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 A method for coupling of local and global fields related to currents, voltages and magnetic 
fields in magnetodynamic problems is developed in the frame of the finite subproblem finite 
element method. The method allows to correct the errors arising from thin conducting 
regions, that replace volume thin regions by surfaces but neglect border effects in the 
vicinity of geometrical discontinuities, edges and corners, increasing with the thickness, 
which limits their range of validity. This leads to errors when solving the thin shell finite 
element magnetic models in electrical machines and devices. It also permits to perform a 
natural coupling between local and global quantities weak formulations. A subproblem 
finite element method is developed to split a complete problem/model composed of local 
and global fields (some of these being thin regions) into a series of subproblems with the 
change of materials. Each subproblem is performed on its own separate domain and mesh. 
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1. Introduction 

Many papers have been published about thin region finite 
element (FE) models [1]-[7]. Besides theoretical studies on the 
shielding effect and related to interface conditions (ICs), several 
finite element (FE) subproblem method (SPM) formulations for 
the thin shell (TS) models have been developed [1]-[7]. This means 
that instead of meshing the volume thin regions, the TS models can 
be considered as surfaces with ICs, that neglect errors on the 
computation of local electromagnetic quantities in the vicinity of 
geometrical discontinuities, edges and corners, increasing with the 
thickness [1] - [4].  

In this paper, the FE SPM is herein extended for coupling of 
local fields (magnetic flux density, magnetic field and eddy 
current) and global quantities (currents, voltages Joule losses) 
associated with any conducting part of an electric system to correct 
the inherent errors of the local and global fields near eges and 
corners comming from the TS models. It is particularly the case 
with inductors driven by external sources. For such components, 
either a global current 𝐼𝐼𝑖𝑖  or a global voltage V𝑖𝑖 can be fixed (Figure 
1), in a more general way, both of them must be taken into account 
when a coupling with circuit equation is performed. 

 
Figure 1. Generator Ωg,i  with associated global current Ii and voltage Vi. 
The FE SPM allows to couple any changes from this problem 

to others via surface sources (SSs) and volume sources (VSs) and 
applied via a projection method [1]-[4]. The development of the 
method is proposed for the magnetic vector potential FE magneto 
dynamic formulation, paying special attention to the proper 
discretization of the constraints involved in each subproblem (SP) 
and to the resulting weak FE formulations. The method is validated 
on a practical test problem [8]. 
2. Coupled Magnetic Subproblem 
2.1. Sequence of Subproblems 
 At the hearth of the SPM, a full problem is proposed to be 
divided into sequences of SPs:  A problem involving global current 
driven stranded or massive inductors alone is first performed on a 
simplified mesh without any thin regions. The obtained solution 
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considered as SSs for added TS problems via ICs [1] - [7]. The TS 
solution is then corrected by a correction problem via SSs and VSs, 
that overcomes the TS assumptions as presented in  Section 1.  
2.2. Canonical magnetodynamic problem 

A canonical 3-D magnetodyanmic problem i, to be solved at 
step i of the SPM, is defined in a domain Ω𝑖𝑖 , with boundary 
∂Ω𝑖𝑖 = Γ𝑖𝑖 = Γℎ,𝑖𝑖 ∪  Γ𝑏𝑏,𝑖𝑖. The eddy current defined in the conducting 
part and the non-conducting of Ω𝑖𝑖  are respectively denoted Ω𝑐𝑐,𝑖𝑖 
and Ω𝑐𝑐,𝑖𝑖

𝐶𝐶 , with Ω𝑖𝑖 = Ω𝑐𝑐,𝑖𝑖 ∪ Ω𝑐𝑐,𝑖𝑖
𝐶𝐶 . Stranded inductors belong to 

Ω𝑐𝑐,𝑖𝑖
𝐶𝐶 , whereas massive inductors belong to Ω𝑐𝑐,𝑖𝑖. The equations and 

material relations of SPs i are [9] - [11]:   

curl 𝒉𝒉𝑖𝑖 = 𝒋𝒋𝑖𝑖 ,    div 𝒃𝒃𝑖𝑖 = 0, curl 𝒆𝒆𝑖𝑖 = −𝝏𝝏𝑡𝑡𝒃𝒃𝑖𝑖  (1a-b-c) 
            𝒉𝒉𝑖𝑖 = 𝜇𝜇𝑖𝑖−1𝒃𝒃𝑖𝑖 + 𝒉𝒉𝑠𝑠,𝑖𝑖,    𝒋𝒋𝑖𝑖 = 𝜎𝜎𝑖𝑖𝒆𝒆𝑖𝑖 + 𝒋𝒋𝑠𝑠,𝑖𝑖,              (2a-b) 

where 𝒉𝒉𝑖𝑖  is the magnetic field, 𝒃𝒃𝑖𝑖 is the magnetic flux density, 𝒆𝒆𝑖𝑖 
is the electric field, 𝒋𝒋𝑖𝑖  is the electric current density, 𝜇𝜇𝑖𝑖  is the 
magnetic permeability and 𝜎𝜎𝑖𝑖 is the electric conductivity. Note that 
(1c) is only defined in  Ω𝑐𝑐,𝑖𝑖, whereas it is reduced to the form (1b) 
in Ω𝑐𝑐,𝑖𝑖

𝐶𝐶 . Boundary conditions (BCs) are defined on complementary 
parts Γℎ,𝑖𝑖 and  Γ𝑏𝑏,𝑖𝑖, i.e. 

              𝒏𝒏 × 𝒉𝒉𝑖𝑖 = 𝒋𝒋𝑓𝑓,𝑖𝑖 ,      𝒏𝒏 × 𝒃𝒃𝑖𝑖|Γ𝑏𝑏,𝑖𝑖 = 𝒇𝒇𝑓𝑓,𝑖𝑖,         (3a-b) 

where n is the unit normal exterior to Ω𝑖𝑖. The surface fields  𝒋𝒋𝑓𝑓,𝑖𝑖 
and 𝒇𝒇𝑓𝑓,𝑖𝑖   in (3a) and (3b) are SSs which comes from previous 
problems [2] - [6].  For the classical homogeneous BCs, they 
normally define as zero. However, they define as possible SSs in 
the thin region between  γ𝑖𝑖+ and  γ𝑖𝑖− [1] - [7]. This is the case when 
some field traces in a SP 𝑢𝑢 are forced to be discontinuous, whereas 
their  continuity must be recovered via a SP 𝑝𝑝. The SSs in SP 𝑝𝑝 are 
thus to be fixed as the opposite of the trace solution of SP 𝑢𝑢. 

In addition, global conditions on currents or voltages in 
inductors are considered. A typical inductor is shown in Figure 1 
where a source of electromotive force Ω𝑔𝑔,𝑖𝑖 is defined between two 
electrodes very close to each other of voltage V𝑖𝑖 and the current 𝐼𝐼𝑖𝑖  
following through surface Γ𝑔𝑔,𝑖𝑖  , i.e.  

∮ 𝒆𝒆 ∙ 𝑑𝑑𝑑𝑑 =  𝑉𝑉𝑖𝑖
Γ𝑖𝑖
+

Γ𝑖𝑖
−    and    ∮ 𝑛𝑛 ∙ 𝒋𝒋 𝑑𝑑𝑑𝑑 = 𝐼𝐼𝑖𝑖 ,

Γ𝑖𝑖
+

Γ𝑖𝑖
−           (5a-b) 

where Γ𝑖𝑖  is a path in Ω𝑔𝑔,𝑖𝑖  connecting its two electrodes. Surface 
Γ𝑔𝑔,𝑖𝑖 is defined as a part of the boundary Γ𝑒𝑒,𝑖𝑖 of the studied domain 
in presences symmetry conditions. 

    The fields 𝒉𝒉𝑠𝑠,𝑖𝑖 and 𝒋𝒋𝑠𝑠,𝑖𝑖 (fixes the global current in inductors) and 
in (2a) and (2b) are VSs which can be used for expressing changes 
of materials in each SP [1]-[4]. Indeed, for changes of permeability 
and conductivity in a region, from SP 𝑢𝑢 (i = u) to SP 𝑝𝑝 (i = p) are 
defined via VSs 𝒉𝒉𝑠𝑠,𝑖𝑖 and 𝒋𝒋𝑠𝑠,𝑖𝑖, i.e. 

    𝒉𝒉𝑠𝑠,𝑝𝑝 = (𝜇𝜇𝑝𝑝−1 − 𝜇𝜇𝑢𝑢−1)𝒃𝒃𝑢𝑢 ,     𝒋𝒋𝑠𝑠,𝑝𝑝 = (𝜎𝜎𝑝𝑝 − 𝜎𝜎𝑢𝑢)𝒆𝒆𝑢𝑢  (4a-b) 

       Each SP is constrained through the so defined SSs and VSs 
from the parts of the solutions of other SPs.   

3. Finite Element Weak Formulation 
3.1. Magnetic Vector Potential Formulation 

We can define a vector potential  𝒂𝒂𝑖𝑖 so that 𝒃𝒃𝑖𝑖 = curl 𝒂𝒂𝑖𝑖 and 
𝒆𝒆𝑖𝑖 = 𝜎𝜎𝑖𝑖𝜕𝜕𝑖𝑖𝒂𝒂𝑖𝑖 − 𝜎𝜎𝑖𝑖grad 𝜈𝜈𝑖𝑖 . A weak formulation of SP 𝑖𝑖 (i≡ u, p or k) 
of the Ampère equation (1a) can be written as [1]-[4]. 

(𝜇𝜇𝑖𝑖−1curl 𝒂𝒂𝑖𝑖, curl 𝒂𝒂𝑖𝑖′)Ω𝑖𝑖 +  �𝒉𝒉𝑠𝑠,𝑖𝑖 , curl 𝒂𝒂𝑖𝑖′�Ω𝑖𝑖 + �𝒋𝒋𝑠𝑠,𝑖𝑖,𝒂𝒂𝑖𝑖′�Ω𝑖𝑖
+ (𝜎𝜎𝑖𝑖𝜕𝜕𝑖𝑖𝒂𝒂𝑖𝑖 ,𝒂𝒂𝑖𝑖′)Ω𝑐𝑐,𝑖𝑖 + (𝜎𝜎𝑖𝑖grad 𝜈𝜈𝑖𝑖 ,𝒂𝒂𝑖𝑖′)Ω𝑐𝑐,𝑖𝑖

+< 𝒏𝒏 × 𝒉𝒉𝑖𝑖 ,𝒂𝒂𝑖𝑖′ >Γℎ,𝑖𝑖−Γ𝑡𝑡,𝑖𝑖

+ < [𝒏𝒏 × 𝒉𝒉𝑖𝑖]Γ𝑡𝑡,𝑖𝑖 ,𝒂𝒂𝑖𝑖
′ >Γ𝑡𝑡,𝑖𝑖  

= (𝒋𝒋𝑖𝑖 ,𝒂𝒂𝑖𝑖′)Ω𝑠𝑠,𝑖𝑖 ,∀ 𝒂𝒂𝑖𝑖′ ∈  𝐹𝐹𝑖𝑖1(Ω𝑖𝑖)   (6) 
where 𝐹𝐹𝑖𝑖1(Ω) is a curl-conform function space defined in Ω𝑐𝑐,𝑖𝑖 , 
gauged in Ω𝑐𝑐,𝑖𝑖

𝐶𝐶 , and containing the basis functions for 𝒂𝒂𝑖𝑖 as well 
as for the test function  𝒂𝒂𝑖𝑖′  (at the discrete level, this space is 
defined by edge FEs; the gauge is based on the tree-co-tree 
technique); (·, ·)Ω and < ·, · >Γ respectively denote a volume 
integral in Ω and a surface integral on Γ of the product of their 
vector field arguments. The surface integral term on Γℎ,𝑖𝑖  is 
considered as natural BCs of type (3a), usually zero. The electrical 
scalar potential 𝜈𝜈𝑖𝑖  is only defined in the conducting regions Ω𝑐𝑐,𝑖𝑖. 
The weak formulation (6) implies, by taking 𝒂𝒂𝑖𝑖′ = grad 𝜈𝜈𝑖𝑖′  as a 
test function, that 

(𝜎𝜎𝑖𝑖𝜕𝜕𝑡𝑡𝒂𝒂𝑖𝑖, grad 𝜈𝜈𝑖𝑖′)Ω𝑐𝑐,𝑖𝑖 + (𝜎𝜎𝑖𝑖grad 𝜈𝜈𝑖𝑖 , grad 𝜈𝜈𝑖𝑖′)Ω𝑐𝑐,𝑖𝑖

+ �𝒉𝒉𝑠𝑠,𝑖𝑖 , curl 𝒂𝒂𝑖𝑖′�Ω𝑖𝑖 + �𝒋𝒋𝑠𝑠,𝑖𝑖 ,𝒂𝒂𝑖𝑖′�Ω𝑖𝑖  
+ < [𝒏𝒏 × 𝒉𝒉𝑖𝑖]Γ𝑡𝑡,𝑖𝑖 ,𝒂𝒂𝑖𝑖

′ >Γ𝑡𝑡,𝑖𝑖= < 𝒏𝒏 ∙ 𝒋𝒋, 𝜈𝜈𝑖𝑖′ >Γ𝑔𝑔 , ∀ 𝒂𝒂𝑖𝑖′ ∈  𝐹𝐹𝑖𝑖1(Ω𝑖𝑖)  (7) 
where Γ𝑔𝑔 is the part of the boundary of Ω𝑐𝑐,𝑖𝑖  which is crossed by a 
current (Γ𝑔𝑔 is the union of all the surfaces Γ𝑔𝑔,𝑖𝑖 resulting from the 
abstraction of the generators Ω𝑔𝑔,𝑖𝑖) (Fig. 1). 

3.2. Current as weak global quantities and circuit relations 
   For the weak formulation in (6), the appearing of total current 
in a conductor is only expressed in a weak sense, e.g. as a natural 
global constraint, because it arises from Ampère law which is its 
self-expressed in a weak form. By solving the equation (7), the 
current 𝐼𝐼𝑖𝑖  flowing in the part Γ𝑔𝑔,𝑖𝑖 of an inductor can be obtained 
with 𝜈𝜈𝑖𝑖′ equal to the source scalar potential 𝜈𝜈𝑠𝑠,𝑖𝑖. Hence, with 𝜈𝜈𝑖𝑖′ =
 𝜈𝜈𝑠𝑠,𝑖𝑖, the surface intergral term in (7) written for the inductor Ω𝑚𝑚,𝑖𝑖 
gives 

< 𝒏𝒏 ∙ 𝒋𝒋, 𝜈𝜈𝑠𝑠,𝑖𝑖 >Γ𝑔𝑔,𝑖𝑖=< 𝒏𝒏 ∙ 𝒋𝒋, 1 >Γ𝑔𝑔,𝑖𝑖= 𝐼𝐼𝑖𝑖,      (8) 
and thus (7) becomes  

�𝜎𝜎𝑖𝑖𝜕𝜕𝑖𝑖𝒂𝒂𝑖𝑖 , grad 𝜈𝜈𝑠𝑠,𝑖𝑖�Ω𝑚𝑚,𝑖𝑖
+ �𝜎𝜎𝑖𝑖grad 𝜈𝜈𝑖𝑖 , grad 𝜈𝜈𝑠𝑠,𝑖𝑖�Ω𝑚𝑚,𝑖𝑖

+ �𝒉𝒉𝑠𝑠,𝑖𝑖, curl 𝒂𝒂𝑖𝑖′�Ω𝑖𝑖 + �𝒋𝒋𝑠𝑠,𝑖𝑖 ,𝒂𝒂𝑖𝑖′�Ω𝑖𝑖  
+< [𝒏𝒏 × 𝒉𝒉𝑖𝑖]Γ𝑡𝑡,𝑖𝑖 ,𝒂𝒂𝑖𝑖

′ >Γ𝑡𝑡,𝑖𝑖= 𝐼𝐼𝑖𝑖,    (9) 
or, with 𝜈𝜈 =  𝑉𝑉𝑖𝑖  𝜈𝜈𝑠𝑠,𝑖𝑖, 

�𝜎𝜎𝑖𝑖𝜕𝜕𝑖𝑖𝒂𝒂𝑖𝑖, grad 𝜈𝜈𝑠𝑠,𝑖𝑖�Ω𝑚𝑚,𝑖𝑖
+ 𝑉𝑉𝑖𝑖�𝜎𝜎𝑖𝑖grad  𝜈𝜈𝑠𝑠,𝑖𝑖 , grad 𝜈𝜈𝑠𝑠,𝑖𝑖�Ω𝑚𝑚,𝑖𝑖

+ �𝒉𝒉𝑠𝑠,𝑖𝑖 , curl 𝒂𝒂𝑖𝑖′�Ω𝑖𝑖 + �𝒋𝒋𝑠𝑠,𝑖𝑖 ,𝒂𝒂𝑖𝑖′�Ω𝑖𝑖  
+ < [𝒏𝒏 × 𝒉𝒉𝑖𝑖]Γ𝑡𝑡,𝑖𝑖 ,𝒂𝒂𝑖𝑖

′ >Γ𝑡𝑡,𝑖𝑖  = 𝐼𝐼𝑖𝑖.   (10) 
Equation (10) is the circuit relation associated with the 

inductor Ω𝑚𝑚,𝑖𝑖, i.e. a relation between its voltage 𝑉𝑉𝑖𝑖 and its current 
𝐼𝐼𝑖𝑖 . 
3.3.  Inductor alone ′′𝑺𝑺𝑺𝑺 𝒖𝒖′′ - The added TS model ′′𝑺𝑺𝑺𝑺 𝒑𝒑′′ - 

Volume correction ′′𝑺𝑺𝑺𝑺 𝒌𝒌′′ 

The weak form of an SP 𝑢𝑢 with the inductor alone is first solved 
via the volume integrals in (10) (i ≡ u) where 𝐼𝐼𝑢𝑢   is the fixed 
current density in on Ω𝑚𝑚,𝑖𝑖, i.e. 
�𝜎𝜎𝑖𝑖𝜕𝜕𝑖𝑖𝒂𝒂𝑖𝑖, grad 𝜈𝜈𝑠𝑠,𝑖𝑖�Ω𝑚𝑚,𝑖𝑖

+ 𝑉𝑉𝑖𝑖�𝜎𝜎𝑖𝑖grad  𝜈𝜈𝑠𝑠,𝑖𝑖 , grad 𝜈𝜈𝑠𝑠,𝑖𝑖�Ω𝑚𝑚,𝑖𝑖
= 𝐼𝐼𝑖𝑖. (11) 
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The added TS problem is defined via the second term in (11) (i ≡  
p). The test function  𝒂𝒂𝑝𝑝′  is divided into continuous and 
discontinuous parts  𝒂𝒂𝑐𝑐,𝑝𝑝

′   and   𝒂𝒂𝑑𝑑,𝑝𝑝
′  (with  𝒂𝒂𝑑𝑑,𝑝𝑝

′   zero on Γ𝑝𝑝−) [6]. 
One thus has 

< �𝒏𝒏 × 𝒉𝒉𝑝𝑝�Γ𝑡𝑡,𝑝𝑝
,𝒂𝒂𝑝𝑝′ >Γ𝑡𝑡,𝑝𝑝=   < �𝒏𝒏 × 𝒉𝒉𝑝𝑝�Γ𝑡𝑡,𝑝𝑝

,𝒂𝒂𝑐𝑐,𝑝𝑝
′ >Γ𝑡𝑡,𝑝𝑝+

   < 𝒏𝒏 × 𝒉𝒉𝑝𝑝|Γ𝑡𝑡,𝑝𝑝
+ ,𝒂𝒂𝑑𝑑,𝑝𝑝

′ >Γ𝑡𝑡,𝑝𝑝
+            (12) 

The terms of the right-hand side of (12) are developed from the 
TS models [6], i.e. 

< �𝒏𝒏 × 𝒉𝒉𝑝𝑝�Γ𝑡𝑡,𝑝𝑝
,𝒂𝒂𝑐𝑐,𝑝𝑝

′ >Γ𝑡𝑡,𝑝𝑝=
 

< 𝜎𝜎𝑝𝑝𝛽𝛽𝑝𝑝𝜕𝜕𝑡𝑡(2𝒂𝒂𝑐𝑐,𝑝𝑝 + 𝒂𝒂𝑑𝑑,𝑝𝑝),𝒂𝒂𝑐𝑐,𝑝𝑝
′ >

Γ𝑡𝑡,𝑝𝑝
 

(13)  
< 𝒏𝒏 × 𝒉𝒉𝑝𝑝|Γ𝑡𝑡,𝑝𝑝

+ ,𝒂𝒂𝑑𝑑,𝑝𝑝
′ >Γ𝑡𝑡,𝑝𝑝

+ = −< 𝒏𝒏 × 𝒉𝒉𝑢𝑢|Γ𝑡𝑡,𝑝𝑝
+ ,𝒂𝒂𝑑𝑑,𝑝𝑝

′ >Γ𝑡𝑡,𝑝𝑝
+  

+ 
 

1
2

< 𝜎𝜎𝑝𝑝𝛽𝛽𝑝𝑝𝜕𝜕𝑡𝑡(2𝒂𝒂𝑐𝑐,𝑝𝑝 + 𝒂𝒂𝑑𝑑,𝑝𝑝) + 1/𝜎𝜎𝑝𝑝𝛽𝛽𝑝𝑝,𝒂𝒂𝑑𝑑,𝑝𝑝
′ >

Γ𝑡𝑡,𝑝𝑝
.     (14)   

The surface integral term −< 𝒏𝒏 × 𝒉𝒉𝑢𝑢|Γ𝑡𝑡,𝑝𝑝
+ ,𝒂𝒂𝑑𝑑,𝑝𝑝

′ >Γ𝑡𝑡,𝑝𝑝
+  in (14) is 

considered as a SS appeared from the weak formulation of SP 𝑢𝑢 
(6), i.e. 

−< 𝒏𝒏 × 𝒉𝒉𝑢𝑢|Γ𝑡𝑡,𝑝𝑝
+ ,𝒂𝒂𝑑𝑑,𝑝𝑝

′ >Γ𝑡𝑡,𝑝𝑝
+ = �𝜎𝜎𝑢𝑢𝜕𝜕𝑢𝑢𝒂𝒂𝑢𝑢, grad 𝜈𝜈𝑠𝑠,𝑢𝑢�Ω𝑚𝑚,𝑝𝑝+

 

+ 𝑉𝑉𝑢𝑢�𝜎𝜎𝑢𝑢grad  𝜈𝜈𝑠𝑠,𝑢𝑢, grad 𝜈𝜈𝑠𝑠,𝑢𝑢�Ω𝑚𝑚,𝑝𝑝+
. (15) 

At the discrete level, the first term on the right side of (15)  is thus 
limited to a single layer of FEs on the side Ω𝑚𝑚,𝑝𝑝+ touching Γ𝑡𝑡,𝑝𝑝

+ , 
because it occurs only the associated trace 𝒏𝒏 × 𝒂𝒂𝑑𝑑,𝑝𝑝

′ |Γ𝑡𝑡,𝑝𝑝
+ . 

Moreover, the source 𝒂𝒂𝑢𝑢 obtained from the mesh of SP 𝑢𝑢 is then 
projected on the mesh of SP 𝑝𝑝 via a projection method [1] - [7]. 
   Once achieved, the  errors on the TS SP 𝑝𝑝  solution is then 
corrected by SP 𝑘𝑘  (i ≡ k) via the volume integrals 
�𝒉𝒉𝑠𝑠,𝑘𝑘, curl 𝒂𝒂𝑘𝑘′ �Ω𝑘𝑘 and �𝒋𝒋𝑠𝑠,𝑘𝑘,𝒂𝒂𝑘𝑘′ �Ω𝑘𝑘 in (10). The VSs 𝒉𝒉𝑠𝑠,𝑘𝑘  and 𝒋𝒋𝑠𝑠,𝑘𝑘   

are given in (4a-b).  In parallel with the VSs in (10), ICs recover 
the TS discontinuities to remove the TS representation via SSs 
opposed to previous TS ICs. 

 

 
Figure 2. The geometry of the cover plate (top) and the experimental set-up 

(bottom) (all dimensions are in mm). 

4. Application example 

The illustrate and validate the SPM with global quantities, an 
actual test problem is a cover plate of a transformer with ratings 
from 500kVA upto 2000kVA. The geometry of the cover plate is 
shown in Figure 2 (top) and the experimental set - up developed 
by the authors in [8] is presented in Figure 2 (bottom).    

The three bus bars carry adjustable balanced three – phase 
currents up to 𝐼𝐼𝑎𝑎 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 sin(𝜔𝜔𝜔𝜔 + 0) ,  𝐼𝐼𝑏𝑏 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 sin �𝜔𝜔𝜔𝜔 − 2𝜋𝜋

3
� 

and 𝐼𝐼𝑐𝑐 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 sin(𝜔𝜔𝜔𝜔 + 2𝜋𝜋/3) . The distance between plates is 
114mm and the plate dimensions are 270x590x6mm (Figure 2, 
top). The cover plate is made of two different regions and 
properties (magnetic and non-magnetic). The conductivities for the 
regions 1 and 2 are taken as 𝜎𝜎1 = 4.07 MS/m and 𝜎𝜎2 = 1.15 MS/m 
respectively and the relative permeabilties for the regions 1 and 2 
are taken as 𝜇𝜇𝑟𝑟,1 = 300 and 𝜇𝜇𝑟𝑟,1 = 1, respectively. 

 

The problem herein is considered three SPs strategy.  The 
field 𝒃𝒃𝑢𝑢 computed in a simplified mesh in SP 𝑢𝑢 (with the bus bars 
considered as massive inductors) is shown in Figure 4 (top). A TS 
model SP 𝑝𝑝 (presenting the distribution of eddy current density 𝒋𝒋𝑝𝑝 
on the surface) is then added (Figure 4, middle). Finally, a SP 𝑘𝑘 
replaces the TS model with volume correction covered by the 
actual plate and its neighborhood with an adequate refined mesh 
(Figure 4, bottom). By integrating the value of 𝒋𝒋𝑘𝑘   (Figure 4, 
bottom) along the thickness of the cover plate and comparing the 
result to the TS solution 𝒋𝒋𝑝𝑝, it is obtained. Thus, the TS inaccuracy 
on 𝒋𝒋𝑝𝑝 can locally reach 47% (Fig. 4, middle) (d = 6 mm, f = 50Hz, 
skindepth 𝛿𝛿 = 2 mm. The error on TS SP 𝑝𝑝 solution through the 
cover plate hole (Figure 5), and along the cover plate border and 
near the plate ends (Figure 6) can reach 37,5% and 50%, 
respectively. The Joule losses and the global currents flowing in 
the bus bars calculated for the mounting plate (with non-magnetic 
(region 2) inserted) by the SPM and the experimental method 
proposed by authors in [8], are given in Table 1. It can be shown 
that there is a very good agreement. 
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Figure 4. Magnetic flux density 𝑏𝑏𝑢𝑢 (in a cut plane) generated by massive inductors 
(top), TS eddy current 𝑗𝑗𝑝𝑝 (middle) and its volume correction 𝑗𝑗𝑘𝑘 (bottom) (thickness 
d = 6mm, frequency f = 50Hz). 

     This test problem has helped to standardize the type and 
material of the cover plate for various current in transformers 
rated between 50kVA upto 2000kVA.      

 
Figure 5. Joule power loss density for the TS and VS solution through the plate 

hole (Imax = 2kA). 

 

Current 
I (kA) 

Frequency 
f (Hz) 

  Massive inductors 
Measured 
values (W) Thin shell 

Pthin (W) 
Volume 
Pvol (W) 

2000 50 51.8 62.58 65 

2250 50 64.8 78.9 74 

2500 50 80.8 97.5 95 

2800 40 100.5 122.7 119 

 
4. Conclusions 
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