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Peer-to-peer (P2P) energy trading is a mechanism that allows people to share
locally the energy they have generated from distributed renewable resources (DER),
to generate profit form the unused resources and to reduce the cost for electricity
for the household and in the community itself. This calls for the design of new
energy markets, accompanied with the development of comprehensive exchange
strategies, which reflect both the consumer?s preferences and the heterogeneity
of the renewable sources. The paper presents a study of the behavior patterns
of individual prosumers using bidding strategies based on the State-of-Charge
of the battery and two different pricing algorithm, one with fixed prices and one
based on the battery price of each standalone system as well as the effect such
patterns have on a local energy market with solar panels, fuels cells and batteries.
The evaluation is achieved by the use of a prototype based on the Open Energy
Systems (OES), a community in Okinawa, Japan, made of 19 interconnected houses
with residential storage, photovoltaic cells and AC grid connection. In order
to simulate heterogeneity, a fuel cell, modeled after Ene-Farm, is added to the
original configuration. Each house has a power flow management system, which
uses a priority-based algorithm to maintain demand-response efficiency, capable
of scheduling the operating hours of the available fuels cells. The energy market
is based on Zaraba, a continuous double auction algorithm used by the Japanese
Stock Exchange, in which prosumer can bid for a desired amount and price of
electricity for a 30-minutes time slot in the future The preliminary numerical
evaluation is based on the results from several simulations using different versions
of the bidding agent.

1 Introduction

This paper is written as an extension of the work titled
“Energy exchange strategy for local energy markets with
heterogeneous renewable sources”, presented at the 2018
IEEE International Conference on Environment and Electri-
cal Engineering and 2018 Industrial and Commercial Power
Systems [1] in Palermo, Italy.

In the recent years a huge surge in the usage of renew-
ables worldwide [2]. The growth of the solar photovoltaic
capacity installations in particular is remarkable, nearly dou-
ble those of wind power and adding more net capacity than
coal, natural gas and nuclear power combined. This trend
can be seen not only on global scale since the dropping
prices for energy storage and Feed-In Tariffs(FIT) [3] has
led to an increase in the adoption of solar energy by in-
dividual consumers. Additionally, the efforts of countries

like Japan, have contributed to the improvement of the effi-
ciency and reducing of the cost for Distributed Renewable
Resources (DER), making on-site energy sources such as
fuel cells more popular with consumers [4]. However, the
current centralized nature of both the grid infrastructure and
the electricity markets is preventing residential customers
from participating and taking full advantage of cheaper re-
newables. The successful implementation of blockchain
technology for peer-to-peer (P2P) trading in the Brooklyn
Microgrid [5], has not only led to a surge in the adoption of
the technology in the development of local energy markets
but to new and innovative approach towards designing such
markets. Still the increased heterogeneity of the microgrids
as well as the needs of the individual prosumers are yet to
be addressed.

The paper [1], on which the research presented here is
based, studied the impact of introducing a new power source,
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in this case a hydrogen fuel cells, on already existing on
a local energy market with renewables and batteries. The
prototype, used for the analysis was built upon and exist-
ing system, the Open Energy Systems (OES) [6], operating
it real world microgrid in Okinawa, Japan. OES consists
of 19 autonomous subsystems, equipped with photovoltaic
cells, energy storage and loads and interconnected via DC
power bus. The system, currently used by the OES micro-
grid, has a well-defined exchange algorithm [7], designed
to enable energy exchanges between all of the connected
subsystems. However, no financial rewards are attributed to
the prosumers and the energy is essentially exchanged for
free.

The subsequently developed prototype aimed to change
that by developing a market-based trading platform which
can provide financial incentives for trading and thus enabling
all the prosumers to be active participants in the local energy
market and to make better use of the generated renewable
energy. Such approach contributes to the an increase in the
self-sufficiency and the sustainability of the community it-
self and expands the possibility for developing decentralized
energy market to reflect on the decentralized nature of the
P2P exchange. Usually trading platforms require the sub-
mission of an order bid, using an internal bidding strategy,
which may or may not be fully matched, or be matched
only partially, with someone else?s bid using a perviously
agreed matching method. The matching can be done cen-
trally by aggregating all requests, determining a common
market clearing price (MCP) in order to maximize trading
volume for a given timeslot. Another approach is to use
auctions, a method often used for trading goods, mainly
non-fungible goods e.g. E-bay. Continuous or real-time
trading, characteristic for spot markets, is used in this proto-
type as it provides both speed and liquidity. The bids, used
here, require for the desired amount and price of the energy
for exchange to be set in advance. Both parameters are de-
termined by the individual prosumer’s exchange strategy,
which is based on the State of Charge (SoC) of the available
battery. A version of the algorithm was already in operation
in the OES system, proving to be working well for the for
subsystems with solar panels and batteries. In order to fur-
ther test the SoC-based exchange strategy, a hydrogen fuel
cell was added to the original configuration of the subsys-
tems in simulated environment. The fuel cell came to the
attention of the authors, due to it rising popularity among
Japanese households. Unlike the the fluctuating output of
the solar panels, it provides stable generation level which
coupled with well devised prediction of consumption pat-
terns can contribute to the building of off-grid communities,
completely self-sufficient and independent from the utility
grid.

The study presented 2018 IEEE EEEIC and I&CPS
showed the broader effects of the SoC-based exchange strat-
egy have on a community with heterogeneous power sources
and the strategy itself has a very simplistic pricing algo-
rithm which didn’t account for the actual price of the energy
being exchanged. As a result, a new pricing method was
added, based on the price of the energy, stored in the bat-
tery of each individual subsystem. This paper presents a
quantitive evaluation of the effects of this change on the de-
veloped market as well as on the behavior of predetermined

prosumers’ groups, created based on the daily consump-
tion average. Examining more detailed behavioral patterns
allows for better understanding of each prosumer’s needs
which can enhanced the development of more customized
bidding strategies. Moreover, it opens the possibilities to
design a more diverse community, where each standalone
system can use different set of power sources, to serve as
testing environment in order to achieve more realistic results.

The evaluation, presented in this paper, is based on a
study of the effects of SoC-based bidding strategy with sim-
ple pricing algorithm and pricing algorithm based on the
current price of the energy, contained in the battery of each
standalone subsystem, on the local market and on the indi-
vidual prosumer. It is achiebed by comparing the results,
obtained by the simulation with the OES community, with
the two bidding strategies. Furthermore, the presented strate-
gies are evaluated in the context of a single member of a
prosumers’ group to better understand how changes in the
bidding system can affect the individual prosumer.

Section 2 of this paper introduces the basic concepts
used in the development of the solution and provides a look
into the current state of P2P energy trading and existing
blockchain based markets. Section 3 gives a more detailed
information about the observed community and the selected
prosumers’ groups. Section 4 provides an overview of the
prototype’s design and the concrete implementation which is
used for the quantitative evaluation. Finally, Section 5 will
focus on the analysis of the simulations’ results followed by
final remarks and discussion of future works.

2 Research background
This paragraph will introduce existing solutions for energy
exchange between interconnected subsystems. Many studies
focus on the exchange strategies between interconnected
microgrids and the main grid. The research, presented by
Asimakopoulou [8], suggests a Leader-Follower strategy for
energy management of Multi-Microgrids, achieved with the
use of bilateral contracts between microgrids and a large
production unit. Wang [9] proposes a control strategy for
networked microgrids and distribution systems. Other au-
thors such as Matamoros and Gregoratti [10, 11] has focused
on developing an optimization framework for a distributed
energy trading algorithm between islanded microgrids. They
were also among the first researchers to give a solution for
direct trading between microgrids although due to the lack
of clear separation between the microgrids’ internal power
management strategy and their exchange strategy the pro-
posed system didn’t offer many possibilities of implementing
self-interest-based internal strategies.

Such opportunity was offered by Wang [12, 13, 14] who
proposed a two-layered optimization method that separates
internal and external strategy and helps avoiding undesired
power injections and reduces peak consumption. This pro-
posal creates new opportunities for collabotation between
self-interest microgrids. Other papers [16, 17] prefer the use
of Game Theory for the trading algorithm, while Nunna [18]
came up with an multi-agent approach for power trading
between microgrids using demand-response and distributed
storage.
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Dimeas’ paper [19] proposed a multiagent system (MAS)
approach, that allows independent agents,Buyers and Sell-
ers, to submit Bids for EnergyPackages according to Grid-
Prices. Other papers also discussed this kind of ap-
proaches [20, 21, 22] but mainly from a theoretical point of
view without physical prototype.

Starting with Nakamoto’s white paper on Bitcoin [23],
Blockchain has received both academic and industry interest
for being the first scalable method to successfully decentral-
ize P2P exchanges. It can be applied not only for cryptocur-
rencies, but also for various other use cases as for instance
in the energy sector, notably the here-addressed P2P energy
trading [24]. Using Blockchain for trading was first address
by Transactive Grid Project [25] which demonstrated the
concept of the Brooklyn Microgrid [26], [5]. Later many
projects such as Grid+ [25], NRGCoin [27], Bankymoon,
Daisee, D3A and Energo Labs [28] followed but so far few
pilots and prototypes are completed and the one that are
focus more on developing functioning energy market from
the perspective of retailers and producers and not from the
customer’s perspective.

As stated in previous works [1], a prototype, following
the Wang’s approach was developed, which focuses on de-
veloping a platform for trading between members of one
microgrid. The base concept design allows in the future to
expand the market by trading with neighbouring microgrids
as well. For research purposes, a prototype was developed,
having explicit separation between the internal strategy for
energy management and the trading algorithm, defined in
the external strategy built-in in its base design. Such divi-
sion aims to address both the lack of incentive and the deci-
sion coupling issue which is particularly affects cases where
blockchain is used without separating external and internal
logic beforehand. The systems aims to create environment
where different energy exchange strategies can be used to
better reflect the different targets set by prosumers when
using renewable energy. The internal strategy, is tasked with
managing the demand-response efficiency of each subsystem
and with evaluating the system needs for buying and selling
energy, implemented by the priority-based internal agent and
the bidding agent, respectfully. The external strategy is the
software implementation of the local energy market, used in
this study.

Moreover, unlike the other studies, introduced in the
paragraph, this research focuses on the small prosumers and
aims to create local energy market where each player can
use a customized bidding strategy that is best suited to their
needs. In order to achieve that, a better understanding of
the behavior of different types of prosumers is needed. This
paper deepens the study of the market by observing the ef-
fects a small change in the bidding strategy can have on the
individual prosumer.

3 Application in real world micro-
grid

This section will provide more detailed information on the
real world microgrid, used for the evaluation and on the
prosumers’ groups, designed based on the recorded con-
sumption data in the microgrid for the year 2015.

3.1 Microgrid Architecture

The OES is a bottom-up, distributed electric power system
that mainly uses renewable energy sources. It presents an
alternative way of exchanging energy in-between energy sub-
systems in order to manage energy fluctuations within the
community. Supply and demand are balanced autonomously
without impacting the utility grid and thus energy autonomy
is increased with minimal infrastructure costs. The concept
and feasibility of OES have been demonstrated in a decen-
tralized, peer-to-peer microgrid in Okinawa, Japan. The mi-
crogrid has been operating there since late 2014 and consists
of 19 houses, each equipped with their own subsystem with
photovoltaic cells, residential energy storage in a form of 4.8
kWh batteries, dc nanogrid and loads. All the subsystems
are connected via dedicated, shared DC power bus as well as
communication line which allows energy exchanges within
the community. The subsystem use a direct current (DC)
procedure for exchange, combined with pure peer-to-peer
(P2P) communication infrastructure and exchange algorithm
[7]. All the houses also have connection to the utility (AC)
grid, which can be used as an auxiliary power supply when
no other energy supply is available. Bidirectional dc-dc con-
verters are used as an interface between subsystems: they
allow for an effective control of the power flow and can be
used as an abstraction of the internal subsystem design. This
way, dc power can be exchanged within a community to help
balancing demand-response requirements without requiring
global knowledge or control.

In order to test the system capabilities in simulated en-
vironment with heterogeneous power sources, a fuel cell is
added to the to the configuration of each standalone subsys-
tem. The fuel cell, used here is largely based on Ene-Farm, a
hydrogen fuel cell for home use, that has been gaining popu-
larity in Japan. Ene-Farm is an energy system that can extract
hydrogen from natural gas, usually supplied though under-
ground pipes in most major cities in Japan, or propane gas
(LPG), usually supplied to a residence via external tanks part
of the building design. The hydrogen is then used in combi-
nation with ambient oxygen to generate electrical power and
at the same time to capture the residual heat which in turn is
used to heat up water. Ene-Farm was chosen here for both
its wide spread use and its high efficiency ratio.

The extended topology of the observed microgrid, very
similar to the real world one, can be seen on Figure 1.

Figure 1: Sample subsystem configuration and general microgrid architec-
ture of the chosen microgrid
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3.2 Prosumers’ groups in the OES community

During the process of design and development of the proto-
type the daily consumption of all 19 members of the OES
community for the entire year of 2015 was examined in de-
tailed. Furthermore the solar generation patterns we also
mapped for the same period of time. Based on the analysis,
the OES consumers were divided into three main groups,
defined by their individual average daily consumption for
the observed period, using the generated output from the fuel
cell and the solar panels patters a baseline indicator. The
groups are as follows:

1. Group 1: High consumers, with observed daily aver-
age consumption of more than 700 watts;

2. Group 2: Average consumers, with daily average con-
sumption in the range of 350 to 700 watts;

3. Group 3: Low consumers, with daily average con-
sumption of less than 350 watts.

Figure 2: OES prosumers distribution, based on their consumption

Figure 2, shows that more than 50% of the consumers in
the OES community are in the second category, a trend that
remained unchanged for the entire year 2015. Moreover, no
noticeable changes in the members of Group 2 was observed
throughout the year. One notable exception was registered
in April 2015 when a user moved from Group 3 to Group 1
due customers moving into previously uninhabited house.

Dividing the community into categories, based on such a
crucial factor as consumption, helps further the understand-
ing of the community and the prosumers themselves because
it provides an effective way to analyze the behavior of dif-
ferent types of consumer since members of one category
tend to exhibit similar behavior within an acceptable margin
of error. That will allow for the development of different
strategies aimed to satisfy the needs of variety of customers.

4 Prototype design and implementa-
tion

The prototype, presented here, is developed based on the
Open Energy Systems (OES), a real world microgrid operat-
ing in Okinawa, Japan. This section will provide an overview

of the basic premises and concrete algorithms used in the
development of the proposed solution.

4.1 Design assumptions and limitations

During the development of the prototype, presented here,
several simplification were incorporated in the design. The
following paragraph focuses only on the ones that have ma-
jor implication for the research, subject of this paper. For
more detailed list, please refer to the cited paper [1].

1. No losses, including conversion and transmission
losses, are taken into account during the powerflow
management;

2. Projected transmission losses, however, are taken into
consideration in the pricing algorithm;

3. Initial investment in the renewable source is disre-
garded when calculating the energy price;

4. Each subsystem is equipped battery, used for absorb-
ing imbalances in the network;

5. The price of the battery is calculated for ∀t ∈ T ,
where T is time series.

6. The price of the battery is calculated as a sum of the
amount charged in the battery from each power source
multiplied by the predefined energy price of the source
and then divided by the current amount of energy in
the battery. The formula can be seen bellow.

bp =

∑
i∈N PSamount

i,t ∗ PSprice
i

currentcapacity
∀t ∈ T (1)

7. Users are charged when storing energy in the battery,
not when discharging the stored energy for the con-
sumption

8. It is presumed that the data, provided by the power
meters and the controllers, can be trusted;

9. The DC line capacity is set as 2.5 kw for all subsys-
tems;

10. Japanese yen is selected as main currency for all the
financial transactions, due to the microgrid location;

11. The battery is charged solely from the renewable
sources;

12. There is no Feed-in to the utility grid

4.2 Prototype design

The following paragraphs will give a short description of
the internal and externals strategies, focusing on the bidding
component of the former. For more information about the
chosen algorithms, please refer to the cited paper [1].
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4.2.1 Internal strategy

The internal strategy, used in this paper, is tasked with man-
aging the demand-response efficiency of each subsystem
and with evaluating the system needs for buying and selling
energy. It is comprised of two main components: priority-
based agent and bidding agent, each implementing different
side of the internal agent. They are designed to work in-
dependently using only the same data in order to increase
encapsulation. More information about the basis of the algo-
rithms cam be found in the paragraphs bellow.

Priority-based internal agent: The internal agent is re-
sponsible for scheduling the power flows to and from the
modules, configured for each individual subsystem. It is
designed for standalone house equipped with residential stor-
age, energy sources and loads. The fundamental premise
built into the design of the system is inherent flexibility when
it comes to changing the number and types of the installed
power sources. Essentially the system allows for various
sources such as photovoltaic and fuel cells, wind turbines,
standard electricity grid, etc. to be added to the configura-
tion at any moment, given that each source is a assigned a
priority level, a parameter used to control when it is going
to be used, and a price for electricity for kWh. The priority
is normally determined by factors such as energy price and
cost for curtailment. In the current system the priority is set
as follows: fuel cell output; solar generation; battery; utility
grid. In this case power sources with what is considered
an expensive curtailment, like fuel cells, are given higher
priority in order to fully utilize their generation even though
the cost for electricity for other sources such as solar tends
to be much lower. Once the priority is defined, the algo-
rithms uses it to satisfy the demand-response requirements
by accessing the available energy from each source until the
demand is satisfied. If after using all the power from the
renewables, the demand is still not satisfied, the system gets
the remaining necessary power from the AC grid. If there is
still available renewable energy after the demand-response
requirements are satisfied, it is charged to the battery if there
is enough capacity, the remaining energy is curtailed. As it
can be seen, in this system, the battery plays a dual role as
both a power source and a load. The role of the agent is to
maintain internal power balance at any moment:

Pbatt
i,t =

∞∑
n=1

Pps
n,i,t + Pac

i,t + Ptrade
i,t − Pload

i,t ∀t ∈ T , i ∈ Z (2)

Figure 3: Scheduling conditions and simplified workflow of the internal
agent.

Following the research presented in previous works [1]
a scheduling component was added to the functionality of
the internal agent. This software module is tasked with
scheduling the operating hours of power sources with con-
stant output like a fuel cell. The module analyzes the future
energy requirements and gives command to shut down or
turn on the fuel cell. Fuel cells of the Ene-Farm type require
30 minutes to stop and start operation therefore the default
conditions are set based on the solar generation output and
the SoC of the battery to take into account the future state of
the system.

Figure 3 shows the basic workflow of the priority-based
internal agent with the defined configuration. As shown the
fuel cell is scheduled to shut down when the SoC of the
battery is higher that 80%, which is more than enough to
satisfy any upcoming changes in the consumption and to
reduce to risk of curtailment from this power source. Even
if the SoC is lower, if there is an observed spike in the so-
lar generation, the fuel cell also turn off to enable the solar
generation to be fully absorbed by the battery, thus utilizing
better the generation and lowering the bidding price. In the
opposite scenario, the fuel cell is scheduled to resume op-
erations, when the SoC falls under 20% in order to prevent
the activation of the connection to the utility grid, which has
much higher price than the fuel cell generation. For the same
reasons, the fuel cell turns on, when there is a decline in solar
generation whether due to reduced solar radiation caused by
weather conditions or during nightfall. This conditions help
reduce the electricity cost for the household by decreasing
the reliance on the utility grid.

Bidding agent: The bidding agent is a module that is in-
stalled together with the internal agent and is tasked with
generating a sell or buy bid for the next timeslot and dispatch-
ing it for matching. Each bid consists of desired amount of
electricity for a certain price for kWh. The amount is de-
termined based on a detailed analysis of the status of each
subsystem which includes the number and type of config-
ured power sources, e.g. batteries, PV, fuel cell, etc., and
current consumption and generation patterns. This is then
used by a pricing function to determine the future need for
electricity and is reflected in the bids that follow.

The bidding strategy, subject to evaluation of this paper,
uses the State-of-charge (SoC) of the installed battery to pre-
dict the amount of electricity that will be needed for the next
30-minute timeslot but with two different pricing algorithms.
The base amount, seen in Figure 4a,b, refers to the minimum
amount of electricity available for exchange, calculated as
a function of the DC line capacity and the trading timeslot
duration to avoid line congestion.

In the case of the previously used bidding strategy, the
prices are fixed based on the prices for the electricity, paid
by the customer, as seen on Figure 4a. It is assumed that
the lower the SoC level, the more inclined is the prosumer
to buy electricity. Since all systems are connected to the
AC-grid, the highest price for the electricity in the market
was designed to always be less than the price of the grid.
Similarly, there is a higher incentive to sell the generated
renewable energy when the battery is getting full. The price
in this case is set as a minimum price at which electricity can
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be sold while still generating profit. This pricing, although
well designed for the original OES configuration, is not as
effective in the presence of a stable power source such as
fuel cell, because of the difference in the price for energy,
generated from the solar panels and from Ene-Farm.

Figure 4: Bidding prices and amounts for State of Charge (SoC)-based
bidding strategy with simple pricing algorithm(a) and pricing algorithm
based on battery price (b).

The new pricing algorithm, shown on Figure 4b, takes
into account the price of the electricity, currently stored
in each individual subsystem, noted as bp in the table. It
currently affects only the sell bid with the price similarly
decreasing with the increased incentive to sell. The percent-
age is based on a projected transmission loss of nearly 15%
which in the case of the studied community is paid by the
Seller.

4.2.2 External Strategy:

The external strategy represents the software implementation
of the local energy market, used in this study. At the core of
the market is the matching algorithm, a simplified version
of the Zaraba method, which is a continuous double auc-
tion algorithm used by the Japanese Stock Exchange. The
trading is done in real time, with multiple sell and buy bids
received for the duration of each 30-minute timeslot. They
are match on on first-come first-served basis with the most
beneficial counter bid being chosen each time as a counter-
part. At the end of the timeslot the agreed deals are sent to
the internal agent to execute the physical exchange and all
the unmatched bids are invalidated.

Since the DC losses are neglected, we assume that the
sum of all energy trading must be equal to zero:∑

i∈Z

Ptrade
i,t = 0 ∀t ∈ T (3)

4.2.3 Virtual Wallet:

In order to keep an accurate record of all financial transac-
tion, including detailed information about the used energy
from the renewable sources and from the grid, cost of the
energy charged to batter and cost/revenue from the energy
trading, each subsystem has a virtual wallet. The data, kept
in the wallet, is accessible via simple user interface which
provides basic analysis and monthly reports.

5 Simulation Setup and Results
For numeric evaluation purposes, this study uses the results
of multiple simulations, obtained using prototype, compar-
atively similar to the OES Simulator [7], written in Python
3.6. The prototype provides a software approximation of
the internal power flow of each system and of the commu-
nity. All the implemented algorithms are consistent with
the descriptions given in the previous section and in other
works [1]. The following subsection will display the gen-
eral configuration of studied subsystems, the data, provide
information of the scope of the data used as an input for the
simulator and will discuss the results of the performed tests.

5.1 Input Data and Configuration

In order to further the research, shown in previous works [1],
the simulation uses the same dataset for the consumption
and solar radiation, recorded for 19 houses, part of OES
in Okinawa, Japan, in the duration of year 2015 with 10
minutes granularity. The bidding is done for a 30-minutes
timeslot in the future, which amounts in total to 48 trading
timeslots per day.

Each subsystem in the community has the following
configuration of modules:

1. Solar panels with average area of 20 m2, with esti-
mated panel yield of 19% and 75% performance ratio.
Since the initial investment is not taken into consider-
ation in the estimate, the price for solar energy is set
to 0 yen for kWh.

2. Fuel cell with factory output of 700 watts and pre-
defined price for electricity of14 yen for kWh, based
solely on the price of the fuel used, since the initial
investment is also disregarded during calculations.

3. Utility grid, used as an auxiliary power source with
no power limitations. The price for electricity is con-
sidered 30 yen for kWh, which is an approximation of
the real price of the electricity in Japan. This is neces-
sary due to the varying prices for different regions as
well as different usage categories.

4. Battery with capacity of 4.8kWh, charged at 50% with
energy price of 10 yen for kWh, used only in the first
iteration of the algorithm. For the remaining of the
simulation, it is calculated in the beginning of each
iteration, how much energy was charge it in the previ-
ous cycle and from which renewable source.

5. Wallet with 100,000 Japanese yen available.
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5.2 Results

In order to evaluate the added functionality presented in this
paper, two simulations are performed, each using different
bidding strategies as listed below:

1. SoC-based bidding strategy, described in the cited
paper [1].

2. SoC-based bidding strategy with pricing algorithm
based on the battery price of each standalone system,
presented in this paper.

All simulations are performed using a only selected po-
tion from the available dataset with length of 1 calendar
month, in this case August 2015. To simplify the visual-
ization of the results, only one week, from August 2nd to
August 9th, is taken for the analysis of the whole market.
That particular week is chosen because of the variety of
weather conditions that occurred during that period. The
selected timeframe consisting of several sunny days and two
partially cloudy day is chosen. In order to better study the
behavior pattern of the individual participants, only data
from 1 day, August 5th 2015, with daily generation close to
the month’s average is examined.

5.2.1 Community overview

This section will provide a detailed analysis of the effects
of the new bidding strategy on the entire community before
focusing on selected members of the predefined prosumers’
groups. The second portion of the analysis can be seen in the
next section. Detailed analysis of the results of the simula-
tions showed 55% decrease in the number of deals with the
new bidding strategy. This is due to less available matches
in the preferable price range of the prosumers which makes
them less willing to either sell or buy energy if it is not bene-
ficial for them. This has had an effect on the market price as
well as seen on Figure 5.

Fig. 5b shows that the pricing algorithm, has led to pre-
dictable patterns for market price, with stable peaks that
indicate higher prices in comparison with the case of fixed
pricing, Fig. 5a. Most influenced by the new pricing algo-
rithm are the high consumers which show 10% decrease in
energy spending. Average consumers and low consumers
with daily average consumption more than 100 watts spent
7% less for electricity for the same period of time while
systems with daily average consumption of less than 100
watts registers a surplus increase of 10%.

Despite the lower number of deals, there has been ob-
served in 10% increase in the utilization of solar generation
due to a drop in the consumption of electricity from the AC
grid. The numbers are based on the numeric evaluation of the
results though a slight reduction the curtailment peaks can
be seen on Figure 6. The increase is due to more customized
bidding strategy and shows that better focus on customers’
energy requirements and implementing them into individual
bidding strategy can be used as a foundation for building
self-sustainable community. There is no visible curve for
the Fuel cell curtailment since it remains 0 for the entire
period due to the efficiency of the scheduling component of
the internal agent.

Figure 5: Market price within a community, comprised of standalone houses
with solar panels and fuel cells, SoC-based bidding strategy with fixed pric-
ing(a) and SoC-based bidding strategy with pricing algorithm based on the
battery price (b)

5.2.2 Analysis of individual prosumers from the predefined
groups

The analysis of a selected members of the groups, described
above, provides a deeper understanding of the results shown
above. Consumers of all groups showed slight in the usage
of the energy stored in their battery which is a contributing
factor for the slight decrease in the solar curtailment.

For a Group 1 consumer the increase has led to lowering
the usage of the AC grid, shown on Fig. 7, while for con-
sumer from Groups 2 and 3, the difference is compensated
by using less electricity directly from the Fuel cell, shown
on Fig. 8 and Fig. 9 respectively. The solar usage remained
unchanged. Since solar energy is considerable cheaper than
the one from AC or Fuel cell it can be considered as a factor
in the general lowering of the energy cost.

Deeper analysis of the sources of energy for the battery
further shows that the new pricing algorithm has contributed
to the higher utilization of the solar energy. Although the
results shows very little change for customers of Group 1,
Fig. 10, in the case of customers from both Group 2 and
3, Fig. 11 and Fig. 12 respectively, shows increased charg-
ing from the solar generation while the no energy has been
bought from the market. That scenario shows better man-
agement of the energy and of the trading which is more
consistent with the system requirement of this two types
of consumers since both should have enough energy so be
entirely self-sufficient and participate in the market only to
sell their excess energy. The graph of the energy exchanged
through the DC bus gives even better idea of what is hap-
pening. As we can see on Fig. 14 for customers of Group 2
and Fig. 15 for customers of Group 3, there is a distinctive

www.astesj.com 372

http://www.astesj.com


B. Spasova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 366-379 (2019)

Figure 6: Average curtailment in community, comprised of standalone houses with solar panels and fuel cells, SoC-based bidding strategy with fixed
pricing(a) and SoC-based bidding strategy with pricing algorithm based on the battery price (b)

Figure 7: Energy usage by power sources for Group 1 consumer that use SoC-based bidding strategy with fixed pricing(a) and SoC-based bidding strategy
with pricing algorithm based on the battery price (b)
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Figure 8: Energy usage by power sources for Group 2 consumer that use SoC-based bidding strategy with fixed pricing(a) and SoC-based bidding strategy
with pricing algorithm based on the battery price (b)

Figure 9: Energy usage by power sources for Group 3 consumer that use SoC-based bidding strategy with fixed pricing(a) and SoC-based bidding strategy
with pricing algorithm based on the battery price (b)

www.astesj.com 374

http://www.astesj.com


B. Spasova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 4, 366-379 (2019)

Figure 10: Energy charged to the battery by power sources for Group 1 consumer that use SoC-based bidding strategy with fixed pricing(a) and SoC-based
bidding strategy with pricing algorithm based on the battery price (b)

Figure 11: Energy charged to the battery by power sources for Group 2 consumer that use SoC-based bidding strategy with fixed pricing(a) and SoC-based
bidding strategy with pricing algorithm based on the battery price (b)
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Figure 12: Energy charged to the battery by power sources for Group 3 consumer that use SoC-based bidding strategy with fixed pricing(a) and SoC-based
bidding strategy with pricing algorithm based on the battery price (b)

Figure 13: Deals distribution for Group 1 consumer using SoC-based bidding strategy with fixed pricing(a) and SoC-based bidding strategy with pricing
algorithm based on the battery price (b)
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Figure 14: Deals distribution for Group 2 consumer using SoC-based bidding strategy with fixed pricing(a) and SoC-based bidding strategy with pricing
algorithm based on the battery price (b)

Figure 15: Deals distribution for Group 3 consumer using SoC-based bidding strategy with fixed pricing(a) and SoC-based bidding strategy with pricing
algorithm based on the battery price (b)
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lack of spikes that indicate buy deals, which shows that in
the case of the simple SoC strategy we have moments early
morning and late evening where prosumers with enough
energy are forced to buy from other prosumers electricity
on higher prices because they have previously sold their for
lower price. Reversed pattern can be observed for customers
of Group 1, Fig. 13, because their have electricity demand
that on average exceeds their generation by 50% so they
should not be selling energy in those periods of time as well.

Although the effects on the community are only marginal,
the new pricing method had shown significant shift in the
patters of all of the observed individual customers. Further
customization can provide better results and can make the
prosumers more competitive in the market but in the context
of their individual needs.

6 Conclusion
This study shows the impact of enhanced pricing algorithm,
which accounts for the price of the electricity contained in
the battery of standalone systems, part of a local energy mar-
ket with renewables and batteries. The evaluation is done by
analyzing the results, generated by a prototype with the use
of real data from a full-scale microgrid in Okinawa, Japan.
The microgrid represents a community of 19 houses each
equipped with residential storage, photovoltaic cells, fuel
cell and AC grid connection. All the houses are connected
via dedicated, shared DC power bus which allows them to
exchange energy with their neighbors. A continuous double-
auction algorithm, used by the Japanese Stock exchange, is
used for the implementation of the trading platform. Each
house can bid on the local market, using a State-of-Charge
based bidding strategy. Similar to previous works [1], some
simplifications were taken during the development of the
simulation platform, including neglecting all losses and ig-
noring the price of the energy, stored in the battery when
calculating the desired exchange price. The effects of the
incorporation of the losses in the algorithm are yet to be
studied but it is expected that such change will cause an
increase in the market price. The topic is currently being
investigated and will be a subject to future works.

This paper focuses on studying how including the bat-
tery price in the pricing algorithm affects different types of
consumers and the community as a whole. The results show
that increasing the customization leads to higher utilization
of the renewables and further reduces the cost of electricity
for consumers with daily average consumption higher than
100 wats. Since this was achieved with customizing a single
parameter, it is the opinion of the authors that further analy-
sis of the behavior of the individual system is need in order
to create bidding strategy, tailored to each prosumer. It is
the opinion of the authors that a well design exchange strat-
egy should allow for the customers to set individual goals
such as maximizing profit, maintaining independence from
the utility grid, reducing energy waste, etc. It should imple-
ment a prediction algorithm which accounts for consumption
and generations patterns and include weather predictions for
better evaluation of the energy needs. Furthermore, with
the wide spread of renewables and distributed renewable
resources (DER), more diverse communities are likely to

appear so further tests in the community with standalone
systems with various configuration power sources can serve
as a testing environment to achieve more realistic results.
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