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Recently, the number of industrial accidents of chemical plants has been
increasing in Japan. The fault detection system is required to keep chem-
ical plant safely. In this study, a fault detection system for a chemical
plants using agent framework and negative selection algorithm was pro-
posed. The negative selection algorithm is one of artificial immune sys-
tems. The artificial immune system is an imitative mechanism of vital
actions to discriminate self/nonself to protect itself. The method was
implemented and applied to a complicated chemical plant—which is a
boiler plant virtually operated using a dynamic plant simulator. The
simulations of fault detection were carried out. And also the results of
simulations are presented in this paper.

1 Introduction

This paper is an extension of work originally pre-
sented in 2017 6th International Symposium on Ad-
vanced Control of Industrial Processes (AdCONIP)
[1].

Recently, it has been increasing the accidents of
chemical plants. Figure 1 shows the annual numbers
of the industrial accidents in Japan (the data is based
on the summary of accidents in specified business fa-
cilities inside petrochemical complex in Japan, pub-
lished by Fire and Disaster Management Agency, Min-
istry of Internal Affairs and Communications, Japan,
posted on their official web site on May 2017, article
in Japanese). The numbers of the industrial accidents
in Japan—except accidents caused by earthquakes or
tsunami—has been increasing from 45 in 1993 to over
250 in 2016. It is said that the remote causes of
the rise of accidents in Japan are mass retirements
of skilled engineers, insufficient technical tradition,
labor-savings in production lines or plant operations,
aged deterioration of productive facilities, or mainte-
nance cost reduction in assertive ways. Therefore, ef-
fective fault detection system for chemical plants is
required. In the general chemical plant operations,
plant alarm system has been used to notify the process
deviance to operators via warning lights or buzzers
in the operation rooms, where the upper and lower
thresholds of the measured values or the thresholds
of their amounts of changes have been set to the sen-

sors in the chemical plants. However, it is so difficult
to determine the adequate values of thresholds (that
is ‘alarm setpoint’) that if the alarm setpoints are too
small, the alarm floods will be caused, if the setpoints
are too large, missed detection of deviation will be
caused. And also it is difficult to detect if the plant
has normal and regular load fluctuations under both
the normal and the abnormal situations. Therefore,
a method is required that observes the relationship
among several variables to detect faults in a compli-
cated system. We focus on the Artificial Immune Sys-
tem.

Artificial Immune Systems—which are imitative
mechanisms of vital actions of discrimination be-
tween self and nonself—have been proposed since
1990s. And a lot of methods have been proposed
using various parts of artificial immune systems, for
example, pattern recognition by B-cells for fault de-
tection in gas lift oil well by Aguilar [2, 3], Natu-
ral Killer (NK) immune cells mechanisms by Lauren-
tys [4], clonal selection algorithm for maintenance
scheduling of power generators by El-sharkh [5], den-
dritic cell for failure detection of aircraft by Azzawi
[6]. Also lots of applications have been proposed—
Wada et al. [7] proposed an fault mode detection
method for automotive exhaust gas treatment system,
Inomo et al. [8] proposed an failure diagnosis method
for water supply network by using immune system.
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Figure 1: The annual numbers of the industrial acci-
dents in Japan, data from FDMA, Japan.

In this study, we adopt a negative selection algo-
rithm to detect faults in a chemical plant. Negative
selection algorithm is an imitative method of mecha-
nisms of differentiation and maturation, and discrim-
ination of normal/abnormal. The algorithm was pro-
posed by Forrest in 1994 [13] for the detection of com-
puter virus. The negative selection algorithm has been
applied to various domains—Dasgupta et al. [9] ap-
plied to aircraft fault detection, Gao et .al [10] applied
to motor fault detection, Xiong et al. [11] and Prasad
et al. [12] applied to fault detection in the Tennessee
Eastman process.

In this study, we introduce detectors to detect
faults based on the negative selection algorithm. The
adopted method of the negative selection algorithm is
mentioned in section 2. In order to utilize negative
selection algorithm, we designed and implemented
an agent based framework of fault detection system,
mentioned in section 3. The target chemical process,
the simulation conditions and the results are men-
tioned in section 4. And the conclusion in section 5.

2 Negative Selection Algorithm

Negative selection algorithm is one of the methods
of the artificial immune systems inspired by the vital
immune systems. Negative selection algorithm bor-
rowed from the mechanism of T-cell generation in
thymus. On T-cell generation in vital system, imma-
ture T-cells are randomly generated with various im-
munological types. And then some of T-cells are elim-
inated if they have high affinity with self-antigen to
avoid response to “self”. T-cells which are not self-
affinitive can be matured to react with foreign antigen
to protect itself.

In our system, detectors—correspond to mature
T-cells in vital—can detect faults by recognizing the
normal operational data of chemical processes which
are assumed as self and the abnormal operational data
which are assumed as nonself. In Figure 2(a)–(c), the
steps of the generation phase of detectors are illus-

trated. Figure 2(a) illustrates that there are self re-
gions in a 2-dimensional process variables space. And
the rest area of the variables space are nonself regions.
Figure 2(b) illustrates that detector candidates which
indicated by plus(+) signs are generated with vari-
ous position, where the radius is set as the minimum
distance to the self region. In this study, we imple-
ment two steps of candidate generation. The first step
is a grid-based generation. Place the detector can-
didates at every 0.1 of each axis—axis is normalized
between [0.0, 1.0]—, therefore 121 (each axis divided
into eleven) grid-based candidates are generated. The
second step is a semi-randomly generation. Place a
detector candidate at random position. Then check
whether the new candidate is overlapped on the pre-
viously generated candidates. If it overlapped, the
new candidate is eliminated in this step, if not, the
new candidate is added to the candidates. And then,
check the coverage of the detectors. If the coverage
is over 90%, candidate generation will be terminated.
From Figure 2(b) to (c), the elimination of some can-
didates which have affinity with “self” is carried out.
Figure 2(c) illustrates that seven valid detectors are re-
mained. Then the generation phase is finished.

Self

Nonself

(a) 2-dimensional 
variable space with 
self/nonself regions

(b) Generation of 
detector candidates

(c) Valid detectors 
after elimination 
by self-affinity

Detector candidate Valid detector

Figure 2: A schematic diagram of the detectors gener-
ation.

In the detection phase, a sample consists of the
values of the current process variables—which are to
be examined— is plotted into the variable space indi-
cated by a ‘star’. If the plotted sample is inside the
detection area of at least one detectors, the sample is
recognized as “abnormal” (Figure 3(a) ). And if the
sample is out of any detection area, the sample is rec-
ognized as “normal” (Figure 3(b) ).

(a) A sample which 
recognized as “abnormal”

:plotted 
sample

(b) A sample which 
recognized as “normal”

“Normal” sample“Abnormal” sampleActivated detector

Figure 3: A schematic diagram of the detection by de-
tectors.
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3 Fault Detection System

A multiagent framework is adopted to implement a
fault detection system using negative selection algo-
rithm. In our system, there are Detector Manager, De-
tector Leader(s) and Database Agent illustrated in Fig-
ure 4. Detector Manager is an interface between hu-
man operator and the system. Detector Leader(s) have
their own variable spaces to detect faults. These vari-
able spaces represent relationships between two cer-
tain process variables. And there are a lot of detec-
tors under the dominion of a Detector Leader. In or-
der to avoid missing detection, some Detector Leaders
with variety of combinations of the process variables
are required. Database Agent have a database which
stores operational database of the target process. All
these agents can communicate with other agents via
TCP/IP network connection.

Human
Operator

Detector
Manager

Detector
Leader

Detector
Leader

Database 
Agent

Database

Detector
Leader

Figure 4: A schematic diagram of the detection by de-
tectors.

4 Simulations and Results

4.1 Target Process

Figure 5 shows a boiler plant which is the target pro-
cess of this study. It is an utility plant which supplies
three steam headers—high pressure steam (HP), mid-
dle pressure steam (MP), and low pressure steam (LP)
to the nearby plants by boiling pure water in a fur-
nace. Due to the fluctuation of the steam demands
from user plants, the boiler plant is always under un-
steady operation. Therefore, it is difficult to detect
faults by setting up the constant thresholds to some
process variables of the boiler plant.

In this study, nine variables were selected from
among 120 measured variables in the boiler plant.
The selected nine variables are listed in Table 1 and
also illustrated in Fig.5. The operational data was
obtained by using dynamic plant simulator “Visual
Modeler” (Omega Simulation Co., LTD).

4.2 Normal Operational Data

Data of a normal operation—in which the steam
demands were stepwise changed without any
malfunction—were obtained using the dynamic sim-
ulator. The data contain 7200 samples of the above-

mentioned nine process variables and its sampling
interval is one second. The trend graphs of PI1422
and TI1422 were indicated in Figure 6. These data
were normal operational data which should be rec-
ognized as self in the artificial immune system even
though the steam demands had increased at time 600
second.

4.3 Abnormal Operational Data

Abnormal operational data with three kinds of as-
sumed malfunctions were obtained using the dynamic
simulator. Table 2 shows the list of three assumed
malfunctions. And Figures 8–10 illustrate the trend
graphs of PI1422 and TI1422 when the one of mal-
functions was occurred at time 600 second, but with-
out any steam demand change during these 7200 sec-
onds.

Table 1: Selected nine process variables of the boiler
plant.

Variable name Description
FI1422 Flow rate of the second extraction

steam from the turbine
PI1422 Pressure of the second extraction

steam from the turbine
TI1422 Temperature of the second

extraction steam from the
turbine

TC1423 Temperature of the low pressure
steam from the desuperheater

PI1315 Pressure inside the furnace
(upper)

GB401.pos Valve position of the combustion
air

PI1311 Pressure of the outlet of the
forced draft fan

TI1310 Temperature of the exhaust gas
at the gas air heater outlet

TI1308 Temperature of the combustion
air at the gas air heater outlet

4.4 Generation of Detectors

Detectors were generated by using normal oper-
ational data for each of 36 combinations of 2-
dimensional variable spaces—all the 2-dimensional
variable spaces consists of two different process vari-
ables from the nine variables. Figure 7 illustrates the
detectors in the variable space consisting of TI1422
vs. PI1422. The axes are normalized to the range of
the normal operation occupies [0.05, 0.95] in the nor-
malized axis respectively. In this figure, there are 261
detectors ( 118 grid detectors and 143 randomized de-
tectors ) which indicated as sky blue circles. In other
words, it is recognized that there exist the normal
operational data—which correspond “self” region—at
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Figure 5: A schematic diagram of the boiler plant.
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Figure 6: The trend graphs of PI1422 and TI1422 during normal operation with steam demands change at
time 600 second.
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the unpainted parts in Figure 7, and not exist the nor-
mal operational data—which correspond “nonself”
region—at the painted sky blue parts. The sets of de-
tectors were generated for the rest of variable spaces
in the same way. The numbers of the detectors in each
variable space were from 121 to 316 including both
the grid detectors and randomized detectors.

Figure 7: Generated detectors for a 2-dimensional
variable space (TI1422 vs. PI1422).

The bold dashed lines in the trend graphs are the
maximum and minimum values under the normal op-
eration (Figure 6). We can find that it is impossi-
ble to detect fault using upper/lower thresholds of
variable PI1422 and/or TI1422 when the malfunction
BFO or GAH occurred, because the values of PI1422
and TI1422 have not exceeded the ranges under the
normal operation. On the other hand, it may possi-
ble to detect at time 671 second by lower threshold
of TI1422 when the malfunction FDFclose occured at
time 600 second. TI1422 also exceeds upper threshold
after time 1340 second, shown in Figure 10.

Table 2: Three assumed malfunctions in the boiler
plant.

Malfunction ID Description
BFO Burner frame out
GAH Gas air heater rotation failure

FDFclose Forced draft fan inlet vane
closure

4.5 Fault Detection using Detectors

Fault detections for the abnormal operational data
were carried out. Figure 11 shows an outline of the
fault detection in a 2-dimensional variable space con-
sisting of TI1422 and PI1422 when malfunction BFO

occurred. The axes and the detectors—indicated by
sky blue circles— are the same as Figure 7. The
sampling data were plotted by green dots on the 2-
dimensional variable space after the normalization for
every second serially. The blue dots are the normal
operational data and the green dots are the sampling
data to be examined by the detectors. These dots are
moving in the variable space as time proceeds. If the
green dots were placed on the unpainted region, they
are recognized as “self”—where the values are similar
to the normal operational data. If the green dots were
placed over the sky blue region, they are recognized
as “nonself”—in other words, a fault was detected in
this variable space by detector(s).

In Figure 11, the painted orange circles indicate
activated detectors—which have detected fault. Fig-
ure 12 shows the detection status through time. If
the value is ‘1’, at least one detector in this variable
space detects fault, and if the value is ‘0’, no detec-
tor detects fault at that time. The figure shows that
the first detection was at time 630 second—which is
30 second after malfunction occurred—, and there are
missing between time 897 and 904 second in this vari-
able space. The detections using the sets of detectors
in the rest of variable spaces were simultaneously car-
ried out in the same way. Figure 13 shows the number
of variable spaces whose detection status is ‘1’. The
figure shows that there are 15 variable spaces detected
at time 601 second, 30 variable spaces—which corre-
sponds to 80% of 36 variable spaces—detected at time
604 second, and the number does not fall below the
80% after that time. Therefore it can be said that this
system can detect malfunction BFO successfully.

Figure 14 shows the outline of the fault detection,
Figure 12 shows the detection status through time
when malfunction GAH occurred. The figures show
that the fault was detected at time 666 second by the
detectors. On the other hand, it have not been de-
tected after time 1047 second in this variable space
TI1422 vs. PI1422. However 16 shows that 21 vari-
able spaces—which corresponds to 58% of 36 variable
spaces—detected at time 602 second, and the number
does not fall below 58% after that time. It can be said
that this system can detect malfunction GAH success-
fully, although the variable space TI1422 vs. PI1422
could not detect after time 1047 second.

Figure 17 also shows the outline of the fault de-
tection, Figure 18 shows the detection status through
time when malfunction FDFclose occurred. The fig-
ures show that the fault was detected at time 630 sec-
ond by the detectors. Although the detection status
fluctuate between time 897–1102 second in the vari-
able space TI1422 vs. PI1422, over 30 variable spaces
detect after time 604 second and the number does not
fall below the 80% of the 36 variable spaces after time
604 second. It can be also said that this system can
detect malfunction FDFclose successfully.
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Figure 8: The trend graphs of PI1422 and TI1422 when malfunction BFO was occurred at time 600 second
without steam demands change.
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Figure 9: The trend graphs of PI1422 and TI1422 when malfunction GAH was occurred at time 600 second
without steam demands change.
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Figure 10: The trend graphs of PI1422 and TI1422 when malfunction FDFclose was occurred at time 600
second without steam demands change.

Figure 11: Fault detection by detectors in a 2-
dimensional variable space when malfunction BFO
was occurred.
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Figure 12: Detection status of the TI1422 vs. PI1422
variable space when malfunction BFO was occurred.
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Figure 13: The number of detected variable spaces
when malfunction BFO was occurred.

Figure 14: Fault detection by detectors in a 2-
dimensional variable space when malfunction GAH
was occurred.
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Figure 15: Detection status of the TI1422 vs. PI1422
variable space when malfunction GAH was occurred.
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Figure 16: The number of detected variable spaces
when malfunction GAH was occurred.

Figure 17: Fault detection by detectors in a 2-
dimensional variable space when malfunction FDF-
close was occurred.
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Figure 18: Detection status of the TI1422 vs. PI1422
variable space when malfunction FDFclose was oc-
curred.
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Figure 19: The number of detected variable spaces
when malfunction FDFclose was occurred.

5 Conclusion

We built up a fault detection system using negative
selection algorithms which can focus on the relation-
ships between process variables.
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