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Our research deals with the single-vehicle routing problem (VRP) with
multi-shift and fuzzy uncertainty. In such a problem, a company con-
stantly uses one vehicle to serve demand over a scheduling period of
different work shifts. Our issue relies on a routing problem in main-
tenance jobs, where a crew executes jobs in different sites. The crew
runs during several work shifts but repeatedly returns to the depot before
the shift ends. The goal is executing all the activities minimizing the
makespan. We examine the impact of uncertainty in driving and mainte-
nance processing time on system performance. We realize an Artificial
Immune Heuristic to find optimal solutions considering both makespan
and overtime avoidance. First, we introduce a framework to assess the
uncertainty impact. Then, we produce a numerical company case study
to examine the problem. Outcomes present significant improvements are
obtained with the proposed approach.

1 Introduction

Vehicle routing problem (VRP) consists in determining
a set of routes to visit a fixed set of customers, in order
to minimize the total path length. Several versions of
the VRP exist. If each customer specifies availability
time windows, we deal with a VRP with Time Win-
dows (VRPTW). Basic variants of the VRP consider the
route planning for a vehicle fleet in a single period
(shift). In this case, vehicles should come back to the
depot before the shift ends. This problem is derived
from a healthcare routing question. The healthcare
company regularly dispatch products to medical sites.
In this case, if overtime is allowed, performance could
be significantly upgraded [1]– [4]. For instance, if a
location scheduled in the next shift is on the current
return path to the depot, a limited overtime allows
vehicle serving it. This can significantly diminish next
shift workload.

Investigation on the connection between health sta-
tus and work hours documented concern about the
influence of working long hours on people fitness [5].
Furthermore, working long hours increases the chance
of micro-sleep in car drivers [6]. In these conditions,
the company could be accused of vehicle collision due
to enormous workload planning [7]. In fact, shift
scheduling objective should limit both anxiety and

harmful consequences on healthiness maintaining the
work shift as steady as possible.

In an effort of limiting extra time, uncertainty ef-
fect on scheduling has to be restricted. Frequently,
in optimization problems, data are supposed to be
known with certainty. Nevertheless, in practice this is
rare. Most commonly, the real data depend on uncer-
tainty because of their irregular essence. Because the
optimization problem solution usually reveals a great
inclination to the data disturbances, neglecting the
data ambiguity may conduct to suboptimal or infea-
sible solutions for a real case. Stochastic VRP (SVRP)
was introduced in [8]. See [9] and [10] for a complete
review of SVRP.

Robust optimization is a significant technique to
deal with optimization problems subject to uncertainty
[11]. The main motive for considering robust optimiza-
tion is the non-stochastic nature of uncertain param-
eters. In such a case, a methodology is required to
analyze compromise between performance and robust-
ness.

Fuzzy set theory is a useful approach to handle un-
certain information, while the stochastic approach is
suitable to manage the stochastic parameters in VRP
[12]. Some VRP papers utilize fuzzy sets theory for
studying the influence of uncertain factors [13]–[23].
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In this work, the VRP in a fuzzy random context is
analyzed and the fuzzy random theory is adopted to
manage such uncertain data. Fuzzy random variables
illustrate a well-formalized notion involving data ob-
tained from a random test in which data are supposed
to be fuzzy sets.

We examine a multi-shift VRP with no overtime
allowed considering fuzzy driving and job processing
time. The question we considered is derived from a
routing problem in maintenance activities. A main-
tenance team performs jobs in different sites using a
vehicle for movements. A crew works in shifts and
should come back to the depot before the shift ends.
The goal is completing the maintenance activities in
various places reducing the makespan. Since we deal
with maintenance jobs, we ignore customer waiting
times. We investigate the influence of the uncertainty
of driving and job processing time on makespan and
overtime avoidance.

The body of this paper is structured as follows. In
Section 2, we report the problem formulation. In Sec-
tion 3, we propose the Artificial Immune Heuristic
to solve the problem. We present in Section 4 a case
study analyzed with the proposed approach. We give
concluding remarks in Section 5.

2 Problem formulation

2.1 Classical problem

Problem notation is reported in Table 1.
Let N = {1,2, ...,n} be the set of maintenance jobs to

be executed at customer places. Parameter di,j stands
for the travel time between the location of jobs i and j.
Parameter qi expresses job i processing time. Parame-
ters ei and li represent job i time window.

Maximum shift duration is L, whereas p is the
number of shifts in the scheduling horizon and P =
{1,2, ...,p} is shift set. We generate p + 1 depot copies
described by nodes n+ 1, . . . ,n+ p+ 1:

• node n+ 1 is the origin depot of shift 1,

• node n + h represents the destination depot of
shift h− 1 together with the origin depot of shift
h, with h ∈ 2, . . . ,p.

• node n+ p + 1 stands for the destination depot of
last shift p.

The problem can be represented as a directed graph
G = (V ,E), where V = N ∪ {n + 1, . . . ,n + p + 1}. Arcs
(n+h,n+h+ 1) are used in the graph to illustrate cases
in which a vehicle is not exploited during shift h.

Lastly, bh and ch represent the begin and end time
of shift h, with bh = (h− 1)L and ch = hL, h ∈ P .

In this work, the next hypotheses are made. Driving
times are positive, i.e. dij > 0,∀i, j ∈ V . The triangular
inequality is valid for dij , i.e. dij ≤ dik +dk,j ,∀i, j,k ∈ V .
At least any single job can be executed in a shift be-
cause we suppose shift length satisfies L ≥ d0,i + qi +

di,n+1,∀i ∈N . Time windows are greater than the activ-
ity processing time: li − ei ≥ qi , ∀i ∈N . Consequently,
a linear formulation for VRPTW is considered. More-
over, a feasible distance set is defined and all the jobs
can be processed within their time window and shift
duration.

In the following, decision variables are presented:

• xi,j = 1 if the crew drives from node i to j, and 0
otherwise,

• αi arrival time of the crew at node i ∈ V ,i , n+ 1,

• δi departing time of the crew at node i ∈ V ,i ,
n+ p+ 1,

• σh real shift h duration,

• yh = 1 if shift h is used by the crew, and 0 other-
wise,

The problem is expressed as a mixed integer pro-
gram (MIP) described in (1)-(13):

• The objective function (1) minimizes the system
makespan.

• Constraints (2) and (3) provide that the depot
nodes {n+ 1, . . . ,n+ p+ 1} are always visited. De-
pot node n + h + 1 is visited after n + h. Depot
nodes separate different shifts. All job nodes vis-
ited between node n+ h and n+ h+ 1 are served
during shift h. If the vehicle is not used in shift
h, no job node is visited between node n+ h and
n+ h+ 1. Such constraints assure that any shift
path starts from the origin depot and ends at the
destination depot.

• Constraints (4) ensure that each customer is vis-
ited once, that is each node i ∈ N is inspected
once.

• Constraints (5) force that for all intermediate
nodes (first node n+ 1 and last node n+ p + 1 are
excluded) the inflow is equal to the outflow.

• Constraints (6) are the sub-tour elimination con-
straints and ensure coherence of time variables.
Parameter M is an upper bound of δi + dij ,∀i, j ∈
V .

• Constraints (7) represent the connection between
arrival and departing times.

• Constraints (8)-(9) define time window con-
straints for the customer nodes, whilst (10)-(11)
represent the time windows constraints for the
depot nodes.

• Constraints (12) provide the real shift duration.
Considering (10)-(12), parameter L is an upper
bound of shift duration σh, ∀h = 1, . . . ,p.

• Constraints (13) determine whether shift h is ex-
ploited or not. In fact, if xn+h,n+h+1 = 1, then no
demand node is inspected between depot h and
h+ 1 (shift h).
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Table 1: Problem notation
Symbol Description

n Number of Jobs
N = {1,2, ...,n} Job set

i, j ∈N Job index
di,j Travel time between job i and job j locations
qi Job i processing time
ei Begin of job i time window
li End of job i time window
L Maximum shift duration
p Number of shifts in the planning horizon

P = {1,2, ...,p} Shift set
h ∈ P Shift set index
bh Begin time of shift h, equals to (h− 1)L
ch End time of shift h, equals to hL

xi,j ∈ {0,1} Crew travels from node i to j, if xi,j = 1
δi Departing time of crew at node i ∈ V ,i , n+ p+ 1
αi Arrival time of crew at node i ∈ V ,i , n+ 1
σh Actual shift h duration

yh ∈ {0,1} Crew is active in shift h, if yh = 1
M Upper bound of δi + dij ,∀i, j ∈ V .

Minimize αn+p+1 (1)

subject to:∑
j∈N∪{n+h+1}

xn+h,j = 1 ∀h ∈ P (2)∑
i∈N∪{n+h}

xi,n+h+1 = 1 ∀h ∈ P (3)∑
j∈V \{n+p+1}

xj,i = 1 ∀i ∈N (4)∑
j∈V

xj,i −
∑
j∈V

xi,j = 0 ∀i ∈ V \ {n+ 1,n+ p+ 1}(5)

δi + dij ≤ αj +Mxi,j ∀i, j ∈ V (6)

αi + qi ≤ δi ∀i ∈N (7)

ei ≤ αi ∀i ∈N (8)

δi ≤ li ∀i ∈N (9)

bh ≤ δn+h ∀h ∈ P (10)

αn+h+1 ≤ ch ∀h ∈ P (11)

αn+h+1 − δn+h ≤ σh ∀h ∈ P (12)

yh = 1− xn+h,n+h+1 ∀h ∈ P (13)

2.2 Problem with fuzzy uncertainty

We describe the uncertainty on driving times and job
processing times with triangular fuzzy numbers, see
Fig. 1. We consider the following notation:

• fuzzy travel time: d̃ij = (dAij ,d
B
ij ,d

C
ij ) ∀i, j ∈ V

• fuzzy job processing time: q̃i = (qAi ,q
B
i ,q

C
i ) ∀i ∈N

For this reason, decision variables related to arrival
and departing time at node i turn into fuzzy variables
α̃i and δ̃i . Also, actual shift duration variables σ̃i be-
come fuzzy. Therefore, fuzzy numbers are introduced
both in objective function (1) and constraints (6)-(12).

An important issue arises when models with fuzzy
parameters are considered: defining the comparison
method for objective function values [24]. In order to
solve this question, we have to consider the ranking of
fuzzy numbers [25, 26, 27]. The fuzzy ranking method
is part of the solution approach in order to solve math-
ematical programs having coefficients of the objective
function and coefficients of the constraints represented
by fuzzy numbers.

The Expected Existence Measure (EEM) operator
can be applied to a temporal fuzzy number t̃, see (14)
and [28, 29].

EEMt̃(t) =

∫ t
−∞µt̃(τ)dτ∫ +∞
−∞ µt̃(τ)dτ

=

∫ t
tA
µt̃(τ)dτ∫ tC

tA
µt̃(τ)dτ

∈ [0,1] (14)

Briefly, EEM defines the possibility with which a
fuzzy event occurred at a certain time. Assigned a
temporal value t0, the EEM stands for the possibility
a temporal fuzzy number t̃ is lower than t0. We de-
note this as Φ (̃t ≤ t0) = EEMt̃(t0) = γ0. Consequently,
Φ (̃t ≥ t0) = 1−γ0. In Fig. 1, the membership function
µt̃(t) of the triangular fuzzy number t̃ and the corre-
sponding EEMt̃(t) are represented. Note that Φ (̃t ≤
tA) = EEMt̃(t

A) = 0 and Φ (̃t ≤ tC) = EEMt̃(t
C) = 1.

Various studies solve fuzzy mathematical problems
by exploiting fuzzy ranking methods. First, fuzzy
mathematical programming problems are converted
into classical mathematical problems. Second, con-
ventional techniques are applied. In the following
section, we propose an innovative approach to con-
sider the fuzzy variables in the entire solution process.
We present the decision-maker with different optimal
solutions based on 2-factor comparison: the objective
function value and the possibility degree with which
constraints are satisfied.
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Figure 1: Triangular Fuzzy Number

In the previous work [30] we published on this
question, we dealt with a different objective function:
number of exploited shifts and maximum shift dura-
tion. In this research, we consider a different problem
in which makespan is minimized. Furthermore, the
solution algorithm has been improved with an appro-
priate solution ‘affinity’ definition in Section 3.2. More-
over, we extended the experimental campaign in order
to investigate our approach performance. For such a
reason a mathematical background is introduced in
sections 4.2, 4.2.2, and 4.2.3.

3 Solution Method: Artificial Im-
mune Heuristic

The animal immune system is a versatile pattern-
recognition system that protects against foreign viruses
and bacteria. The immune system is able to recognize
and kill germs. The immune system cells, named an-
tibodies, are casually diffused in the body. The system
reacts to pathogens and improves the process of recog-
nizing and eliminating pathogens by using two princi-
ples: clonal selection and affinity maturation. When a
pathogen invades the organism, clonal selection creates
a number of immune cells that recognize and eliminate
the pathogen. While cellular reproduction occurs, the
cells experience high rate physical mutations, as well
as a selective process. Cells with superior affinity to
the invading pathogen spread into memory cells.

Artificial Immune Algorithm (AIA) is a meta-
heuristic based on such system [31, 32, 33]. This paper
intends proposing a fuzzy artificial immune algorithm
to find optimal solutions for the aforementioned prob-
lem. AIA notation is reported in Table 2.

3.1 Solution Encoding

A solution is encoded as a string by using a fixed-length
integer code and providing the order in which nodes
are reached. Solution Ψ , representing a scheduling
problem with n = 5 jobs on p = 3 available shifts, is
reported in Fig. 2. Moreover, Fig. 2 shows the corre-

sponding graph path, see section 2. The origin for shift
1 is node n+ 1 = 6 that is the path starting node. Then,
the crew visits nodes 2, 3 and 5. Shift 1 ends at node
n+ 2 = 7. After, shift 2 begins and crew inspects nodes
1 and 4. Shift 2 ends when node n+ 3 = 8 is reached.
Finally, node n+p+1 = 9 is reached (path end) because
no job is executed in shift 3.

Because node (n+ 1) and (n+ p + 1) are respectively
the ‘starting’ and ‘end’ node, solution Ψ is just defined
by the succession of the residual nodes of the graph,
that is v` ∈ V \{n+1,n+p+1}, ∀` = 1, . . . ,n+p−1. Note
that when xij = 1, i, j ∈ V ,i , n+ 1, j , n+ p + 1, then
nodes i and j are directly connected in the graph, con-
sequently ∃` = 1, . . . ,n+ p − 2: v` = i and v`+1 = j, that
is nodes i and j are consecutive in the string encoding.
In Fig. 2 we have x14 = 1, consequently ∃` = 5, v5 = 1
and v6 = 4.

Considering fuzzy numbers, we have to appropri-
ately evaluate both the solution objective function f
and solution feasibility degree γ .

First, considering the solution Ψ and adopting the
fuzzy addition operator described in (15), we calculate
actual duration of shift 1, σ̃1, and shift 2, σ̃2, see (16)-
(17). Because shift 3 is not used by the crew, we have
the same arrival time at node 8 and 9: α̃9 = α̃8. We
calculate fuzzy makespan as α̃9 = α̃8 = L+ σ̃2. Indeed,
makespan is the crew arrival time at the depot at the
end of shift 2 (node 8), that is the sum of shift 2 begin
time L and actual shift 2 duration σ̃2. Since σ̃2 is a
fuzzy number, the crisp objective function f in (18)
can be adopted using the modal value σB2 of the fuzzy
number σ̃2.

Second, we determine the degree with which the so-
lution Ψ is feasible. So we calculate the possibility the
shift duration constraints are enforced: Φ(σ̃1 ≤ L) = γ1
and Φ(σ̃2 ≤ L) = γ2. Time windows constraints are
considered in the same way. Supposing for solution
Ψ , fuzzy shift durations σ̃1 and σ̃2 are those reported
in Fig. 3, it is possible that shift 1 actual duration is
greater than maximum limit L. Indeed, half of fuzzy
number σ̃1 stays on the right side of L. The value
γ1 = EEMσ̃1

(L) = 0.5 < 1 indicates the possibility that
shift 1 ends before time L. Since, γ2 = EEMσ̃2

(L) = 1,
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Table 2: AIA notation
Symbol Description
popsize No. population antibodies
ng No. generations
pr1 Rate of Rule1: full random node selection
pr2 Rate of Rule2: higher probability for closer node selection, pr2 = 1− pr1
nc No. clones in each generation
mr Mutation Rate
nm No. mutations in each generation
nea No. exchangeable antibodies.
Ψ Solution
v` Solution encoding, ∀` = 1, . . . ,n+ p − 1, v` ∈ V \ {n+ 1,n+ p+ 1}
f Solution makespan
γ Solution feasibility degree
S Solution set, |S| = popsize
Γ solution Pareto set, Γ ⊂ S

AS (f ,γ) Affinity for solution (f ,γ) in set S
exp No. experiments in the campaign
E experiment set, E = {1, . . . , exp}
ε Experiment index, ε ∈ E
Γ
E

Hyper Pareto set: dominant solutions for set
⋃
ε∈E Γε

ρε Impact of experiment ε

shift 2 duration constraint is certainly enforced. Fi-
nally, the solution Ψ feasibility degree γ in (19) is
determined γ = 0.5.

t̃s = t̃1 + t̃2 = (tA1 , t
B
1 , t

C
1 ) + (tA2 , t

B
2 , t

C
2 )

= (tA1 + tA2 , t
B
1 + tB2 , t

C
1 + tC2 ) (15)

σ̃1 = d̃6,2 + q̃2 + d̃2,3 + q̃3 + d̃3,5 + q̃5 + d̃5,7 (16)

σ̃2 = d̃7,1 + q̃1 + d̃1,4 + q̃4 + d̃4,8 (17)

f = αBn+p+1 (18)

= L+ σB2
γ = min

i∈N
h∈P

{Φ(α̃i ≥ ei),Φ(δ̃i ≤ li),Φ(σ̃h ≤ L)} (19)

= min{0.5,1} = 0.5

Eventually, for a given solution, we associate a crisp
objective function value f and a feasibility degree γ .
We perform a Pareto comparison on (f ,γ) pairs for
determining the solution Pareto set Γ : f should be
minimized and γ should be maximized.

For example, we consider an alternative solution
Ψ
′

in which all the available 3 shifts are exploited. The
alternative solution Ψ

′
is reported in Fig. 4. Unlike the

previous solution Ψ , in Ψ
′

Job 5 has moved from shift
1 to shift 3. On one hand, we have objective function
f = 2L+ σ

′B
3 , see (18). On the other, for Ψ

′
, we have γ

is equal to 1 because all shift duration constraints are
definitely enforced (γi = 1, ∀i = 1, . . . ,N ), see σCh < 1,
∀h = 1,2,3 in Fig. 4. Comparing the solution Ψ

′
to

the previous one Ψ , we note that f value gets worse

(f Ψ
′
> f Ψ ) and γ values is better (γΨ

′
> γΨ ). Indeed,

with the alternative solution, shifts are completed in
time but one additional shift is required. Since we

adopt a 2-factor comparison, both solution Ψ and so-
lution Ψ

′
are Pareto optimal.

3.2 Affinity

Usually, in meta-heuristic approaches as AIA, an affin-
ity level to be maximized is defined in order to take
into account both solution objective value and con-
straint enforcement. Unfeasible solutions are penal-
ized in terms of affinity. Solutions are ranked on the
basis of their affinity values and, eventually, the one
with the greatest affinity is defined as ‘best solution’.
In our approaches, two different factors (f and γ) are
both considered in determining the affinity. Solutions
having γ = 0 are certainly unfeasible.

We define the solution set as S . Solutions in the
Pareto set Γ = {(f ,γ)|γ > 0} ⊂ S represent the optimal
set, and we assign them the same maximum affinity
value as in (20). Note that f̄ is the makespan of the
solution having feasibility degree 1. Since f stands
for makespan to be minimized, whereas affinity is to
be maximized, we put f̄ in the second term as the
makespan upper bound pL occupies the first term.

Using the normalized Manhattan distance from
Pareto set (22), the affinity for solutions not in the
Pareto set is computed (23). That is, considering a solu-
tion (f ,γ) not in Γ , the minimum Manhattan distance
from Pareto set is calculated and is used as a penalty
for affinity. Quantity ∆f is used as a weight in Manhat-
tan distance for balancing the effects of makespan and
feasibility degree.

3.3 Artificial Immune Algorithm

The proposed AIA is described in the following:
Step 1 - Initialization:
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Figure 2: Solution Ψ graph path and encoding

AS (f ,γ) = pL− f̄ ∀(f ,γ) ∈ Γ ⊂ S ; (f̄ ,1) ∈ Γ (20)

∆f =
[
max(f ,γ)∈Γ f

]
−
[
min(f ,γ)∈Γ f

]
(21)

D(f ,γ,f ′ ,γ ′) = |f − f ′ |/∆f + |γ −γ ′ | (f ,γ) ∈ S \ Γ , (f ′ ,γ ′) ∈ Γ (22)

AS (f ,γ) = (pL− f̄ )
[
1−min(f ′ ,γ ′)∈Γ D(f ,γ,f ′ ,γ ′)

]
∀(f ,γ) ∈ S \ Γ (23)

• (a) Parameter setting: fix the initial population
popsize, the number of generations ng, the rate
pr1 of Rule1, the rate pr2 of Rule2, for each gener-
ation the number of clones nc, the mutation rate
mr, the number of mutations nm, the number of
exchangeable antibodies nea.

• (b) Initial population generation: create pr1 ·
popsize initial solutions by Rule1 and produce
pr2 · popsize initial solutions by Rule2.

Step 2 - Objective function assessment:

• (a) calculate the objective function f in (18) and
the feasibility degree γ in (19) for each antibody.

• (b) determine the Pareto set for (f ,γ) pairs.

• (c) calculate the affinity for each antibody as re-
ported in (20) and (23).

Step 3 - Clonal selection and expansion:

• (a) Take nc antibodies, from the population, with
the greatest affinity.

• (b) Produce nc copies of the antibodies consid-
ered in Step 3a exploiting a binary tournament
rule (randomly select two antibodies from nc an-
tibodies and determine the best antibody).

Step 4 - Generating the next population:

• (a) Randomly choose nm antibodies from nc
clones and use the mutations to create nm ex-
tra antibodies. Apply each mutation operator
with the probability mr.

• (b) Include the nm extra antibodies to the current
generation.

• (c) Exchange nea worst antibodies with new ones
produced like those in Step 1b.

• (d) Copy the Pareto optimal antibodies to the
next generation.

Step 5 - Conclusion test:

• (a) If the stopping criterion is met, return the
Pareto optimal antibodies; otherwise, go to Step 2

At Step 1a, Rule1 is the full random rule: we
randomly select one by one the nodes in the set
V \ {n+ 1,n+ p + 1}. While in Rule2 we choose nodes
using a probability that is inversely proportional to
the distance between the current node and candidate
node. Mutation operator randomly selects two solu-
tion indexes (Section 3.1) and swaps content. If the
mutation makes unfeasible the depot node sequence
n+ 2, . . . ,n+ p, mutation is canceled.

Considering the ordinary AIA approach, the inno-
vation in the method presented in this paper differs in
the steps 2b, 2c and 4d. Indeed, step 2b and 2c are used
to determine the new antibody affinity. Whereas, step
4d preserves the entire Pareto set in the next genera-
tion.
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Figure 3: Fuzzy shift durations for solution Ψ
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4 Numerical results

We assessed the performance of the approach de-
scribed in Section 3.3 by generating different exper-
iments. First, considering a standard non-fuzzy prob-
lem, we confronted the performance of the MIP re-
ported in (1)-(13) in Section 2, with the AIA, that is
Section 3.3 without steps 2b, 2c, and 4d. Second, intro-
ducing fuzzy uncertainty, we adopted the AIA reported
in Section 3.3 considering innovative steps 2b, 2c, and
4d.

We developed an application on an x86 family 2.5
GHz Intel Core i7 processor having 4GB RAM and
SDD, exploiting “C#.Net4” language. In the follow-
ing, the AIA parameters and their criteria are defined.
Population size pop = 200, number of generations
ng = 10000, rate for Rule1 and Rule2 pr1 = pr2 = 0.5,
number of clones nc = 20, mutation ratemr = 0.75, mu-
tation number per generation nm = 40, exchangeable
antibodies number nea = 20.

Three industrial test cases A, B, and C are adopted.
In Table 3 the number of demand nodes n and the num-
ber of available shifts p is reported. Maximum shift
duration is set to L = 480 min. Since industrial records
are protected by a non-disclosure agreement, we report
only summary data. The considered geographical is
the Salento region in southeast Italy. Traveling and
processing times are subject to uncertainty and are
set considering user-experience values. Job processing
times are equally distributed in three groups: small
(around 15 min), medium (around 30 min) and large
(around 40 min).

4.1 Non-fuzzy version results

Focusing on the non-fuzzy version of case studies A, B,
and C, we compared theperformance of the MIP model
in (1)-(13) with AIA. Crisp values tB are considered
in place of the fuzzy version t̃. The non-fuzzy MIP
model reported in (1)-(13) was solved with software
package IBM CPLEX v.12.5 setting a time limit equal
to the running time of the AIA application. In Table 4
we described the achieved results. In particular, for
each case study and for each approach, we indicated
the time (sec) when a new better solution is detected
together with the corresponding solution optimal gap
(%). In the first case study A, AIA calculates formerly
the MIP optimal solution. For case study B, the opti-
mal solution gap of AIA from MIP is 1% but AIA is
tenfold faster than MIP. Finally, in the case study C,
the optimal gap is 4%.

4.2 Fuzzy version results

Considering the fuzzy version of case studies A, B, and
C, we adopted the fuzzy AIA to obtain the solution
Pareto set. As reported in Section 3, multiple opti-
mal solutions exist because of the 2-factor comparison.
Company manager receives the optimal Pareto set and
assesses the best solution. In Section 4.2.1, an example
is provided. Assuming different AIA parameter values
leads to different Pareto sets as shown in Section 4.2.2.

Our main objective consists in determining the AIA
parameters to find as many Pareto set solutions. Conse-
quently, we designed an experimental campaign to de-
termine the best combination of AIA parameter values,
see Section 4.2.3. Each experiment ε produces a solu-
tion Pareto set Γε. Considering all the campaign experi-
ments E = {1, . . . , exp} leads merging the corresponding
Pareto sets

⋃
ε∈E Γε. Union of Pareto sets is not a Pareto

set, because a solution of a Pareto set can be dominated
by a solution of another Pareto set experiment. We

define Γ
E

as Hyper Pareto set for experiments 1, . . . , exp
containing only the dominant solutions obtained from
the experimental campaign. For each experiment ε,
we denote the experiment impact ρε as the number of
solutions belonging both to the experiment Pareto set

Γε and the global Hyper Pareto set Γ
E

.

Table 3: Case study definition
Case study n p

A 21 5
B 33 8
C 45 10

4.2.1 Single experiment results

Considering the fuzzy version of case study A, our
software produces the Pareto set reported in Fig. 5.
The collected solutions s1, s2, . . . s10, belonging to the
optimal Pareto set, are reported in Table 5. For such
solutions, jobs are always completed in 3 shifts.

Feasibility degree for solution s1 is 1, because σCi <
480, ∀i = 1,2,3. Solution s1 makespan is 2 ·480 + 348 =
1308 min. Since solution s1 is very conservative, the
manager is unlikely to accept such a high safety mar-
gin.

Whereas, solution s2 has f = 1263 min and γ =
0.968. Indeed, in Table 5 we have σC1 = 486 > 480
and σC2 = 499 > 480; we note that 96.8% of the area of
fuzzy number σ̃2 = (349;424;499) stays on the left side
of 480 (see Fig. 1). The manager prefers solution s2
to s1 as assuming a low risk (3.2%) he/she decreases
makespan by 45 minutes. Solutions s3 and s4 have
similar feasibility degrees but s4 makespan is lower
than s3. Whereas, solutions s5, s6, and s7 have similar
makespan but s5 feasibility degree is better than oth-
ers. Feasibility degrees for solutions s8, s9, and s10 are
lower than 0.5: see σB2 > 480 min in last three rows in
Table 5.

Referring to Fig. 5, manager declares that solutions
s2, s4, and s5 are the most valuable and selects the best
one based on his/her experience.

In Fig. 6, shift tours for solution s1 are
graphically reported using ‘Google Maps’ website
(maps.google.com). For privacy agreement, only the
position of Lecce, Salento main city, is indicated. De-
pot position is red pinned. Job locations are indicated
with circles. Basically, shift 1 tour accomplishes jobs
in the north side. Shift 2 serves central zone and shift
3 satisfies south side. Each shift serves 7 jobs.
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Table 4: Comparison AIA vs. MIP for non-fuzzy version of case studies A, B, C
Case study A Case study B Case study C

AIA MIP AIA MIP AIA MIP
t [sec] gap [%] t [sec] gap [%] t [sec] gap [%] t [sec] gap [%] t [sec] gap [%] t [sec] gap [%]

1 130 1 230 1 123 1 450 1 187 1 345
20 95 31 99 31 115 30 129 21 125 36 234
45 43 76 87 51 33 45 97 48 49 54 221

105 22 273 54 120 12 150 65 532 4 169 198
123 0 778 23 246 1 264 51 254 187

1002 13 778 42 675 85
1324 6 1042 21 1201 31
1457 0 1256 14 1312 20

2001 9 1416 12
2398 2 2395 7
2405 0 5998 2

7194 0

Figure 5: Final solution Pareto set for fuzzy case study A with basic parameters

Table 5: Details of final solutions for fuzzy case study A with basic parameters
Actual Fuzzy Shift Duration σ̃i

Solution Shift 1 Shift 2 Shift 3
s1 (357;417;477) (345;410;475) (298;348;398)
s2 (366;426;486) (349;424;499) (263;303;343)
s3 (372;432;492) (369;444;519) (256;296;336)
s4 (390;450;510) (365;445;525) (248;283;318)
s5 (402;467;532) (369;444;519) (238;273;308)
s6 (402;467;532) (394;469;544) (237;272;307)
s7 (400;460;520) (388;473;558) (240;270;300)
s8 (400;460;520) (412;497;582) (226;256;286)
s9 (418;473;528) (420;505;590) (220;255;290)
s10 (371;426;481) (433;518;603) (211;246;281)
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Shift 1 Shift 2 Shift 3

Figure 6: Shift tours for the solution s1

Shift 1 Shift 2 Shift 3

Figure 7: Shift tours for the solution s2

Figure 8: Final solution Pareto set for fuzzy case study A with two experiments
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Table 6: Experiment impact results
(a) (b) (c)

Case study A Case study B Case study C
exp ng pop pr1 ρ

1 5000 100 0.25 5
2 5000 100 0.50 5
3 5000 100 0.75 5
4 5000 200 0.25 7
5 5000 200 0.50 8
6 5000 200 0.75 6
7 5000 300 0.25 7
8 5000 300 0.50 8
9 5000 300 0.75 6

10 10000 100 0.25 5
11 10000 100 0.50 6
12 10000 100 0.75 5
13 10000 200 0.25 8
14 10000 200 0.50 9
15 10000 200 0.75 8
16 10000 300 0.25 8
17 10000 300 0.50 9
18 10000 300 0.75 9
19 15000 100 0.25 5
20 15000 100 0.50 6
21 15000 100 0.75 5
22 15000 200 0.25 8
23 15000 200 0.50 9
24 15000 200 0.75 9
25 15000 300 0.25 8
26 15000 300 0.50 9
27 15000 300 0.75 9

exp ng pop pr1 ρ
1 5000 100 0.25 7
2 5000 100 0.50 7
3 5000 100 0.75 7
4 5000 200 0.25 8
5 5000 200 0.50 11
6 5000 200 0.75 8
7 5000 300 0.25 9
8 5000 300 0.50 11
9 5000 300 0.75 8

10 10000 100 0.25 7
11 10000 100 0.50 7
12 10000 100 0.75 7
13 10000 200 0.25 10
14 10000 200 0.50 12
15 10000 200 0.75 11
16 10000 300 0.25 11
17 10000 300 0.50 12
18 10000 300 0.75 12
19 15000 100 0.25 7
20 15000 100 0.50 8
21 15000 100 0.75 7
22 15000 200 0.25 11
23 15000 200 0.50 13
24 15000 200 0.75 12
25 15000 300 0.25 11
26 15000 300 0.50 13
27 15000 300 0.75 14

exp ng pop pr1 ρ
1 5000 100 0.25 9
2 5000 100 0.50 9
3 5000 100 0.75 9
4 5000 200 0.25 9
5 5000 200 0.50 14
6 5000 200 0.75 11
7 5000 300 0.25 12
8 5000 300 0.50 15
9 5000 300 0.75 11

10 10000 100 0.25 10
11 10000 100 0.50 9
12 10000 100 0.75 10
13 10000 200 0.25 13
14 10000 200 0.50 16
15 10000 200 0.75 16
16 10000 300 0.25 15
17 10000 300 0.50 16
18 10000 300 0.75 16
19 15000 100 0.25 10
20 15000 100 0.50 11
21 15000 100 0.75 10
22 15000 200 0.25 15
23 15000 200 0.50 18
24 15000 200 0.75 16
25 15000 300 0.25 15
26 15000 300 0.50 18
27 15000 300 0.75 17

In Fig. 7, tours for solution s2 are reported. The
comparison of solution s2 with s1 is described in the
following (see Fig. 6 and 7). Shift 1 tour lies in the cen-
tral area whereas shift 2 concerns the north zone. In s2,
to reduce makespan, one job is removed from shift 3
and added to shift 2. A job swap is performed between
shift 1 and 2 in order to limit the shift 2 duration.

4.2.2 Two-experiment results

We compare the experiment performed in previous
section 4.2.1 (ε = 1), with a new experiment (ε = 2)
in which pop parameter is decreased from 200 to 100.
Consequently, considering the experimental campaign
set E = {1,2}, we report the corresponding solution
Pareto sets Γ1 (pop = 200) and Γ2 (pop = 100) in Fig. 8.
Set Γ1, in red, is reported in Fig. 5 too. Set Γ2 contains
7 solutions, in particular: 4 solutions belong to Γ1 too,
2 solutions are dominant solutions not included in Γ1
and one solution is dominated by another in Γ1. In-
stead, one solution in Γ1 is dominated by a solution in
Γ2. Since, the new experiment (ε = 2) produces two
additional solutions in Pareto set and removes one, we
have |Γ E | = 11. In Fig. 8, the line represents Pareto
front. Calculating ρ1 = 9 and ρ2 = 6, we can assess that
first experiment has a greater impact than second.

4.2.3 Experimental campaign results

Considering the case study described in Section 4, we
designed an experimental campaign. We examined
3 parameters ng, pop, and pr1 on 3 different levels:
ng ∈ {5000,10000,15000}, pop ∈ {100,200,300}, and
pr1 ∈ {0.25,0.50,0.75}. Consequently, for each case
study, we have 27 experiments, E = {1, . . . ,27}. For each
experiment ε ∈ E, we calculate the corresponding im-
pact ρε. In Table 6a, experiment impact values are
reported for case study A. As parameter pop increases,
we obtain a larger number of Pareto set solutions. In-
creasing the parameter ng from 5000 to 10000 suc-
ceeds in increasing ρ, the same cannot be said when
passing from 10000 to 15000. Parameter pr1 has a
positive influence when pr1 = 0.50.

In Table 6b and Table 6c, experiment impact values
are reported for case study B and C. The results con-
firm the findings of case study A. In conclusion, our
solution Pareto set approach significantly depends on
population parameter pop. Indeed, in each generation,
we preserve the ‘entire’ solution Pareto set, so it is im-
portant having a larger pop value than the non-fuzzy
approach. Parameter pr1 = pr2 = 0.50 represents a
good compromise between generating Rule1 full ran-
dom solutions and Rule2 solutions (Section 3.3).
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5 Conclusion

This study presents some real insights into the single-
vehicle routing problem with multi-shift and fuzzy
uncertainty. Our objective consists of minimizing both
the system makespan and shift overtime occurrence. In
particular, we investigated the effect of uncertainty in
driving and job processing time. We provide optimal
solutions for the decision-maker considering a 2-factor
comparison: the objective function value (makespan)
and the degree with which overtime is avoided. Our
approach is currently used by the case study company.
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cle routing problem with overtime,” Computers & Operations
Research, vol. 37, no. 11, pp. 1987–1998, 2010.

[3] G. Onder, I. Kara, and T. Derya, “New inte-
ger programming formulation for multiple traveling
repairmen problem,” Transportation Research Procedia,
vol. 22, pp. 355–361, 2017. [Online]. Available: http:
//linkinghub.elsevier.com/retrieve/pii/S2352146517301771

[4] S. Nucamendi-Guillén, I. Martı́nez-Salazar, F. Angel-Bello, and
J. M. Moreno-Vega, “A mixed integer formulation and an effi-
cient metaheuristic procedure for the k-Travelling Repairmen
Problem,” Journal of the Operational Research Society, vol. 67,
no. 8, pp. 1121–1134, aug 2016. [Online]. Available: https:
//www.tandfonline.com/doi/full/10.1057/jors.2015.113

[5] K. Sparks, C. L. Cooper, Y. Fried, and A. Shirom, “The Effects of
Working Hours on Health: A Meta-Analytic Review,” in From
Stress to Wellbeing Volume 1. London: Palgrave Macmillan UK,
2013, pp. 292–314.

[6] C. C. Caruso, “Negative Impacts of Shiftwork and Long Work
Hours,” Rehabilitation Nursing, vol. 39, no. 1, pp. 16–25, jan
2014.

[7] G. Costa, “Shift Work and Health: Current Problems and Pre-
ventive Actions,” Safety and Health at Work, vol. 1, no. 2, pp.
112–123, 2010.

[8] T. M. Cook and R. A. Russell, “A Simulation and Statisti-
cal Analysis of Stochastic Vehicle Routing with Timing Con-
straints,” Decision Sciences, vol. 9, no. 4, pp. 673–687, oct 1978.

[9] M. Gendreau, G. Laporte, and R. Séguin, “Stochastic vehicle
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[24] M. Jiménez, M. Arenas, A. Bilbao, and M. V. Rodrguez, “Linear
programming with fuzzy parameters: An interactive method
resolution,” European Journal of Operational Research, vol. 177,
no. 3, pp. 1599–1609, mar 2007.

[25] H.-J. Zimmermann, M. A. E. Kassem, N. M. El-Badry, and
A. Bilbao, “Fuzzy mathematical programming,” Computers &
Operations Research, vol. 10, no. 4, pp. 291–298, jan 1983.
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