
servers. In turn, this change removed a barrier for CDN’s
to process on-demand workloads. Most present day, CDN
service providers support a seamless integration with cloud-
based object storage that pipelines the digital content from
the organization site to the CDN instance that runs at the In-
ternet provider edge2. Furthermore, the HTTP chunk-based
streaming protocol support in a CDN allows the client ap-
plication sufficient time to detect the optimal CDN instance
to handle user workload. The optimal CDN instance assign-
ment is done by the cloud control plane resource manager.
The prototype described below will demonstrate such opti-
mal resource allocation.

We used server utilization and power metrics from
[3, 12] to design the prototype. Most of these sources we
considered have limited utilization rates and server utiliza-
tion distribution. Also, utilization and power consumption
do not scale linearly [14]. However, for clarity, in the in-
terest of maintaining focus on the larger goal of the paper,
CDN resource management systems for green energy uti-
lization, we assumed linear relationships and accepted the
risk of loss of accuracy in our estimates. High fidelity sim-
ulation accuracy is not critical for the goal of this chapter.

1.1.2 Energy Saving Potential in Operating a Dis-
tributed CDN Resource Management System

The approach is to aggregate the required traffic for on-
demand workload processing, and use standard compute

device specification to assess the electrical energy and car-
bon footprint that will be required by that workload3.
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Figure 1: On-Demand Video views observed throughout 48 hours with
1-hour increments. Data was fitted with smoothingspline for curve and
surface fitting [5]

The estimated data rate for streaming is given as S total =

63000PB/mo (where PB is Petabytes). Figure 1 shows
users workload pattern of 9 busy hours in which the
workload spans throughout 13 hours a day which yield
126PB/sec/mo/ The on-demand streaming portion is es-
timated as 78% across four main US regions denoted by
k = 4, the number of region used, for the purposes of this
paper although k can be varied depending upon the degree
of granularity desired in the simulations. S on−demand denote
the on-demand portion.

S on−demand = S total · 78% = 49140PB/mo

nhours/day denotes the number of effective hours in a day
for streaming.

nhours/day = nbusy + k = 13

Drate =
S on−demand

nhours/day
= 126PB/sec/mo

Nmax denotes the estimated number of required servers
in maximum CPU capacity. Nmax is bounded by the maxi-
mum network throughput a single server can ingest. Stan-
dard commodity servers can handle up to 8.5Gbps i.e.
1.026GB/sec.

Nmax =
Drate

Tmax
=

126 · 106GB/sec
1.026GB/sec

= 118588235.3

uopt denotes the CPU utilization factor so servers has
sufficient capacity to handle management tasks. We esti-
mate 60% utilization factor uopt = 100/60.

Nopt = Nmax · uopt = 118588235.3 ·
100
60

= 197647058.8

Es denotes the midrange server energy consumption
for various server types s. We consider three
types of servers:(1) compute server(5kWh/server), (2)

1Internet Statistics retrieved from https://www.statista.com/chart/2647/global-internet-usage-by-the-numbers/
2Cloud Front reference retrieved from https://aws.amazon.com/cloudfront/
3OpenCompute Project, Servers Specification guide retrieved from http://www.opencompute.org/wiki/Server
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digital storage server(1.7kWh/server) and (3) network
server(1kWh/server). Storage server acts the digital stor-
age controller. The network server acts as the router and
switch. The compute server is the server that processes the
on-demand streaming.

Ey = Nopt ·
∑

s∈S
Es (1)

= Nopt · (5kWh + 1.7kWh + 1kWh)

= 1.521 · 106kWh/mo = 18.26GWh/y

The saving potential from running on-demand video
streaming using green energy resources is 18.26GWh a year
based on current on-demand consumption and expected to
grow 89% by 2019 4. i.e. 34.5GWh per year for on-demand
streaming. The next sections will explain the challenges in
utilizing green energy followed by a method that addresses
some of these challenges and thereby maximizes the utiliza-
tion of green energy.

1.2 Coordinating Green Clouds as Data-
Intensive Computing

The following paragraph focuses on analytical systems
workloads that typically comprise 48% of the cloud work-
load [15]. Also, some of the workloads patterns can be
predicted as recurring jobs [16] and the deadlines for an-
alytical jobs are more liberal by an order of magnitude than
the serving jobs. Finally, one of the ways to handle offline
workloads is to process the data streams offline through a
highly scalable data-parallel frameworks like MapReduce
by submitting jobs to a control plane [17].

This chapter proposes a component in a federated cloud
that will optimize the resource allocation and coordination
among the participant CSPs. It will also focus on address-
ing the time and power volatile nature of renewable energy
resources as a fast date problem. It will present a resource
management system with a goal to increase the utilization
of data-centers, and to operate increasingly to the limit of
supply by renewable energy sources. Finally, a prototype is
built to simulate resources allocation in a micro federated
cloud eco-system to achieve a supply demand optimized
match within seconds.

Clean energy sources are time and power volatile and
require complex resource allocation and coordination sys-
tems to maintain highly available data-center service with
steady energy at a minimal carbon footprint. Further, avail-
ability of clean energy resources in a smart grid can be
pushed from a variety of energy sources deployed across the
nation as can the pull needs of data-service centers. Thus,
CSPs will publish their compute resources availability, and
service providers (SP), will publish their changing energy
demands for near term computing. These streams of data
include both high-volume and high-velocity characteristics
termed a fast-data problem [18]. Our proposal uses as a
base previous work that was done in this area [8, 19, 20].
However, previous work treated clean energy within a sin-
gle data-center operated by a CSP. The proposal below sug-
gests an extended cohesive system that aggregates supply

and demand across multiple geographic locations employ-
ing the smart grid sense command and control to achieve an
optimal match.

1.2.1 Optimum Clean Energy Utilization is a Fast-
Data Problem!

This study suggests that efficient, clean energy utilization
requires three consecutive steps: (1) Clean energy resource
availability signals. (2) Exploration and analysis of prior
years seasonal solar data and current weather reports and
evolving green energy capacity availability planning. (3)
Acting fast enough based on the predictive analysis. The
last step is the key component in solving the optimum allo-
cation problem.

We judge that clean energy utilization is different from
the classic big-data problem such as the Hadoop MapRe-
duce Method. Big-data solutions solve the case where the
data is at rest, not fully consistent (aka eventual consis-
tency) and require liberal SLO that is later provided as com-
puting trends, and other business intelligence applications.
However, our case handles data in motion that requires con-
sistent, real-time aggregation, and transaction processing.
That is per-event decision making using both real-time con-
textual and historical data as dual guides for proper algo-
rithms. Finally, we argue that based on the clean energies’
volatile nature, processing streams of compute demand and
clean energy supply requires that a need for a compute re-
sources can be addressed with a currently available demand.

1.3 Why is Green Energy Utilization Hard?
The following section describes why utilizing green energy
for compute purposes, while a justifiable goal, is limited
by SLO reliability. It will present a scenario where balanc-
ing time-varying energy generation patterns with changing
dynamic energy demands of cloud computing sometimes
conflict. The green energy time varying generation patterns
considered by us focuses on wind and solar generation. Fig-
ure 4 show historical data on dynamic nature of green en-
ergy sources and Figure 5 shows the dynamic cloud energy
demand.

1.3.1 Frequency Stability in Wind-Power Generation

The daily wind power variation characteristics will be em-
ployed as a metric that illustrates the duration and level for
a given amount if wind energy availability. The electric-
ity generation process from wind is comprised of a wind
turbine extracting a kinetic energy from the air flow. The
wind is rarely steady; it is influenced by the weather system
and the ground surface conditions, which are often turbu-
lent [21]. Also, the generation process must happen at the
same instant it is consumed [22] unless it is stored in grid
level battery banks. Unfortunately, grid level energy storage
technology is not keeping up with grid level energy genera-
tion technology.

Sample wind and power generation data were obtained
from NREL [22]. We used datasets from 2006-2012 across
different regions in the US and aggregated more than 600

4https://www2.deloitte.com/content/dam/Deloitte/in/Documents/technology-media-telecommunications/in-tmt-rise-of-on-demand-content.pdf
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observations. Finally, the data were fit using smoothing
splines5. The usable power generated from a wind turbine
is generally described by a Rayleigh distribution [21]. It
defines three main points in the wind power generation pro-
cess: (1) the cut-in is the minimum viable wind speed for
electricity generation from a wind turbine. (2) the rated
level, describes the point where the power reached its lo-
cal maximal capacity without adverse effects on the turbine
life by too strong a wind. (3) Cut-Off, is the term for the lo-
cal minimum for the generation cycle. Beneath that speed,
there is not enough power for viable electricity generation.
Thus, if the wind velocity is too low, the data-server gets
no wind energy. Figure 2 shows wind generation variations
that crudely fit a Rayleigh distribution with b = 300 as-
suming the form of the Rayleigh Probability Distribution
Function is:

f (x|b) =
x

b2 e
−x2

2b2

The measured generation cycles range between 140 and
180 minutes per cycle. Equation 2 expresses the gener-
ated power by a wind turbine, given a wind velocity. The
function g describes a viable electricity generation given a
wind power. The wind power availability indications will
be generated by a wind turbine and fed into the coordina-
tor database as a potential power source to datacenters in
a region. Our prototype will assume wind power availabil-
ity indications as the wind tuple {region,cut-in,rated,cut-off}

indications.

Poutput(windv) =


0 : if windv ≤ rated
g(windv) : if rated < windv ≤ cout

0 : if windv ≤ cout

(2)
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Figure 2: Aggregated wind power measurements between 2007-2012 that
fits Rayleigh Distribution with b=300

1.3.2 Efficiency and Daily/Hourly Availability in Solar-
Power Generation

Photovoltaic solar (PV) energy availability is defined by the
solar power intensity denoted by s(Watts/m2), which varies
with local daylight hours and the clear or cloudy sky con-
ditions [22]. Moreover, the PV cells are most effective at
lower temperatures [23]. The PV cells electrical power gen-
eration, defined by Equation 3, is a function of the solar
intensity denoted by ηsolar. Solar power generation also de-
pends on the PV power efficiency denoted by s. It encapsu-
lates both the predicated temperature,the sky conditions, the
solar cell efficiency, and the DC to AC inverter efficiency.
The solar cell area denoted by a(m2).

Poutput(s) = ηsolar · s · a (3)

Our prototype will assume solar power availability indi-
cations as the solar-tuple {region,power-efficiency}. Based
on the solar generation pattern presented in figure 3, the
generation prediction utilizes the the local time in a region
and the given power-efficiency
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Figure 3: Aggregated solar power generation between 2008-2011 taken in
Palm Springs CA, Prescott Airport CPV, AZ and Nevada Solar One, NV,
indicating on a stable and fixed solar-based power [22]

1.3.3 Optimum Green Energy Utilization for On-
Demand Streaming is a Resource Management
Problem!

This study suggests that efficient; green energy utilization
for on-demand video streaming workloads has three main
requirements: (1) efficient compute resource discovery, (2)
efficient load balancing among the provisioned compute re-
sources and (3) smart failover mechanism that mask failover
events from green CDN-edge instance to grid CDN-edge
instance while end-users stream on-demand video [24].
These are discussed below.

Compute Resources Discovery. This assessment com-
prises both internal and external discovery. Internal discov-
ery refers to CDN-edge instances that run in compute pods
that must be able to be easily discovered and connected
to control-plane endpoints consistently regardless of which
cloud-service-provider is hosting the CDN-edge. Exter-
nal discovery refers to the ability of end-users discovering
CDN-edge instances through DNS services for HTTP(S)
on-demand video streaming.

Optimal Load Balancing is the seeking of the ”best”
CDN-edge, based on optimization criteria, for any given the
workload processing. After initial discover and connection,
clients should be served by the optimal instances based on
proximity from the end-users, current load factor, and the
availability of green energy resources. e.g., session requests
originated from New Jersey should be served by US East as
oppose to US West to avoid latency and signal loss.

Efficient Failover is a main component for on-demand
video streaming based on green energy. If the endpoint
becomes unavailable, in this case due to a sudden lack of
green energy, the system must failover the client to another
available endpoint that manages the streamed content. Also,
failover must be completely automatic i.e. the clients end of
the connection remains intact, and the end-user oblivious to
the failover event, which means that the end-user’s client
software requires no support handling failover events. Fi-
nally, multiple CDN-edge instances co-located in a region
should be accessible by end-users through Domain Naming

5Matlab Smoothing Splines retrieved from https://www.mathworks.com/help/curvefit/smoothing-splines.html?requestedDomain=www.mathworks.com
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Service (DNS), as most clients-streaming (browsers) soft-
ware supports DNS resolutions for finding available CDN-
edges.

The green energy utilization model for processing
on-demand video streaming is different than the classic
scheduling problem where classical optimal resource allo-
cation techniques are applied [25, 26]. We argue that based
on the green energies’ volatile nature and the on-demand
video streaming workload characteristics, the optimal re-
source allocation approach should be opportunistic. It re-
quires an effective resource management system for pro-
cessing on-demand video streaming workloads. Our proto-
type will employ a Kubernetes flavor ”Ubernetes” that im-
plements the three main requirements above.

2 Clean Energy Mix Evaluation for
Online On-Demand System

In the following section we evaluate a compute load co-
ordination system component that harmonizes on-demand
streaming job demands with available compute resources,
with priority given to those powered by green energy
sources. Such resources will be published to the co-
ordination system through a resource availability tuple
{region,cut-in,rated,cut-off,power-efficiency}, where region
indicates the geographic availability region. power-
efficiency indicates solar or wind based energy power ef-
ficiency. cut-in, rated and cut-off the values appropriate to
those energies.

On-demand streaming job demand includes the specific
region, total-job workload, load-factor, as well as con-
tract deadline SLA. The load-factor indicates the required
number of CPU cores per the total-job-workload. The
geographic region indication will be used to optimize the
match between the supply and demand. Also, the total-job-
workload and the deadline will be compared against the cut-
in,rated, cutoff time for wind or power-efficiency for solar,
based on the published load-factor.

We suggest a hybrid datacenter that does not deviate
from the common datacenter architecture. The core dif-
ference lies on an automatic transfer switch (ATS) that
switches between different available power sources: gen-
erator, grid or green energy when available. In both cases
the datacenter design does not change and requires incre-
mental changes only by adding green energy power sources
to the datacenter’s ATS’s (Figure 6).

We suggest two types of compute clusters, green-
clusters powered by green energy and grid-clusters powered
by the electrical grid. Figure 6 shows a simplified datacen-
ter power distribution that supports green energy sources.
In such datacenter, both serving and analytical systems de-
ployed in grid clusters. Further, for incoming analytical
workloads, few clusters use green resources when there are
a viable green energy and mostly standby. As a mitigation
strategy, a compute live migration procedure will be avail-
able in case of unpredicted lack of renewable resources dur-
ing a workload processing which presents a risk for SLO

violation.

2.1 Experiment Planning
Below is simulation of a cross-regional platform that is
comprised of control-plane, workload-plane and coordinat-
ing components. This will be embodied in a resource al-
location system (Kubernetes). This system will: (1) pro-
vision resources to be neared users; (2) optimize utiliza-
tion by prioritizing the use of underutilized resources; and
(3) seamlessly remove malfunctioning hardware from the
system. The control-plane will enable an effective com-
pute resource provisioning system that spans across dif-
ferent public cloud providers and regions. The coordinat-
ing components will accept user-workload demands as well
as green energy availability from various regions and op-
portunistically seek to process streaming workloads using
compute resources provisioned by green energy resources.
The workload-plane will be comprised of edge streaming
servers that process the end-user on-demand video stream-
ing. It will built of standard Apache HTTP6 servers that
runs on the edge location.

The control-plane software infrastructure is based on
Kubernetes [10], it facilitates internal discovery between
CDN instances so instances can connect across different
cloud boundaries and regions. Further, end-users can dis-
cover the optimal CDN-edges that are (1) nearby, (2) less
loaded and (3) healthy. Finally, the Kubernetes automation
framework allows the failover mechanism with no depen-
dency upon the end-user client. In particular, we will ex-
ploit the livenessProbe option that automatically removes
green-compute pods, a set of CDN-edge instances, in case
of a sudden lack of green energy.

The coordinator component accepts incoming supply
and demand traffic, calculates a potential match, within
minutes, and notifies back the CSP and the SP for transac-
tion completion. We use Redis7 as the in-memory data store
as the database that stores the system supply and demand
calls originated by the end-user workload. The workload
is generated by Jmeter instances8. The workload gener-
ated based on the on-demand video views observed by [12]
depicted in Figure 1. Green energy availability simulated
based on the known regional patterns depicted by Figure 2
and Figure 3.

We count the number of matches i.e. on-demand video
streaming processed by CDN-edge instances operating on
green energy. Also, we measure the false-positive cases
where a match was suggested but did not met the SLO’s
deadline due to a violation that caused by a sudden lack of
green energy resources. We use the data to extrapolate the
possible energy (kWh) that could be generated by the using
green CDN-edge instances depicts in Equation 1.

2.2 Execution - The Preparation
The prototype experiment included the setup of three vir-
tual datacenters deployed in different regions: (1) Central
US, (2) West US and (3) East US. The clusters were sized

6Apache Web Server reference retrieved from https://httpd.apache.org
7http://redis.io
8http://jmeter.apache.org
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based on US population distribution9 by regions i.e. 20%
for West US, 40% for East US and 40% Central US. The
cluster sizes for West US, Central US, and East US are 3, 7
and 7 machines respectively. Each machine is standard 2-
CPU cores with 7.5GB of memory. Also, the user demand
simulation will rely on the US population distribution. Fi-
nally, the green energy supply simulation will be based on
wind or solar availability observed in the various regions.

The control-plane is comprised of docker API server
and controller-manager. The controller coordinator com-
ponent will need to allocate resources across several geo-
graphic regions different cloud providers. The API server
will run a new federation namespace dedicated for the ex-
periment in a manner such that resources are provisioned
under a single system. Since the single system may ex-
pose external IPs it needs to be protected by an appropriate
level of asynchronous encryption10. For simplicity, we use
a single cloud provider, Google Container Engine, as it pro-
vides a multi-zone production-grade compute orchestration
system. The compute instances that process the user work-
loads are deployed as Docker containers that run Ubuntu 15
loaded with Apache HTTP server. For simplicity, we avoid
content distribution by embedding the video content to be
streamed in the Docker image. We run 52 Docker contain-
ers that span across the three regions and act as CDN-edges.
Green CDN-edge instances differ from grid CDN-edge in-
stances by Kubernetes labeling. The simulation of the hy-
brid datacenter is depicted in Figure 6.

A coordination database system that aggregates green
energy, solar or wind, availability, was built in software.
When energy sources manifest the cut-in patterns depicted
by Equation 2 and Equation 3, the coordination system
starts green CDN edges in the availability regions. Also,
when green energy availability reaches cut-off rates, the co-
ordination system turns off green CDN edge instances.

2.3 Baseline and Variability of Workloads
The baseline execution included data populations of both
green energy availability and user demand for video stream-
ing. The data population was achieved by the Kubernetes-
based Jmeter batch jobs. The loader jobs goal is to populate
the coordinator database with green energy supply based on
using a Weibull distribution, which is a generalization of the
Rayleigh distribution described above for wind and a nor-
mal distribution for solar. Also, the user demand was popu-
lated according to the observed empirical patterns depicted
by Figure 1.

We simulated the availability and unavailability of green
energy using Jmeter-based workload plan against the co-
ordination system. Our implementation starts green CDN-
edge instances opportunistically upon green energy avail-
ability. Once a CDN-edge instance declares its availability
it processes live workloads.

We use the Kubernetes livenessProbe for communi-
cation between CDN-edge instance pool and its load-
balancer that divert traffic to its pool members. Finally,
another workload Jmeter-based simulator generates on-
demand streaming calls. This workload simulates end-user

demand. It includes HTTP progressive download calls to
pre-deployed video media in the CDN-edges.

2.4 Main Execution
In each of the three regional CDN-edge clusters the Ku-
bernetes Jmeter batch jobs that generated green availability
traffic to the coordination component were executed. The
simulation is comprised of availability indication that are
based on Figure 2 and Figure 3. We randomized solar pro-
duction by using a factor of α = 0.2 based on collected data
between 2008-2011 in Palm Springs CA, Prescott Airport
CPV, AZ and Nevada Solar One, NV [3]. Also, we ran-
domized the wind production by a factor of β = 0.4 based
on collected data between the years 2007-2012 [22]. The
demand simulations included a set of calls to the coordi-
nator component spread across 48 hours. The calls orig-
inated from three different timezones. The supply simula-
tions consist of wind and solar-based energy time and power
windows.

The experiment executions generated two main data
traces that we used for the resulting generation computa-
tion. The first trace is the simulators logs. The simula-
tor logs includes the demand and supply records. Demand
records stored in the Redis key-value store under the key
”DemandEvents” followed by timestamp, region and the
required compute capacity. The supply calls were stored
in the Redis key-value store under the key ”SupplyEvents”
follows by timestamp, region and supply phase i.e. cutin,
cutout or rated. For query simplicity the loader ingested
three types of records for each supply and demand the by
the keys: (1) supply or demand (2) timestamp, and (3) by
region. This approach optimized the coordinator queries by
timestamp and regions for green CDN-edge instances allo-
cation.

The second trace is the actual allocation logs. It is
generated by the coordination system that invokes the Ku-
berenetes command for green CDN-edge instances initial-
ization and disposal. This was used to determine the green
energy utility translated into energy (kWh) that did not use
grid energy sources.

2.4.1 Limitations

Every supply and demand was recorded three times to ease
the query process. This approach was used since Redis
provided limited query abilities by different keys. This ap-
proach might suffer data inconsistency issues where a sup-
ply metric was successfully committed to one key recode
but missing on other key. Production systems should add
extra safety gates when ingesting data. We used Redis be-
cause of its popularity in the Kubentese community. How-
ever, our approach is not limited to Redis or other database
systems for that matter.

When measuring the green energy overall utility, we
used the container initialization and disposal as indication
that green energy utility was used. Specifically, we used the
‘kubectl logs POD‘ command based on the assumption that
the coordination system invocation commands are tightly

9US Population Distribution retrieved from https://www.census.gov/popclock/data
10Simulation code and data retrieved from https://github.com/yahavb/green-content-delivery-network
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coupled with green energy availability. It is likely that col-
lecting the actual video streaming traces through the various
Apache access logs of the CDN-edges will be more accu-
rate.

In the case of a sudden lack of green energy while
streaming video a failover occurs. Such failover event re-
lies on domain naming services (DNS), the impact of DNS
caching was not included since that might cause streaming
delay on the user side. Also, when the coordinator algo-
rithm determines there is enough green energy available it
will take grid pods down and activate green pods up in a
controlled fashion e.g., one at a time so that no requests are
lost during the transition phase. For simplicity, the algo-
rithm avoid that.

2.5 Analysis

The green energy supply simulation plotted in Figure 4
shows the energy generation in MW for both wind and so-
lar sources. The simulated amounts were adjusted to the
amount observed in the traces between 2007-2012 [22].

The user workload simulation plotted in Figure 4 fol-
lows the observed user patterns depicts in Figure 1. Also,
it shows the aggregated green energy availability for each
region. The cloud-coordinator uses these data sets to deter-
mine if there is enough green energy available before pro-
visioning green-pods and possibly taking grid-pods down.
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Figure 4: Green energy availability simulated in MW across three regions.
Amounts are adjusted to NERL measurements i.e., wind generation in
West US moderate, Central US outstanding, East US fair. For solar gener-
ation in West US strong, Central US moderate-high, and East US low.

The utility of the green energy was calculated based on
the cases where sufficient green energy was available to
run the green-CDN pods within the same region. Other-
wise cross-regional latencies might degrade the on-demand
video experience. The measurements in Figure 5 were ad-
justed to the estimates of required energy (kWh) for oper-
ating the green compute pods. The case where there was
negative green energy available it was considered as a miss
in the overall utility reckoning.
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Figure 5: Video on-demand user workload per region adjusted with user
population opposed to aggregated green energy availability, solar and wind
energy.

2.6 Discussion on Energy Mix when Process-
ing CDN Workloads

The scenario described above simulated the usage of green
801.3 kWh out of total 3642 kWh to process the video on-
demand streaming workload. i.e. 22% by opportunistic
matching. When counting the utility per region West US
used 42% of the green energy. Central US used 28% of the
simulated green energy. East US utilized only 18% as the
initial ratio between user demand and green energy avail-
ability was relatively low. Although West US reached 40%
utilization it contributed nationally only to the 20% portion
it contains from the entire experiment test set. By way of
comparison, Jeff Barr of AWS noted that their data centers
utilize a 28% cleaner power mix11. Extrapolating the sim-
ulation results to the initial assessment in Equation 1 yields
to a saving of:

(18.26(GWh) ·1.89) ·0.1($/kWh) ·22% = $759, 250.8/year

3 Clean Energy Mix Evaluation for
Offline System

In the following section we evaluate a coordination com-
ponent that harmonizes analytics jobs demands with avail-
able compute resources powered by green energy resources.
Such resources will be published to the coordination
system through a resource availability tuple {region,cut-
in,rated,cut-off,power-efficiency}, where region and power-
efficiency indicates solar or wind based energy and region,
cut-in, rated and cut-off of those energies.

Analytics job demand includes the specific region, total-
job workload, load-factor, as well as contract deadline
stermed tuple. The load-factor indicates the required num-
ber of CPU cores per the total-job-workload. The region
indication will optimize the match between the supply and
demand. Also, the total-job-workload and the deadline will
be checked against the cut-in-rated, cutoff time for wind
or power-efficiency for solar, based on the published load-
factor.

11Amazon Web Services Sustainability reference retrieved from https://aws.amazon.com/about-aws/sustainability/
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We will suggest a hybrid data center structure that does
not deviate from the common data-center architecture. The
core difference lies on an automatic transfer switch (ATS)
that switches between different available power sources:
generator, grid or clean-energy when available. In both
cases the data-center design does not change and requires
incremental changes only by adding clean-energy power
sources to the datacenter’s ATS’s (Figure 6).

Figure 6 shows a simplified data-center power distribu-
tion that supports clean energy sources. In a data-center
with available clean-energy resources for both serving and
analytical systems deployed in brown clusters. Further, few
clusters use green resources when there are a viable clean
energy and standby for incoming analytical workloads. As
a mitigation strategy, a compute live migration procedure
will be available in case of unpredicted lack of renewable
resources during a workload processing with a risk for SLO
violation.

Figure 6: Datacenter Architecture - Compute server clusters aggregated
by racks and chassis. Racks are fed by separate Power Distribution Unit
(PDU) that connects to Uninterruptible Power Supply (UPS) that connects
to the primary power source through Automatic Transfer Switch (ATS).

3.1 Experiment Planning

We wish to simulate an isolated group of computing re-
sources so it can operate by various energy resources, es-
pecially available green ones. We use a group of leased
resources from existing cloud providers to form a virtual-
data-centers set that operates in a federated scheme. Each
virtual-data-center includes with internal arbitrator compo-
nent that collects and aggregates internal signals about its
utilization and availability. The arbitrator then reports to
the central coordination system. We use Apache Mesos12

for the virtual-data-center abstraction.
Also, we build a highly available coordination com-

ponent that accepts incoming supply and demand traffic,
calculates a potential match, within minutes, and notifies
back the cloud-service-provider and the service-provider
for transaction completion. We use VoltDB13 as the
database and application server for the coordinator compo-
nent.

Finally, we simulate customer’s demand for compute re-
sources through client simulator with a Java-based applica-
tion that generates pseudo demand traffic to the coordina-
tor service. The coordinator service will run on separate
resources pool than the virtual-data-centers and the client
simulator.(Figure 7)
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Figure 7: Experiment Architecture - Three virtual clusters deployed on a
public cloud services located in a different regions grouped by Apache
Mesos. A single VoltDB instance as the coordinator service. Finally,
Client simulator that generates pseudo demand that sends data to process

The data collected includes customer workload for jobs
processing and jobs deadline. Also, the number of matches
found by the coordination component and processed by
green clusters without SLO. Finally, we measure the false-
positive cases where a match was suggested but not met the
SLO’s deadline due to a violation that caused by a sudden
lack of clean energy resources. We use the data to extrap-
olate the possible carbon-footprint that could be generated
by the used virtual clusters.

The research goal is to show a significant improve-
ment in the carbon emission generation by data-centers.
Let MtCO2e denote the carbon emission. Electrical usage
can be consumed by the Consumers set: {cooling, storage,
servers, CPU, power} systems and denoted by EU measured
in kWh. The average regional carbon dioxide emissions
measured in lbs/kWh and denoted by REco2 . Therefore, the
total electrical usage is:

EUTotal(kWh) =
∑

ci∈Consumers
EU(ci) (4)

and the carbon footprint generated by the workload is:

MtCO2e =
EUTotal(kWh) · REco2 (lbs/kWh)

2, 204.6(lbs)
(5)

As the experiment uses virtual data-centers, we do not have
access to the power consumption by the cooling, power and
storage system. The results capture compute jobs durations

12http://mesos.apache.org
13http://voltdb.com
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measure in server CPUcore
time and use the average Thermal De-

sign Power (TDP) of 200W per core (0.2kW). ci and ti de-
notes the number of cores and time used per job respec-
tively. The electric usage by server (EUservers) will be the
sum of the electric utilization of the executed jobs that was
matched by the coordinator component (Equation 6)

EUservers(kWh) =

jobs∑
i=1

ci · 0.2 · ti (6)

We assume a linear relation between the power utilization
of the cooling, power and storage systems with the servers
power utilization. (Equation 4)

3.2 Execution - The Preparation

The Preparation for the execution included the setup of the
three virtual data-centers each with 6 machines D4 series
with 8 Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz cores,
10Gbps NICs, 28 GB memory and run Ubuntu 15.0. Each
virtual data-center is located in a different geo-location. The
virtual data-centers were simulated by Mesosphere clus-
ter with three jobtracker(Mesos masters) and three task-
tracker(Mesos slaves). We installed Hadoop Cloudera CDH
4.2.1-MR1 on the takstrackers. The Coordinator Database
run on a separate resource pool with 1 machine D series
similar to the virtual data-centers specification. Finally, the
loaders run on a 3 D2 series machines with 2 cores Intel(R)
Xeon(R) CPU E5-2660 0 @ 2.20GHz cores, 10Gbps NICs,
7 GB memory and run Ubuntu 15.0. Apache Hadoop ships
with a pre-built sample app, the ubiquitous WordCount ex-
ample. The input data file was created using /dev/urandom
on the takstrackers hosts14. The input data file was copied to
the HDFS directory that was created as part of the Hadoop
preparation (/user/foo/data).

Anticipated Required Deviations from the original
job plan. The original plan was to simulate the scenario
where the customer keeps his data at a different location
than it might be processed. We plan on using a job mi-
gration scheme that was originally designed for workload
migration across different geo-location[20]. The suggested
method optimizes the bandwidth costs of transferring ap-
plication state and data over the wide-area network. Our
experiment generated the data file at the loader host and
did not include the job migration. We believe that includ-
ing the job migration aspect could impact the presented re-
sults. However, the job migrations proven efficiency and
later studies minimize that deviation.

3.3 Baseline and Variability of Workloads

Baseline. The execution baseline included a load that runs
without the coordinator component i.e. loaders generated
load to the virtual data-centers resources for 48 hours. The
load scenario included a single file generation that was sub-
mitted to one of the tasktrackers. The output of each ex-
ecuted jobs included the CPU time spent for each execu-
tion. The data collection included the execution log of the

command: Hadoop jar loader.jar wordcount /user/foo/data
/user/foo/out.

Variability of Workloads. The workload comprises
of data files with words that need to be counted using the
Hadoop WordCount. The load complexity depends on two
factors, the file randomness level, and its size. We rely
on the native operating system randomness, and our vir-
tual data-centers and loaders are homogeneous. Therefore,
the size is the remaining factor for differentiating workload
types. We evaluated the federated-cloud coordinator by
generating three load types simultaneously. The three types
intend to cover the following cases (1) A match was found
between workload and sufficient green energy resources.
(2) A match was found, but there was not enough power to
complete the job with no SLO deadline violation. (3) Like
the former but with SLO deadline violation. The three types
will be uniquely distributed across wind and solar based vir-
tual data-centers.
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Figure 8: Green Energy availability simulated across six different time-
zones, three for PV power and the bottom three for wind. These indica-
tions are fed, in near-time, to the coordinator database that runs a temporal
stored procedure that seeks for match with pending registered jobs.

3.4 Main Execution Issues
In each jobtracker host in a virtual data-center, we executed
a simulator that generated green availability traffic to the co-
ordination component. The simulation comprises of avail-
ability indication that are based on figure 2 and figure 3.
We randomized solar production by using a missing factor
of α = 0.2 based on collected data between 2008-2011 in
Palm Springs CA, Prescott Airport CPV, AZ and Nevada
Solar One, NV [22]. Also, we randomized the wind pro-
duction by a missing factor of β = 0.4 based on collected
data between the years 2007-2012 [22]. The demand sim-
ulations included a set of calls to the coordinator compo-
nent spread across 48 hours triggered by a Monte Carlo
simulation inspired by [27]. We built a Rayleigh-based dis-
tribution model in the Monte Carlo simulation using Mat-
lab Statistics and Machine Learning Toolbox15. The calls
originated from three different timezones. Each call com-
prises of the tuple {region,total-job-workload, load-factor,
contract deadlines}. The supply simulators are comprised of

14https://github.com/yahavb/GreenCloudCoordination/
15https://www.mathworks.com/products/statistics.html
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the wind and solar-based energy time and power windows.
Supply call to the coordinator includes the tuple {region,cut-
in,rated,cut-off,power-efficiency}. The coordinator runs a
temporal stored procedure that find a match between the
supply and demand data. When a match found, the coordi-
nator generates an assignment call to the jobtracker in the
corresponded virtual data-center to execute the jobs. The
execution will fetch the data to be processed and report tem-
poral statuses to the coordinator. Every status call generates
a check against the current demand levels in the particular
region. If the demand changed, and the request cannot be
fulfilled, the job considered as false-positive. If the jobs
are completed successfully, the request counted as success
along with the Core/hour saved.
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Figure 9: A Monte-Carlo-based simulated compute demand across six dif-
ferent timezones, three for PV power and the bottom three for wind. These
indications are fed, in near-time, to the coordinator database that runs a
temporal stored procedure that seeks for match with available green en-
ergy.
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Figure 10: Job placement ranges denoted by the doted line in both the PV
and the Wind plots. Any values above the zero levels indicate on poten-
tial benefits. However, assigned jobs might not be able to fully processed
when unpredicted drop in the availability.

3.5 Analysis
The experiment executions generated three core data logs
that we used for the result generation. The first data set

is the simulators logs. The simulator logs comprise of the
demand records. Demand records stored in the Demand
VoltDB table. The supply calls were stored in the Supply
VoltDB table. The match transactions stored in the Jobs
VoltDB table with status and the number of cores/hour used
for the job. Status values can be Success or False-Positive.
Figure 9 shows the two supply indications. Both signals
were generated based on Equation 2 and Equation 3. The
demand data was generated based on known usage patterns
that are spread across three timezones.

3.6 Discussion on Energy Mix when Process-
ing Offline Workloads

The experiment simulated the usage of green 708 kWh out
of total required 3,252 kWh for analytical systems work-
load processing i.e. 22% less carbon emission (Equation
5). 1822 kWh, 50% of the total workload consumption, was
processed by brown energy because of false-positive events
i.e. the coordinator assigned a job with no sufficient green
recourses to process the job. We believe that optimizing the
coordinator algorithm can improve the footprint reduction
up to 50%.

Figure 10 shows the job placement ranges denoted by
the dotted line in both the PV and the Wind plots. Any
values above the zero levels indicate on potential benefits.
However, such cases are subject to false positive events that
can occur when an unpredicted drop in the availability. Fur-
ther, such cases utilize the hybrid datacenter power scheme
describes in figure 6.

4 Conclusions

The future growth of cloud computing will increase its en-
ergy consumption as a fraction of grid power and will cause
a significant addition to the ever growing carbon emission
since 70% of US power is generated by hydrocarbon fired
power plants. Using rapidly emerging green energy for
processing cloud computing workloads can limit the antic-
ipated carbon emission growth. However, balancing time
varying green energy utilization with time varying energy
demands of cloud computing is a complex task that re-
quires sophisticated command and control prediction al-
gorithms beyond the scope of this paper but are emerging
in the form of a smart grid system of systems [28]. Our
study shows that green energy utilization for on-demand
streaming workload is best described as a resource man-
agement problem. The solution presented demonstrates real
time balance of green resource supply and cloud computing
workload demand and utilizes Ubernetes, an open source
container cluster manager. The results approximate within
21% those observed in a single cloud instance in the field.
Our study also shows that green energy utilization for of-
fline workload processing is a fast data problem. Its solu-
tion best utilizes VoltDB, an in-memory database, to allow
near-time response for green resources supply and work-
load demand. Our future work will focus on optimizing the
false-positive ratio, to further reducing the cloud computing
carbon footprint by up to 50%.
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