

www.astesj.com 409

A Big Data Security Layer Meta-Model Proposition

Allae Erraissi*, Abdessamad Belangour

Laboratory of Information Technology and Modeling, Hassan II University, Faculty of sciences Ben M’Sik, Casablanca, Morocc.

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 11 July, 2019
Accepted: 09 October, 2019
Online: 28 October, 2019

 In Big Data, several solution providers offer distributions to handle this large amount of
data. Given the variety of these solutions, we are working to provide universal meta-
modeling for all layers of a Big Data system in order to address the issue of interoperability
and portability between these solutions. As part of our continuous efforts to standardize
concepts in Big Data world, we apply in this paper techniques related to Model-Driven
Engineering "MDE" to propose a meta-model for the security layer in Big Data. This meta-
model with the others that we have already proposed for the other layers of the Big Data
system, will be used as a platform-independent according to Model-Driven Architecture
pattern, which describes the structures of Big Data layers independently of any specific
platform.

Keywords:
Meta-model
Model Driven Engineering
Big Data
Security layer
Management layer

1. Introduction

The issues of the expression and application of security needs
are present in all information systems. With the emergence of new
types of environments, such as cloud computing and big data, this
problem is becoming more complex. Hence, it is necessary to take
into account their heterogeneity and the different levels of such an
architecture to deal with this problem.

At the Big Data level, several distribution providers have
proposed solutions to manage this huge amount of data, among
these distributions, we found HortonWorks, Cloudera, MapR,
InfoSphere BigInsghits IBM, Pivotal HD, etc. To put it another
way, this massive amount of heterogeneous data led to the
emergence of a large number of big data systems and technologies
that share similar architectures but with different implementations.
In essence, the common architecture of these data systems is
composed of many components: Data sources, Ingestion, Hadoop
Storage, Hadoop Platform management, Visualization,
Monitoring, and Security Layers [1]. In our way for a unified
abstract implementation, we proposed, in previous works, meta-
models for data sources, ingestion [2], storage [3], management [4]
and visualization layers [5]. We also relied on our previous
comparatives studies to define key concepts of security layer in
Big Data [6].

In this paper, we shall first present the security properties that
express the security requirements of the software architecture.
These properties are then combined to form a security policy:
different models and languages of expression of security and
insurance policies will be detailed. Then, we shall present the
meta-model that we proposed for the security layer. This meta-
model with the others already proposed for the other layers of the
Big Data system will be used like a platform-independent
according to Model-Driven Architecture pattern [7], which
describes the structures of Big Data layers independently of any
specific platform.

2. Related Work

Several research studies have been developed to standardize
the security layer concepts at the Big Data systems level. Among
the foremost relevant approaches in security modeling are
UMLSec [8] and SecureUML [9]. Yet, both approaches use UML
extensions to specify security requirements. UMLSec was created
to verify the formal security requirements specifications within the
system design. SecureUML was used to illustrate the MDS
approach. SecureUML is specific to role-based access control
infrastructures. It shows how an MDE policy could be applied to
code generation for any aspect of security.

In the literature, several MDS approaches have been proposed.
For example, on a middleware platform that integrates the
implementation of the Corba component model with the OpenPMF
security framework, Reznik et al. [10] present an MDS solution for

ASTESJ

ISSN: 2415-6698

*Allae Erraissi, Laboratory of Information Technology and Modeling, Hassan II
University, Faculty of sciences Ben M’Sik, Casablanca, Morocco, Email:
erraissi.allae@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj040553

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040553

A. Erraissi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com 410

developing secure applications. In the MDS approach, another
UML profile was developed to model access control policies. Lang
and Schreiner [11] show how OpenPMF architecture can be used
to translate a high-level security-related regulatory requirement
into enforceable authorization rules.

Our proposal is different from other existing MDS approaches,
which use templates to represent design decisions and
implementation details for target platforms. The application of
Model Driven Engineering techniques that provide meta-modeling
to the security layer in Big Data will advocate a systematic MDS
application process. This application separates security
requirements specifications and design decisions related to their
implementation. Thus, the reuse of models is facilitated by this
separation.

However, ModelSec proposes an intermediate model
conforming to a target platform meta-model to reduce the semantic
gap between the security requirements and the software generated.
This intermediate step favors the reuse of the transformations.
Unlike the other approaches that create UML profiles, a DSL is
defined to express the security requirements. It has been
implemented by applying meta-modeling techniques. Besides,
ModelSec is a generic approach, whereas most MDS approaches
are specific and they focus on access control policies.

Yet, other approaches manage security requirements. These
approaches are not aligned with MDS, and they focus primarily on
eliciting security requirements rather than generating software
objects from them. Among these proposals are Secure Tropos [12]
and [13], which introduce the concept of antigoal. Yu et al. [14]
use ontologies and Haley et al. [15] present a framework
consisting of a set of activities designed to meet security
requirements.

3. Security Properties and Policies

In this section, we describe methods for formalizing the
different security needs. We first present the usual security
properties and those that can be derived from them. Then, we shall
take existing models to apply these properties, security policies and
languages to define them.

3.1. Security properties

Security properties are the basis for expressing security
requirements. The set of security properties is commonly seen as a
set derived from three main properties: confidentiality, integrity,
and availability (CIA: Confidentiality, Integrity, Availability). The
exact interpretation of what these three properties imply depends
on the context of use. However, their definition and application is
an essential part of the safety assessment criteria, at both European
[16] and international [17]. Several definitions of these properties
exist in the literature [16,17,18]. We present a synthesis here.

3.1.1. Confidentiality
Confidentiality is about preventing unauthorized disclosure of

information. It aims to prohibit unauthorized access to
information. Accordingly, the property of confidentiality implies
that the information is accessible only by certain entities, that is to
say, that certain entities must not be able to obtain the information.
This property is often used in sensitive environments, such as
defense. It concerns both direct access and information transfer.

3.1.2. Integrity

Integrity means the fact that information cannot be
unauthorized modified or deleted, whether during processing,
storage or transfer of information. This property does not only
concern voluntary modifications and deletions, but also accidental
acts. Just as in the case of confidentiality, the integrity property
specifies all the entities authorized to modify or delete information.
By default, other entities cannot alter the information.

3.1.3. Availability

The availability property expresses the ability to access
information or a resource. It is related to the reliability of a system
since an unavailable system is a failing system. The temporal
notion of access is relative to the field of application: access to
information or service on a critical system (for example, in the
medical field) must be done more quickly than on a non-critical
system (for example, a website).

3.1.4. Insurance

The property triple of confidentiality, integrity, and availability
is sometimes extended with other properties [19], such as the
insurance property. The purpose of this is to provide evidence that
the other properties have been applied and that they have the
desired effect. The assurance of a property is the verification that
this property has been properly applied. The level of insurance
required depends on the system in question and must, therefore, be
adapted according to the criticality of the system. In sum, the
purpose of insurance property is to verify that the other properties
of the policy have been applied and that this application has had
the desired effect.

3.1.5. Derived properties

Privacy, integrity, and availability properties are the basic
concepts of security. They can be used to define derived properties
which are special cases, subsets or combinations of these basic
properties. In this section, we describe some of these derived
properties.

 PROCESS CONFINEMENT

Process containment has been defined by Lampson [20]. The
problem of containment concerns the prevention of the disclosure
by a service or a process of information considered as confidential
by the users of this service. According to Lampson, one of the
features needed for a process is that it should not disclose
information and it must not store information. Indeed, if a process
stores information and a user can observe this process, then there
is a risk that the user can access the information. If the process does
not store the information, then it cannot be disclosed. This process
containment property can thus be seen as the isolation of the
process from the rest of the system.

 AUTHENTICATION

The authentication property is a property that allows or denies
access to information or service to entities. Authentication is the
process of establishing trust in the identity of an entity [21]. This
authentication property is essential to apply the properties seen
previously. Indeed, it makes it possible to establish the identity of

http://www.astesj.com/

A. Erraissi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com 411

a user, a service or a system, which is necessary to give him the
appropriate rights.

3.2. Security Policies

A security policy is a set of properties that express the security
needs of a system or a set of systems. Most security properties are
based on resource access control. As a result, the concepts
introduced in access control models can be transposed into a
language to formally express the properties of the previous section.
In this section, we shall first describe the main models of historical
access control. Then, we shall present security policy and
insurance policy expression languages, which express and apply
security properties.

3.2.1. Historical models

As defined above, some security properties can be applied by
access control mechanisms. An access control system is usually
modeled using the following three elements:

• A set of topics that are the active entities of the system (for
example, processes);

• A set of objects that are the passive entities of the system,
on which the subjects can perform actions (files, sockets,
etc.);

• A set of permissions that represent the authorized actions
between a subject and an object (reading, writing, etc.), or
between two subjects (sending a signal).

 Control of Discretionary Access

Discretionary Access Control (DAC) is the default historical
model present on most operating systems. In this model, the
management of access rights to a resource is left to the discretion
of the owner of that resource. For example, on UNIX, the owner
of a file can set the read, write, and execute rights for itself, for the
members of the group that owns the file, and for all other users in
the system.

An access control model can be represented as a matrix, where
a line represents a subject, a column represents an object or a
subject, and each element of the matrix represents a set of
permissions of the subject on the object (or on the second subject).
This model was formalized by Lampson [22, 23] using capacity
lists and Access Control Lists (ACLs). Therefore, it proposes to
indicate, in an array A, the set D of the protection domains
(representing program execution contexts, that is to say, the
subjects) on the lines, and the set X of the objects on the columns.
Hence, Lampson defines the lists of capacities (definition 1) which
establish the permissions of a domain d on all the objects o of the
system. This is the set of actions allowed for each domain d.

Definition 1: List of Capabilities

Given a d∈D domain, the list of capabilities for domain d is all
couples:

(o, A[d, o]), ∀o∈X. (1)

Afterworlds, Lampson defines access control lists (definition
2) that specify the set of permissions granted on an object for each
domain in the system.

Definition 2: Access Control List (ACL)

Given an o∈X object, the access control list (ACL) for object
o is the set of pairs:

(d, A[d, o]), ∀ d∈D. (2)

However, this model is complex to update. For example, when
adding a new user to the system, a complete row must be added to
the A matrix. The Lampson model has therefore evolved to the
HRU model. In the HRU model [24], discretionary access control
is modeled from a matrix P containing all the subjects' rights to the
objects. In this template, subjects can edit the access control matrix
to create or delete topics or objects, as well as edit existing
permissions. The HRU model models protection using the
following elements:

• An access control matrix P;

• A set S of subjects and a set O of objects;

• A set R of generic rights (reading, writing, execution,
possession, etc.);

• A finite set C of commands representing all the operations
provided by the operating system (creation of files,
modification of rights, etc.);

• A set E of elementary operations: enter and delete (add and
remove rights), create subject and create object, destroy
subject and destroy object (destruction of subjects and
objects).

A triplet (S, O, P) represents the configuration of the system
protection. In order to study the problem of the safety of a
protection system, the authors of the model HRU are interested in
the transfer of privilege (right) occurring when a command inserts
a right r in the matrix P. The safety problem can be defined in the
following way: given an initial configuration of the security policy,
a system is considered safe for a right r if none of the commands
of this system causes the transfer of the right r. The authors then
showed that if the commands contain only one elementary action,
the safety problem is decidable but its verification algorithm is NP-
complete. Nevertheless, in the general case (the commands contain
several elementary actions), the problem is undecidable. In the
case of an operating system, the commands are not mono-
operational and the problem of the safety of the protection system
is therefore undecidable. This shows that it is impossible to
guarantee security properties with a discretionary access control
model.

Other DAC models have been defined to extend the HRU
model, including TAM (Typed Access Matrix) [25] and DTAM
(Dynamic Typed Access Matrix) [26]. TAM extends the HRU
model by incorporating a strong typing concept [27] which
corresponds to the association of immutable security types to all
the subjects and objects of the system. DTAM extends the TAM
model by adding the ability to dynamically modify object types.
The different models of discretionary access control are historical
models. They are mainly used for system rights management.

 Mandatory access control
Discretionary access control leaves the management of

resource permissions to their owners, that is, users of the system.

http://www.astesj.com/

A. Erraissi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com 412

In practice, this system is limited since many attacks against
systems aim to obtain privileged access (root, or super-user). Such
an attack, so-called elevation of privilege, is intended to obtain
rights greater than those possessed. Thus, it allows the user to gain
full access to the system and its resources and to overcome
discretionary control. Besides, studies [28,29] have shown that
DAC models are vulnerable, particularly because of the need for
users to correctly define the set of resource permissions. Any
definition error can create a security vulnerability that can be
exploited to gain privileges. Mandatory Access Control (MAC) is
consequently intended to address this problem by imposing a
security policy on system users. Anderson proposes the use of a
reference monitor [30] to control the interactions between subjects
and objects and to determine which ones are valid (that is, the ones
allowed by the policy). This section shall present the main models
of mandatory access control. These models explain the concepts of
security properties (integrity, confidentiality) in order to apply
them.

The Bell-LaPadula (BLP) model [31] is based on the
confidentiality needs of the military and is accordingly intended to
prevent disclosures. This model extends the HRU model by adding
the notion of a label associated with each subject and object of the
system. A label corresponds to a security level and is composed of
two security identifiers: the first identifier, hierarchical, indicates
the level of classification (for objects) or authorization (for
subjects), e.g., secret or top secret. The second identifier, called
category, specifies the organizations using the information, for
example, military or private.

In addition to the classic rules which are defined by an access
control matrix, two new rules are defined:

• ss-property (simple security property): for reading access
to be authorized, the subject requesting it must have a level
of authorization greater than or equal to that of the object;

• *-property (star property): Information can only be
transferred from a lower classification object to a higher
classification object.

These two rules make it possible to ensure the confidentiality
of the information and its non-disclosure. However, the existence
of hidden channels can cause information flows that cannot be
controlled. For this reason, a more restrictive version of BLP has
been proposed with the following rules:

• No Read Up: A subject requesting read access to an object
must have a security level greater than or equal to the
object;

• No Write Down: A subject requesting write-only access
(adding data) to an object must have a security level that is
less than or equal to the object.

Consequently, a subject requesting read and write access to an
object must have the same level of security as the object. This
model is sometimes called MLS (Multi-Level Security), and thus
refers to the level system used to define security rules.

A dual model at BLP, Biba [32] has been defined to meet
integrity needs. The Domain and Type Enforcement (DTE) model
[33] is a high-level mandatory access control model. Unlike
models such as BLP or Biba, it is not intended to apply a specific
security property, but rather to define the allowed access between

different entities in the system. Nonetheless, this model can serve
as a basis for implementing security property models, such as BLP,
Biba, or process containment. The DTE replaces notions of topics
and objects with those of domains and types. Thus, each object has
a type and each subject runs in a domain. Access rights on types
and domains are then defined for each domain. Consequently, this
model aims to restrict the resources accessible by a process (even
for privileged processes by the principle of least privilege) and to
control which processes have access to sensitive resources. The
different models of mandatory access control can be applied at the
same time at the system level, in distributed environments such as
the case of military infrastructures, or even be integrated within a
software.

3.2.2. Expression languages of security policies

The access control models that were presented above are the
historical models that allowed the definition of security policy
expression models and languages. A security policy consists of a
set of rules that may have the purpose of applying properties,
possibly following one of the described models or reusing certain
concepts. In this section, we shall describe the main models and
languages of a policy expression.

RBAC [Role Based Access Control] is a role-based access
control model that simplifies the writing and management of a
security policy. The administration of a mandatory access control
policy involves the management of multiple access rules. Yet, this
process is time-consuming and subject to errors. With RBAC, rules
can be simplified by expressing them according to the role of the
subject and not his or her identity.

Thus, within an organization, roles are defined from the
functions of the different positions and permissions are assigned to
these roles. Users have roles that allow them to obtain permission.
Considering that the roles are not directly assigned to the users,
their management is facilitated. For example, when adding a user,
it is necessary to assign the corresponding roles.

Different versions of RBAC have been defined [34,35]:

• Core RBAC understands the basic concepts of RBAC and
specifies that user-role and role-permission associations are
of many-to-many types;

• Hierarchical RBAC adds inheritance support between
roles: for example, a junior employee has a junior role with
permissions and the senior role inherits permissions from
the junior role;

• Constrained RBAC introduces constraints to apply the
privilege separation principle. Since 2004, RBAC is a NIST
standard [36].

OrBAC [37] (Organization Based Access Control) is an access
control model based on the concept of organization. OrBAC
abstracts the notions of subject, action, and object by those of role
(as in the case of RBAC), activity and view. Subsequently, this
makes it possible to group entities according to the security rules
that concern them, and thus simplify the expression of the policy.
In order to facilitate the expression of dynamic policies, OrBAC
uses contexts. Three types of rules are possible: First, permissions
which allow a role to perform an activity on a view, in a given

http://www.astesj.com/

A. Erraissi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com 413

context. Second, bans when an activity is prohibited and finally,
obligations when a role must perform an activity on a view in a
given context. An OrBAC rule can be expressed as follows: A role
can have permission, prohibition or obligation to perform an
activity on a given view when the associated context is verified.

ABAC [38] (Attribute Based Access Control) is an access
control model in which rights are given to users based on attributes.
Attributes can be seen as features of system elements. An attribute
consists of a type (for example, a role, a project, a sensitivity level,
etc.) and a value that can be single-valued or multi-valued. For
example, a role identifier or the value of the sensitivity level, etc.).
These attributes can be compared to each other or to fixed values,
which allows defining the rules of policy. For example, a rule
evaluates one or more attributes of a subject to decide whether to
allow or deny access to an object. Note that ABAC can be used
with the DAC, MAC and RBAC models [39].

XACML [40] (eXtensible Access Control Markup Language)
is a standard of the OASIS consortium [41]. It is both an access
control policy definition language and a template for interpreting
(allowing or disallowing) access requests based on this policy.
XACML is based on the XML language. A set of XACML policies
consists of policies, which are themselves composed of a set of
elements: target, rules, a combination algorithm, and obligations.
The target element indicates whether a policy should be applied to
a given query. The rules specify the allowed accesses: they consist
of a condition that is to say a Boolean expression. If this condition
is verified, it causes an effect (authorization or prohibition) on the
access. The rule combination algorithm defines how the policy
should be interpreted when multiple rules may apply, for example,
"permission overrides prohibition". Obligations are optional and
allow you to perform an action when a rule is encountered, for
instance, generate an alert. However, because of the flexibility and
expressiveness of XACML, the definition of security policies can
be complex [42]. XACML cannot easily allow the cloud user to
express his own security needs.

Ponder [43] is a specification language for security and
administration policies for distributed systems. It is a declarative
and object-oriented language that supports different types of
policies: authorization policies (specifying allowed or forbidden
access for a subject), obligation (actions that a subject must
perform in response to an event), restriction (actions that a subject
should not perform), delegation (actions that a subject may
delegate to another subject), constraint (to limit the application of
other policies, for example in function of time). Meta-policies can
also be defined to manage interactions between policies. Ponder2
[44] reuses Ponder's concepts by adapting them to autonomous
systems. Hence, Ponder2 is based on a decentralized architecture,
made up of self-managed components (SMCs) capable of
interpreting and applying the policy on system objects. The objects
considered by Ponder2 are Java objects that can communicate with
SMCs. These objects must be adapted to be managed by Ponder2.

3.2.3. Expression language of insurance policies

Security policies may be supplemented by insurance policies.
An insurance policy must express methods for assessing the level
of protection of a system.

XCCDF [45] is an XML-based standard for specifying security
checks and performance tests. Hence, it is, a language used for

defining an insurance and verification policy. Besides, XCCDF
can be used to automate vulnerability checks and responses when
these vulnerabilities are detected. XCCDF is used by SCAP [46]
(Security Content Automation Protocol), which is a set of
specifications defined by NIST to standardize the format in which
software vulnerabilities and security configurations are expressed.
A distributed version of XCCDF, called DXCCDF [47], is used to
express distributed vulnerabilities.

OVAL [48] is another standard aimed at unifying the
expression of insurance policies. OVAL uses XML to evaluate the
state of a system by performing a series of tests on the machine.
The evaluation of the state of the system with OVAL is broken
down into three stages: the representation of the system
information, the description of the different states and the
transmission of the results of the evaluation. The distributed
version of OVAL is named DOVAL [49] and can handle
distributed vulnerabilities.

A-PPL [50] is a policy language for expressing accountability
obligations. A-PPL can be used for privacy management policies,
access control, and usage control policies. Besides, A-PPL
manages elements specific to the insurance: it makes it possible to
define alerts in the event of a detected error and determine rules of
localization of the data. It can also specify which are the
characteristics wanted for the audit and the storing error messages.

4. Meta-model for Security layer:

Big Data solutions are more and more used. Indeed, many
providers of Big Data solutions have already proposed
distributions like HortonWorks, Cloudera, MapR, etc. Although
each of these distributions has its vision for a Big Data system, they
all share their necessary needs of the security layer. Accordingly,
Security is a crucial element for both customers and service
providers.

However, before presenting the Security layer, we deem it
necessary to talk firstly about our latest contribution of meta-
models. In fact, in our previous work, we have proposed meta-
models for layers: Data Sources, Ingestion, Hadoop Storage [51],
Hadoop Platform Management [52], and visualization of Big Data
architecture. Accordingly, we realized that there is a direct
relationship between the security layer and the other layers in Big
Data. In order to show the link between the layers of the Big Data
system, we shall present in figure 1 the following meta-package
diagram. It clearly indicates the meta-packages: IngestionPkg,
DataSourcesPkg, HadoopPlatformManagementPkg,
VizualisationPkg, SecurityPkg, and MonitoringPkg and the
dependency relationship that links them.
We present in the figure 2 the meta-model that we proposed for the
Security layer in Big Data. This meta-model defines specific
security concepts. To separate the access control mechanisms from
the rest of the concepts, we have devised our meta-model to two
separate parts: the meta-model of security concepts and the meta-
model that defines access control mechanisms. The purpose of this
separation is to offer the possibility of extending the meta-model
of access control mechanisms in our future work. It should be
mentioned that this extension of the meta-model will not affect the
rest of the meta-model. The figure 2 shows the meta-model of the
general concepts of the security layer.

http://www.astesj.com/

A. Erraissi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com 414

Figure. 2. Meta-model of general security concepts.

A threat can damage the assets. A threat has the following
properties: type, frequency (modeled as an annual rate),
probability of actual success, and degradation (that is, the level of
damage to an asset if a threat reaches its goal).). Safeguards are a
barrier to risk to reduce it. As indicated in the Safeguards type
attribute, we can distinguish between Safeguard functions and
Safeguard measures. Safeguards functions are actions that reduce
risk while Safeguards' measures are physical or logical devices or

http://www.astesj.com/

A. Erraissi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com 415

processes that reduce risk. Safeguards can act in two different
modes, healing if they act on damaged assets or preventative if they
act before a threat has appeared. A detailed emergency plan which
consists of a set of safeguards is recommended to reduce a threat
that may cause harm.

There is no standard classification for security requirements.
According to [53], seven categories were taken into account
(confidentiality, access control, integrity, authentication, non-
repudiation, availability, and audit). Integrity is the guarantee that
the information remains complete and correct. Access control is
employed to force authorized users to access an asset.
Confidentiality is to ensure that only authorized information can
be read by those who are authorized. These three types of
requirements are related to authentication and may have a
condition that is defined as an expression. Authentication is a
procedure by which a computer system certifies the identity of a
person or a computer. The purpose of this procedure is to allow the
person to access certain secure resources. It will compare the
information of authorized users stored in a database (locally or on
an authentication server) to those provided. Access will only be
allowed if the information is the same. It is the administrator of the
information system who grants the rights and sets the access. The
user with an access account (ID + password) will only have access
to the resources he is allowed to see. Availability maintains the
proper functioning of the information system and ensures access
to a service or resources. Finally, the audit assesses the IT risks of
physical security, logical security, change management,
emergency plan, etc. It also assesses a set of IT processes - which
is usually the case - to respond to a specific customer request. All
of these kinds of requirements can affect particular assets or the
entire system.

Figure. 3. Meta-model of access control mechanisms.

These two meta-models that we have proposed show the most
important attributes, concepts, and data types that a Big Data
system would need. Indeed, the meta-class of non-functional
requirements is the extension point of the main meta-model and
has the ability to add new non-functional requirements. The
security requirement is a non-functional requirement
specialization intended to be the root of meta-classes representing
security concepts.

5. Transformations

The meta-models that we have defined for the different Big Data
layers represent the platform-independent model (PIM) level,
which means a model-independent of the platform. The goal of
these meta-models is to standardize concepts at the Big Data level
and to create an independent meta-modeling of platforms and
solutions. Following that, we made some transformations using the
Atlas Transformation Language (ATL). This transformation
language will allow us to move from the PIM model to the
Platform Specific Model (PSM). PSMs can use domain-specific
languages or general languages like Java, C #, Python, and so on.
The techniques used in the MDA approach are thus mainly
modeling techniques and model transformation techniques. The
figure below shows the transformations that we have made in this
paper to make the transition from our meta-model of the security
layer at the level of Big Data to PSM:

Figure. 4. Transformation of security meta-model to PSM.

6.1. Configuration

In this section, we shall discuss the techniques that we have used
to implement the approach presented in Figure 4. Version 4.12 of
the Eclipse IDE was used, with the addition of the Eclipse
Modeling Framework (EMF) to draw the proposed meta-models.
We also used version 4.1 of the ATL transformation language on

Logical PIM for Big
Data

Meta-model for Security

Meta-model for Storage

Meta-model for
Management

Meta-model for
Visualization

PSM for Big Data
security layer

LogRhythm's Security
Intelligence Platform

IBM QRadar

RSA Security

Hawkeye Analytics
Platform

Meta-model for Ingestion
and Data Sources

Sec2LRSecIP

Sec2QR

Sec2RSA

Sec2HKAnaP

http://www.astesj.com/

A. Erraissi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com 416

Eclipse 4.12, to define the transformation rules and to create our
four transformations: Sec2LRSecIP, Sec2QR, Sec2RSA, and
Sec2HKAnaP. The switch to the PSM did not take into
consideration the version of the chosen solutions since the meta-
model we proposed is a standard for the security layer. After
applying the transformation rules, the result found will be used on
all versions of LogRhythm's Security Intelligence Platform, IBM
QRadar, RSA Security, and Hawkeye Analytics Platform.

6.2. Experiences

While performing our tests, we used two datasets to better measure
the transformation execution time to the four chosen solutions:
LogRhythm's Security Intelligence Platform, IBM QRadar, RSA
Security, and Hawkeye Analytics Platform. The results are shown
in Figures 5 and 6.

Figure. 5. Transformations time.

Figure. 6. Execution time for ATL transformations.

Table 1: Transformations runtime.

Security
solution

LogRhythm's
Security

Intelligence
Platform

IBM
QRadar

RSA
Security

Hawkeye
Analytics
Platform

Transformation
time 763 1045 3456 2509

7. Discussion and Perspectives

The security properties that were presented in the first section
are textual and abstract. They allow a user literally to express his
security needs. Although these properties are high-level
requirements, they cannot be directly applied to the system. This
is why different models and security languages are designed to
express these properties so that they can be applied to a system.

In the second section, we presented historical models for access
control policies and security and insurance policy expression
languages. Indeed, Historical access control models introduce
concepts. These concepts can be generalized to security policies
that are not dedicated to access control. For example, modeling in
subject-permission-object triplet form is not necessarily specific to
access control. Besides, access control has shown the value of a
mandatory security policy compared to a discretionary policy. In
fact, a discretionary policy gives the possibility to guarantee
security properties [56,57]. Existing policy models and languages
also make it possible to introduce essential notions into the
expression languages of security and insurance policies. Thus, the
notion of role introduced in RBAC is used in other models of
security policies, such as OrBAC and XACML. It can simplify the
expression and administration of policy. These languages allow the
definition of security needs in the form of properties. However,
these policies are often restricted to the expression of a property
and support only a subset of properties. Moreover, existing
languages are mostly not suitable for defining security and
assurance properties for cloud and big data environments.

As we have mentioned before, Big Data has become essential
in today's world. Indeed, our analysis of the subject leads us to find
that there are several solutions to manage Big Data in the market
(HortonWorks, Pivotal HD, IBM InfoSphere BigInsights, etc.).
Each of these solutions manages Big Data in its own way without
relying on standards like meta-models. This of course results in the
diversity of solutions and the non-interoperability between the
different solutions. During our research project, we have worked
on the meta-modeling of the different layers of a Big Data system
[58]. In this paper, we rely on comparative studies that we have
already done to draw the key concepts of the security layer. The
meta-model that we proposed for this layer and the other layers is
platform-independent according to Model-Driven Architecture
pattern. By using the ATL transformation language, for example,
we can move to the other platform-specific models (PSM) [59,60].
The PSM we have chosen in this work are LogRhythm's Security
Intelligence Platform, IBM QRadar, RSA Security, and Hawkeye
Analytics Platform. After the creation of these meta-models, in the
next step, we shall work on the creation of models respecting these
meta-models. Then we shall define the transformation rules
between these meta-models using the transformation language
ATL (Atlas Transformation Language). These meta-models are
platform-independent according to Model Driven Architecture

763

1045

3456

2509

0 1000 2000 3000 4000

TRANSFORMATION TIME

Hawkeye Analytics Platform

RSA Security

IBM QRadar

LogRhythm's Security Intelligence Platform

0

500

1000

1500

2000

2500

3000

3500

763 1045

3456

2509

http://www.astesj.com/

A. Erraissi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com 417

pattern, which describes the structures of Big Data layers
independently from any specific platform.

8. Conclusion

Big data refers to the collection and aggregation of large
amounts of data from different sources to extract information
through statistical, descriptive and predictive analysis. Several new
solutions exist in the IT market that can handle this huge amount
of data. This big data trend makes security an essential but complex
point to address. The definition of security needs can indeed be a
difficult task, especially since the user of the service does not
necessarily know these needs. However, we have seen that there
are methods of risk analysis that allow a user to determine their
security needs. Thus, we have presented in this paper the different
basic security properties that may correspond to the needs of a user,
as well as several models of policies to express these needs. After
that, we have defined a standard meta-model for the security layer
that represents the PIM level. Finally, we made transformations to
move from our meta-model to four PSM.

References
[1] N. Sawant and H. (Software engineer) Shah, Big data application architecture

Q & A a problem-solution approach. Apress, 2013.
[2] Erraissi, A., & Belangour, A. Data sources and ingestion big data layers: meta-

modeling of key concepts and features. International Journal of Engineering
& Technology, 7(4), 3607–3612, 2018.
https://doi.org/10.14419/ijet.v7i4.21742

[3] Erraissi, Allae, and Abdessamad Belangour. « Hadoop Storage Big Data
Layer: Meta-Modeling of Key Concepts and Features ». International Journal
of Advanced Trends in Computer Science and Engineering 8, nᵒ 3, 646-53,
2019. https://doi.org/10.30534/ijatcse/2019/49832019

[4] Erraissi, Allae, and Abdessamad Belangour. « Meta-Modeling of Big Data
Management Layer ». International Journal of Emerging Trends in
Engineering Research 7, no 7, 36-43, 2019.
https://doi.org/10.30534/ijeter/2019/01772019.

[5] Erraissi, Allae, and Abdessamad Belangour. « Meta-Modeling of Big Data
Visualization Layer Using On-Line Analytical Processing (OLAP) ».
International Journal of Advanced Trends in Computer Science and
Engineering 8, nᵒ 4, 990‑98, 2019.
https://doi.org/10.30534/ijatcse/2019/02842019.

[6] Allae Erraissi, Abdessamad Belangour, and Abderrahim Tragha, “Digging
into Hadoop-based Big Data Architectures,” Int. J. Comput. Sci. Issues IJCSI,
vol. 14, no. 6, pp. 52–59, Nov. 2017. https://doi.org/10.20943/01201706.5259

[7] Kleppe, A.G., Warmer, J., Warmer, J.B. and Bast, W., 2003. MDA explained:
the model driven architecture: practice and promise. Addison-Wesley
Professional, 2003.

[8] Jurjens, J. Secure Systems Development with UML. Springer Verlag, 2003.
[9] Basin, D., Doser, J., and Lodderstedt, T. Model driven security: From UML

models to access control infrastructures. ACM Trans. Softw. Eng. Methodol.,
15(1):39–91, 2006. https://doi.org/10.1145/1125808.1125810

[10] Reznik, J., Ritter, T., Schreiner, R., and Lang, U. Model driven development
of security aspects. ENCTS, 163(2):65–79, 2007.
https://doi.org/10.1016/j.entcs.2006.10.016

[11] Lang, U. and Schreiner, R. Managing business compliance using model-
driven security management. In Securing Electronic Business Processes,
pages 1–11, 2008. https://doi.org/10.1007/978-3-8348-9283-6_24

[12] Bresciani, P., Mouratidis, H., and Zanone, N. Modelling security and trust
with secure tropos. Integrating Security and Software Engineering: Advances
and Future Visions, pages 160–189, 2007. https://doi.org/10.4018/978-1-
59904-147-6.ch008

[13] Van Lamsweerde, A. Elaborating security requirements by construction of
intentional anti-models. In ICSE’04: 26th Int. Conf. on Software Engineering,
pages 148–157. IEEE Computer Society, 2004.
https://doi.org/10.1109/ICSE.2004.1317437

[14] Yu, E., Liu, L., and Mylopoulos, J. A social ontology for integrating security
and software engineering. Integrating Security and Software Engineering:
Advances and Future Visions, pages 70–109, 2007.
https://doi.org/10.4018/9781605660608.ch048

[15] Haley, C., Laney, R., Moffett, J., and Nuseibeh, B. Security requirements
engineering: A framework for representation and analysis. IEEE Trans.

Software Eng., 34(1):133–153, 2008.
https://doi.org/10.1109/TSE.2007.70754

[16] C.Jahl, ITSEC. Information Technology Security Evaluation Criteria
(ITSEC) v1.2. Technical report, 1991.
https://doi.org/10.1109/ICSE.1991.130656

[17] Tcsec, D. Trusted computer system evaluation criteria. DoD 5200.28-STD,
83, 1985.

[18] Bishop, M. What is computer security? Security & Privacy, IEEE, 1(1):67–
69, 2003. https://doi.org/10.1109/MSECP.2003.1176998

[19] Stoneburner, G. Underlying technical models for information technology
security: recommendation of the National Institute of Standards and
Technology. US Department of Commerce, Computer Security Division,
Information Technology, National Institute of Standards and Technology,
2001.

[20] Lampson, B. W. A note on the confinement problem. Communications of the
ACM, 16(10):613–615, 1973. https://doi.org/10.1145/362375.362389

[21] Burr, W. E., Dodson, D. F. et Polk, W. T. Electronic authentication guideline:
Recommendations of the national institute of standards and technology. NIST
Special Publication, pages 800–63, 2013.
https://doi.org/10.6028/NIST.SP.800-63-2

[22] Lampson, B. W. Dynamic protection structures. In Proceedings of the
November 18-20, 1969, fall joint computer conference, pages 27–38. ACM,
1969. https://doi.org/10.1145/1478559.1478563

[23] Lampson, B. Protection. In Proc. 5th Princeton Conf. on Information Sciences
and Systems, pages 18–24. Princeton, 1971.
https://doi.org/10.1145/775265.775268

[24] Harrison, M. A., Ruzzo, W. L. et Ullman, J. D. Protection in operating
systems. Communications of the ACM, 19(8):461–471, 1976.
https://doi.org/10.1145/360303.360333

[25] Sandhu, R. S. The typed access matrix model. In Research in Security and
Privacy. Proceedings. 1992 IEEE Computer Society Symposium on, pages
122–136. IEEE, 1992. https://doi.org/10.1109/RISP.1992.213266

[26] Soshi, M., Maekawa, M. et Okamoto, E. The dynamictyped access matrix
model and decidability of the safety problem. IEICE transactions on
fundamentals of electronics, communications and computer sciences,
87(1):190–203, 2004. https://doi.org/10.1007/10722599_7

[27] Sandhu, R. S. The schematic protection model: its definition and analysis for
acyclic attenuating schemes. Journal of the ACM (JACM), 35(2):404–432,
1988. https://doi.org/10.1145/42282.42286

[28] Ferraiolo, D. et Kuhn, R. Role-based access control. In In 15th NIST-NCSC
National Computer Security Conference, (1992).
https://doi.org/10.1016/S0065-2458(08)60206-5

[29] Loscocco, P. A., Smalley, S. D., Muckelbauer, P. A., Taylor, R. C., Turner,
S. J. et Farrell, J. F. The inevitability of failure: The flawed assumption of
security in modern computing environments. In Proceedings of the 21st
National Information Systems Security Conference, volume 10, pages 303–
314, 1998.

[30] Anderson, J. P. Computer security threat monitoring and surveillance.
Rapport technique, Technical report, James P. Anderson Company, Fort
Washington, Pennsylvania, 1980.

[31] Bell, D. E. et LaPadula, L. J. Secure computer systems: Mathematical
foundations. Rapport technique, DTIC Document, 1973.

[32] Biba, K. J. Integrity considerations for secure computer systems. Rapport
technique, DTIC Document, 1977.

[33] Boebert, W. E. et Kain, R. Y. A practical alternative to hierarchical integrity
policies. NIST SPECIAL PUBLICATION SP, pages A–10, 1989.

[34] Sandhu, R. S., Coyne, E. J., Feinstein, H. L. et Youman, C. E. Role-based
access control models. Computer, (2):38–47, 1996.
https://doi.org/10.1109/2.485845

[35] Sandhu, R., Ferraiolo, D. et Kuhn, R. The nist model for role-based access
control: towards a unified standard. In ACM workshop on Role-based access
control, volume 2000. https://doi.org/10.1145/344287.344301

[36] Standard, R. Incits 359-2004. ANSI INCITS, pages 359–2004, 2004.
[37] Kalam, A. A. E., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,

Y., Miege, A., Saurel, C. et Trouessin, G. Organization based access control.
In Policies for Distributed Systems and Networks, 2003. Proceedings.
POLICY 2003. IEEE 4th International Workshop on, pages 120–131. IEEE,
2003. https://doi.org/10.1109/POLICY.2003.1206966

[38] Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R. et
Scarfone, K. Guide to attribute based access control (abac) definition and
considerations. NIST Special Publication, 800:162, 2014.
https://doi.org/10.6028/NIST.SP.800-162

[39] Jin, X., Krishnan, R. et Sandhu, R. S. A unified attributebased access control
model covering dac, mac and rbac. DBSec, 12:41–55, 2012.
https://doi.org/10.1007/978-3-642-31540-4_4

[40] Moses, T. et al. Extensible access control markup language (xacml) version
2.0. Oasis Standard, 200502, 2005.

[41] OASIS. OASIS. https://www.oasis-open.org/. 2015.

http://www.astesj.com/
https://doi.org/10.1109/ICSE.1991.130656
https://doi.org/10.1109/MSECP.2003.1176998
https://doi.org/10.1145/362375.362389
https://doi.org/10.6028/NIST.SP.800-63-2
https://doi.org/10.1145/1478559.1478563
https://doi.org/10.1145/775265.775268
https://doi.org/10.1145/360303.360333
https://doi.ieeecomputersociety.org/10.1109/RISP.1992.213266
https://doi.org/10.1145/42282.42286
https://doi.org/10.1016/S0065-2458(08)60206-5
https://doi.org/10.1109/2.485845
https://doi.org/10.1145/344287.344301
https://doi.org/10.1109/POLICY.2003.1206966
https://doi.org/10.6028/NIST.SP.800-162
https://www.oasis-open.org/

A. Erraissi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 409-418 (2019)

www.astesj.com 418

[42] Hu, V. C., Martin, E., Hwang, J. et Xie, T. Conformance checking of access
control policies specified in xacml. In Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual International, volume 2,
pages 275–280. IEEE, 2007. https://doi.org/10.1109/COMPSAC.2007.96

[43] Damianou, N., Dulay, N., Lupu, E. et Sloman, M. A language for specifying
security and management policies for distributed systems. London:
Department of Computing, Imperial College, Tech. Rep, 2000.

[44] Twidle, K., Dulay, N., Lupu, E. et Sloman, M. Ponder2: A policy system for
autonomous pervasive environments. In Autonomic and Autonomous
Systems, 2009. ICAS’09. Fifth International Conference on, pages 330–335.
IEEE, 2009. https://doi.org/10.1109/ICAS.2009.42

[45] Waltermire, D., Schmidt, C., Scarfone, K. et Ziring, N. Specification for the
extensible configuration checklist description format (xccdf) version 1.2
(draft). (2011b).

[46] Waltermire, D., Quinn, S., Scarfone, K. et Halbardier, A. The technical
specification for the Security Content Automation Protocol (SCAP). NIST
Special Publication, 800:126. (2011a).

[47] Barrère, M., Badonnel, R. et Festor, O. Collaborative remediation of
configuration vulnerabilities in autonomic networks and systems. In
Proceedings of the 8th International Conference on Network and Service
Management, pages 357–363. International Federation for Information
Processing. (2012a).

[48] OVAL Oval language. Http://oval.mitre.org/. 2014.
[49] Barrère, M., Badonnel, R. et Festor, O. Towards the assessment of distributed

vulnerabilities in autonomic networks and systems. In Network Operations
and Management Symposium (NOMS), 2012 IEEE, pages 335–342. IEEE.
(2012b). https://doi.org/10.1109/NOMS.2012.6211916

[50] Azraoui, M., Elkhiyaoui, K., Önen, M., Bernsmed, K., De Oliveira, A. S. et
Sendor, J. A-ppl : An accountability policy language. In Data Privacy
Management, Autonomous Spontaneous Security, and Security Assurance,
pages 319–326. Springer, 2015. https://doi.org/10.1007/978-3-319-17016-9

[51] A., Erraissi A., Belangour A. Capturing Hadoop Storage Big Data Layer
Meta-Concepts. In: Ezziyyani M. (eds) Advanced Intelligent Systems for
Sustainable Development (AI2SD’2018). AI2SD 2018. Advances in
Intelligent Systems and Computing, vol 915. Springer, Cham, 2019.
https://doi.org/10.1007/978-3-030-11928-7_37

[52] A. Erraissi and A. Belangour, "Meta-modeling of Zookeeper and MapReduce
processing," 2018 International Conference on Electronics, Control,
Optimization and Computer Science (ICECOCS), Kenitra, Morocco, pp. 1-5,
2018. https://doi.org/10.1109/ICECOCS.2018.8610630

[53] Rodriguez, A., Fern´andez-Medina, E., and Piattini, M. A bpmn extension for
the modeling of security requirements in business processes. IEICE
Transactions, 90-D(4):745–752, 2007. https://doi.org/10.1093/ietisy/e90-
d.4.745

[54] Mellado, D., Fernandez-Medina, E., and Piattini, M. A common criteria based
security requirements engineering process for the development of secure
information systems. Comput. Stand. Interfaces, 29(2):244–253, 2007.
https://doi.org/10.1016/j.csi.2006.04.002

[55] Samarati, P. and Capitani, S. D. Access control: Policies, models, and
mechanisms. In FOSAD, pages 137–196, 2000. https://doi.org/10.1007/3-
540-45608-2_3

[56] Ferraiolo, D. et Kuhn, R. Role-based access control. In In 15th NIST-NCSC
National Computer Security Conference, 1992.

[57] Loscocco, P. A., Smalley, S. D., Muckelbauer, P. A., Taylor, R. C., Turner,
S. J. et Farrell, J. F. (1998). The inevitability of failure: The flawed assumption
of security in modern computing environments. In Proceedings of the 21st
National Information Systems Security Conference, volume 10, pages 303–
314.

[58] A. Erraissi, B. Mouad and A. Belangour, "A Big Data visualization layer
meta-model proposition," 2019 8th International Conference on Modeling
Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, 2019,
pp. 1-5. doi: 10.1109/ICMSAO.2019.8880276

[59] M. Banane, A. Erraissi and A. Belangour, "SPARQL2Hive: An approach to
processing SPARQL queries on Hive based on meta-models," 2019 8th
International Conference on Modeling Simulation and Applied Optimization
(ICMSAO), Manama, Bahrain, 2019, pp. 1-5. doi:
10.1109/ICMSAO.2019.8880393

[60] Fatima Kalna, Allae Erraissi, Mouad Banane, Belangour “A Scalable
Business Intelligence Decision-Making System in The Era of Big Data”
International Journal of Innovative Technology and Exploring Engineering
2019. https://doi.org/10.35940/ijitee.L3251.1081219

http://www.astesj.com/
https://doi.org/10.1109/COMPSAC.2007.96
https://doi.org/10.1109/ICAS.2009.42
http://oval.mitre.org/
https://doi.org/10.1109/NOMS.2012.6211916
https://doi.org/10.1016/j.csi.2006.04.002

	3. Security Properties and Policies
	3.1. Security properties
	3.1.1. Confidentiality
	3.1.2. Integrity
	3.1.3. Availability
	3.1.4. Insurance
	3.1.5. Derived properties

	3.2. Security Policies
	3.2.1. Historical models
	3.2.2. Expression languages of security policies
	3.2.3. Expression language of insurance policies

	4. Meta-model for Security layer:
	5. Transformations
	6. Experiences and evaluation
	6.1. Configuration
	6.2. Experiences

	7. Discussion and Perspectives
	8. Conclusion
	References

