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 Owing to the recent development of AI technology, various studies on computer-aided 
diagnosis systems for CT image interpretation are being conducted. In particular, studies on 
the detection of lung cancer which is leading the death rate are being conducted in image 
processing and artificial intelligence fields. In this study, to improve the anatomical 
interpretation ability of CT images, the lung, soft tissue, and bone were set as regions of 
interest and configured in each channel. The purpose of this study is to select a detector with 
optimal performance by improving the quality of CT images to detect lung cancer tumors. 
Considering the dataset construction phase, pixel arrays with Hounsfield units applied to 
the regions of interest (lung, soft tissue, and bone region) were configured as three-
channeled, and a histogram processing the technique was applied to create a dataset with 
an enhanced contrast. Regarding the deep learning phase, the one-stage detector 
(RetinaNet) performs deep learning on the dataset created in the previous phase, and the 
detector with the best performance is used in the CAD system. In the evaluation stage, the 
original dataset without any processing was used as the reference dataset, and a two-stage 
detector (Faster R-CNN) was used as the reference detector. Because of the performance 
evaluation of the developed detector, a sensitivity, precision, and F1-score rates of 94.90%, 
96.70%, and 95.56%, respectively, were achieved. The experiment reveals that an image 
with improved anatomical interpretation ability improves the detection performance of deep 
learning and human vision. 
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1. Introduction 

Lung cancer is the leading cause of cancer-related deaths 
(18.0% of the total cancer deaths), followed by colorectal (9.4%), 
liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers 
[1]. Early diagnosis and treatment may save lives. Although 
computerized tomography (CT) scan imaging is the best imaging 
technique in the medical field, it is difficult for doctors to interpret 
and identify cancer using CT scan images [2]. In addition, because 
lung cancer detection can increase the detection time and error rate 
depending on the skill of the doctor, computer-aided diagnosis 
(CAD) studies to passively assist the detection are on image 
segmentation, denoising, and 3D image processing using image 
processing [3] and neural network optimization [4–6].  

To improve the anatomical interpretation ability of CT images, 
this study is designed to improve the cognitive ability of detectors 
by setting lung, soft tissue, and bone as the regions of interest and 
utilizing a dataset which is visually easy to distinguish between 
each region's features in deep learning. 

In the dataset construction phase, the dataset was constructed 
by preprocessing the Digital Imaging and Communications in 
Medicine (DICOM) files provided by the Lung-PET-CT-Dx 
dataset [7,8]. The region of interest to which Hounsfield Unit (HU) 
windowing is applied is composed of a fundamental three-channel 
dataset (3ch-ORI) to generate an image, and the characteristics of 
each region can be recognized in one image. Because this process 
can improve the cognitive ability to visually classify the regions of 
interest, it is relevant to feature extraction through anatomical 
analysis in the training process of a neural network, mimicking the 
human brain and lung cancer detection process. In addition, to 
enhance the contrast of the 3ch-ORI, a detector with optimal 
performance was selected by comparing the results of deep 
learning on a dataset (3ch-CLAHE) to that which the contrast-
limited adaptive histogram equalization (CLAHE) was applied. 
Considering the deep learning phase, deep learning was performed 
using reference datasets and a reference detector to determine the 
optimal train customization settings.  

The Lung-PET-CT-Dx dataset used in this study provides 
version 1 (release date: June 1, 2020) to version 5 datasets (release 
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date: December 22, 2020); nonetheless, it has been released 
recently and the related studies [9,10] are insufficient. Therefore, 
in the evaluation stage, the raw original dataset (1ch-ORI) was 
used as a reference for comparison. Regarding performance 
evaluation, the intersection of union (IoU) was calculated to 
achieve high-level results with a sensitivity, precision, and F1-
score rates of 94.90%, 96.70%, and 95.56%, respectively.  

2. Related studies 

This chapter describes the existing studies that have used 
methods such as structural separation, noise removal, and three-
dimensional (3D) technology for visualization of CT images using 
the Lung Image Database Consortium and Image Database 
Resource Initiative dataset (LIDC-IDRI). A novel objective 
evaluation framework for nodule detection algorithms using the 
largest publicly available LIDC-IDRI dataset or subset lung nodule 
analysis 2016 (LUNA16) is a challenge [11]. This set of additional 
nodules for further development of the IDRI-IDRI dataset that was 
initiated by the National Cancer Institute (NCI) [12,13] have been 
released.  

In [14], they proposed a novel pulmonary nodule detection 
CAD system and developed to detect nodule candidates using 
improved Faster R-CNN. They have archived sensitivity of 94.6%. 
In [15], the noise present in the CT image was removed by 
applying the weighted mean histogram equalization (WMHE) 
method, and the quality of the image was improved using the 
improved profit clustering technique. Consequently, minimum 
classification errors of 0.038% and 98.42% accuracies were 
obtained. The method [16] using the modified gravity search 
algorithm (MGSA) for the classification and identification of lung 
cancer in CT images achieved a sensitivity, specificity, and 
accuracy of 96.2%, 94.2%, and 94.56%, respectively, owing to the 
application of the optimal deep neural network (ODNN). 
Furthermore, a threshold-based technique for separating the 
nodules of lung CT images from other structures (e.g., bronchioles 
and blood vessels) was proposed [17], and from the evaluation, a 
sensitivity of 93.75% was achieved. The 3D region segmentation 
of the nodule in each lung CT image achieved 83.98% [18] 
because of image reconstruction using the sparse field method. In 
many other studies, many methods for detection and classification 
using image processing and deep learning have been proposed, and 
their performance is quite high. These studies aimed at assisting 
medical staff with visualization based on image processing. 
Therefore, various methods need to be continuously studied for 
CAD systems, where even a 0.01% performance improvement is 
significant. In this study, the improved CT image is used for deep 
learning to improve the anatomical analysis ability of each region 
of interest in the CT image. The dataset aimed at enhancing the 
quality of the CT image in the pre-processing of the DICOM file 
without using a complicated image processing method to achieve 
a high level of result. If the improved CT image is applied to the 
method proposed in previous studies, a better performance is 
expected. 

3. Materials and Methods 

3.1. Dataset construction phase 

The preprocessing step of this study includes obtaining a 
purified CT image through structural analysis of the Lung-PET-

CT-Dx dataset, pixel range normalization of the DICOM file, and 
HU windowing for each region of interest. The Lung-PET-CT-Dx 
dataset consists of CT and PET-CT DICOM images of lung cancer 
subjects with XML annotation files that indicate tumor location 
with bounding boxes.  The subjects were grouped according to 
tissue histopathological diagnosis. Patients with names/IDs 
containing letter 'A' were diagnosed with Adenocarcinoma, 'B' 
corresponded to Small Cell Carcinoma, 'E' indicated Large Cell 
Carcinoma, and 'G' corresponded to Squamous Cell Carcinoma 
[19].  

Object detection performs classification and localization to 
obtain detection and classification results for each class. However, 
because this study focuses on the performance of detecting lung 
cancer, one class was evaluated using only the adenocarcinoma 
class, without using a dataset with a different number for each 
class. Therefore, the results of the classification are meaningless, 
and only the results of localization are used to evaluate the 
performance. The adenocarcinoma class consists of sub-
directories divided for each slice in 265 main directories, and 21 
main directories that do not have annotation files or do not match 
the annotation xml information are excluded from the dataset 
configuration. In addition, the DICOM files existing in each 
directory were merged into one directory for easy management and 
quick data access. The annotation files matching 1:1 with the 
DICOM file were stored in one common csv file, and after xml 
parsing, they were stored in the DICOM file. Unlike greyscale 
images which are in a range of 0 to 255, DICOM files are 
converted to 12-bit pixel arrays, and DICOM files are composed 
of HU [20] (a unit that expresses the degree of attenuation of X-
rays when penetrating the body). Therefore, as shown in Figure 1, 
the DICOM file can be viewed more clearly by normalization and 
HU windowing.  

  

Figure 1: Process steps of the DICOM file 

First, the 12-bit (4096 level) pixel array extracted from the 
DICOM image was normalized according to the unit defined in the 
HU. Depending on the CT equipment, the pixel range was stored 
as 0 to 4095 or -2048 to 2047. Using Equation (1), linear 
transformation was applied to the ‘Rescale slope’ and ‘Rescale 
intercept’ fields to remap the image pixel: 

 Out pixel = rescale slope * input pixel + rescale intercept (1) 

For example, as shown in the figure, in the 0-to-4095-pixel 
range, the rescale intercept has a value of − -2048, and the rescale 
slope has a value of 1; therefore Equation (1) is used to convert it 
to a value in the range of − -2048 to 2047. In contrast, the rescale 
intercept of the DICOM file stored in the pixel range of -2048 to 
2047 is 0; hence, there is no change even if the above formula is 
used. Therefore, normalization is applied to the range shown in 
Figure 2, and all DICOM files are placed within the same pixel 
range. Considering the reference, dataset, the rescale slope and 
rescale intercept attributes do not exist in the properties of the 
DICOM file, they are excluded from the dataset configuration. 

http://www.astesj.com/
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Figure 2: Brightness settings for DICOM image 

Subsequently, the normalized pixel array performs the HU 
windowing process by applying the window width and center 
properties to each region of interest as shown in Table 1. 

Table 1: Window setting using the Hounsfield Unit 

Window Lung Soft tissue Bone 
Window Center -700 40 500 
Window Width 1400 350 2000 
 

The overall flow of the data construction phase that processes 
the DICOM file and composes each dataset is shown in Figure 3. 

 

 
Figure 3: Flow of the dataset construction phase 

In dataset composition step, a method of composing an image 
in three-channel and generating images with enhanced contrast by 
applying CLAHE is described. The CLAHE is an algorithm that 
uniformly divides an image and distributes pixels of a specific 
height to each area. After setting the clip limit (the threshold), the 
height of the histogram was limited.  

Table 2 lists the composition and use of the dataset employed. 
The 1ch-ORI is a dataset consisting of images converted directly 
into a PNG format from the original DICOM image without any 
processing and is used as a reference in the experiment. On the 
contrary, the 3ch-HE, which applies histogram equalization (HE) 
equally to all pixels, is used as a reference dataset for comparison 
with the 3ch-CLAHE. In addition, the 3ch-ORI is a fundamental 
three-channel dataset before the application of equalization. 

Table 2: Datasets used for the experiment 

Name Configuration Usage 
1ch-ORI Raw dataset Reference dataset 

3ch-ORI 3-channel dataset before 
equalization 

Fundamental dataset of 3-
channel 

3ch-CLAHE 3-channel dataset after 
CALHE Proposed dataset 

3ch-HE 3-channel dataset after HE Reference dataset for 
equalization 

 

Contrast enhancement using image processing can acquire 
more detailed information by improving visual recognition ability; 
thereby, increasing the analysis ability of CT images in the process 
of human visual and feature recognitions in deep learning. Because 
methods such as linear combination [21] used for contrast 
enhancement use multiple images for one-channel, it may affect 
the contrast range when observing the HU-applied window. 
Contrast enhancement is a specific characteristic enhancement of 
image enhancement processing. Histogram equalization is a 
popular method for image contrast enhancement [22]. Therefore, 
in this study, the histogram processing technique is applied to the 
3ch-ORI, in which the window of interest is set as the data for each 
channel. However, histogram equalization is not the best method 
for contrast enhancement because the mean brightness of the 
output image is significantly different from that of the input image 
[23]. Brightness is used as an important feature along with shape 
information when configuring channels, and it is difficult to 
distinguish between regions because CT images that are not pre-
processed may be dark and noise may exist as shown in Figure 4-
(A). The histogram can be divided into left, right, and midtones. In 
Figure 4-(B), where equalization is not applied, the highlighted 
area is empty; hence, it is difficult to distinguish each area as dark 
as shown in Figure 4-(A). 

  

(a) 3ch-ORI image b) Histogram 

Figure 4: Exemplary image and histogram of 3ch-ORI 

If HE is applied to all pixels at once, equalization is performed 
indiscriminately. This may cause noise in extremely dark or bright 
areas or loss of necessary information. Considering Figure 5-(B), 
where histogram equalization is applied, the number of pixels in 
the highlighted area is increased (yellow dotted arrows), and it can 
be seen that Figure 5-(A) affects the increase in pixel intensity and 
brightness. However, the midtone area decreased, resulting in the 
spread of shadow and highlight directions. Because it is more 
difficult to classify each area owing to the addition or loss of 
information in a specific area, the CLAHE method is used in this 
study to prevent noise overamplification. 

 
 

(a) 3ch-HE image (b) Histogram 

Figure 5: Example image and histogram of 3ch-HE 
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In Figure 6, to which CLAHE is applied, it can be observed 
that the level of pixel areas is spread around the midtone area 
(yellow dotted arrows), the number of pixels is evenly distributed, 
and the average value is decreased (orange dotted arrows), 
enhancing the contrast. 

 
 

(a) 3ch-CLAHE image (b) Histogram 
Figure 6: Exemplary image and histogram of the 3ch-CLAHE 

In Figure 4, the contrast is too low to distinguish each region 
using human eyes; therefore, Figures 5 and 6 with enhanced 
contrast are used for the experiment. Considering a human point of 
view, the characteristics of each area in Figure 6 can be 
distinguished better than in Figure 5; nevertheless, an accurate 
judgment is made by comparing the deep learning results. 
Equalization of the histogram using brightness rather than the color 
of the image was applied after configuration as three three-
channels because if three three-channels were configured by 
applying them to each gray image, different contrasts could be 
applied to each channel. Therefore, because it is different from the 
intended image when combined with the color model, three-
channel, unintended results of anatomical organs, structures, or 
artifacts in the human body can have a significant impact on CT 
image analysis. 

Figure 7:  Dataset construction flow 

The configuration flow of the dataset is shown in Figure7. The 
three types of areas of interest (number 2 in the orange box), lung, 
soft tissue, and bone window, appear clearly after HU windowing. 
However, it is difficult to anatomically distinguish each area owing 
to the addition or loss of the specific areas. 

After applying each method in the 12-bit pixel array, each 
dataset was converted to an 8-bit PNG format and stored on a disk. 
A total of 13,233 images were divided into train- and test-sets in a 
ratio of 8:2 (10,586:2,647). In addition, because data bias in each 
dataset can affect the evaluation results of the deep learning model, 
five-fold cross-validation was performed as shown in Figure 8 to 
select the optimal fold to be used in the experiment. 

 

Figure 8:  Dataset composition of the cross-validation 

3.2. Deep Learning phase 
In general, object detection is categorized into one- and two-

stage detectors as shown in Table 3. One-stage detectors perform 
classification and localization concurrently. Therefore, they are 
fast; however, they are low in accuracy. The two-stage detectors 
use the Legion Proposal Network (RPN) to select candidate areas 
where objects are expected to be detected, making them slow; 
nonetheless, they are high in accuracy. The most recent one-stage 
detectors exceed the accuracy of two-stage detectors; hence, 
classification according to accuracy is less meaningful.  

In this study, we compared RetinaNet [24] using two-
dimensional (2D) image-based anchor-based detectors and Faster 
R-CNN [25–27]  as a reference, modified and utilized Faster R-
CNN [28,29] and RetinaNet [30] cloned from the GitHub 
repository to create a model. 

Table 3: Comparison of one- and two-stage detectors 

Detector Anchor 
based Detector (Deep learning algorithm) 

one-stage 
O YOLO-v1, v2, v3 (2016), SSD (2016) – RetinaNet 

(2017) 

X CornerNet (2018) – ExtremeNet (2019) – CenterNet 
(2019) 

two-stage O R-CNN (2013) – Fast R-CNN (2015) – Faster R-
CNN (2015) – Mask RCNN (2017) 

In deep learning, train customization is an important 
experimental step for selecting the optimal dataset configuration 
and detector. In this study, ResNet-{50, 101, 152} pretrained with 
ImageNet [31] was used for transfer learning, and random flip and 
data shuffle were applied for data augmentation. Moreover, for 
stable optimization, Adam [32] was used as the optimizer, and the 
learning rate was set to 1e-5. Considering the reference, Faster R-
CNN, which is divided into two stages of RPN and classifier, sets 
the customization of both elements similarly. Furthermore, the 
epoch size was set to 500, and the batch size was set to four or 
eight. Experiments were performed in the environment of Python 
3.7, Cuda-10, and a GPU on a 64bit Ubuntu18.04LTS operating 
system. 

After generating a model using the training set and evaluating 
it using the test set, the overall flow of the deep learning phase (the 
process of determining the final performance) is shown in Figure 
9. 

http://www.astesj.com/
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Figure 9:  Flows of the deep learning phase 

Object detection performs both classification, which classifies 
objects in the bounding box, and localization, which is a regression 
process for finding the bounding box. However, because the 
classification performance of this study is recognized as only one 
class using a single class, it is not reflected in the evaluation, and 
the IoU of the bounding box detected by localization and the 
ground truth (GT) box, which is the annotation information, is 
calculated. Considering the reference dataset, when multiple 
bounding boxes are detected in the test-set image, the bounding 
box with the highest IoU is selected as the IoU of the image. In 
many cases, natural scene images can be judged by predicting low-
level detection results of objects such as people or automobiles 
with the human eye. However, lung cancer tumors have a non-
standard shape; thereby, requiring a higher performance. In this 
study, to increase the reliability of the detection performance as 
shown in Table 4, the decision thresholds for each image are set to 
be narrower than those of the natural scene image for final 
judgment. However, the narrower the threshold setting range is, 
the higher the reliability and the lower the statistical evaluation 
results. Because the achievement result can be relatively 
decreased, it must be carefully set according to the field of use 

Table 4: Setting of the decision threshold 

Decision Natural scene Proposed 
Normal >=0.50 >=0.60 
Good >=0.70 >=0.75 

Excellent >=0.90 >=0.90 

Table 5: Confusion matrix 

Name Threshold Description 
TP >= 0.6 Lung cancer exists, detected correctly 
TN No use No lung cancer exists, identified correctly 
FP < 0.6 No lung cancer exists, detected incorrectly 
FN - Lung cancer exists, missed 

The evaluation of models using the test-set images uses the 
outcomes of four kinds of statistical confusion matrices as shown 
in Table 5. True Positive (TP) is determined to correctly detect 
lung cancer tumors when the IoU is 0.6 or higher, and false positive 
(FP) is determined to be incorrectly detected when the IoU value 
of the detected bounding box is 0.6 or less. Considering the false 
negatives (FN), because there is no detected bounding box, the IoU 
for the GT box cannot be calculated; therefore, a value excluding 
TP from the total dataset is used. Regarding the reference dataset, 
negative (TN) is used when lung cancer tumors do not exist and is 
not used in the field of object detection for a dataset consisting of 

one class in which the GT box exists in all the test-set images. The 
total test-set image length and number of GT boxes were the same. 

 

The experimental results were evaluated using statistical 
performance measurement methods such as sensitivity, precision, 
and F1-score. Sensitivity represents the predicted positive among 
all positives and is calculated using Equation 2: 

 Sensitivity (or Recall) = TP / (TP + FN) (2) 

Precision is the proportion of true positives among the 
predicted positives, calculated using Equation 3: 

 Precision = TP / (TP + FP) (3) 

Because the indicators of sensitivity and precision are inversely 
proportional, it cannot be concluded that a high value of one of 
them has good performance. Finally, the F1-score is a harmonic 
mean that considers both sensitivity and precision. The optimal 
value is one, and the higher the value is, the better the performance, 
and it is calculated using Equation 4: 

 F1-score = 2 * (Precision * Recall) / (Precision + Recall)  (4) 

3.3. Results and Discussion 

In this chapter, experiments are conducted using each 
evaluation element, as shown in Figure 10, and the results are 
discussed.  

 

Figure 10:  Evaluation factors and flows. 

Train customization selection (blue dotted box) through cross-
validation experiments, ResNet-depth, and batch size. The data 
selection and detector selection steps describe the process of 
selecting a detector with the best performance (green dotted box) 
through evaluation and using it as a CAD system. First, the 
experimental results of train customization according to the 
conditions of cross validation, ResNet-depth, and batch size for the 
selection of a detector to be used in the CAD system are shown in 
Table 6. When the Fold-Num was set to one and the batch size was 
set to eight, the highest result was a sensitivity of 94.9% and 
precision of 96.7% in ResNet-50, and the F1-score result was the 
highest in ResNet-101 with 95.8%. Considering the reference 
dataset, the result of the F1-score in ResNet-50 was 95.6%, being 
the second highest result. 
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Table 6: Comparison of ResNet-50 that changed the conditions of customization 
and ResNet-{101, 152} 

Fold Depth Batch 
Size 

Sensitivity (%) Precision (%) F1-score (%) 
Norm

al Good Excell
ent 

Norm
al Good Excell

ent 
Norm

al Good Excell
ent 

1 50 8 94.9 72.3 14.5 96.7 73.9 14.8 95.6 73.1 14.6 
2 50 8 93.7 72.9 13.8 96.3 75.6 14.3 94.7 74.2 14.1 
3 50 8 93.8 70.3 13.4 96.4 73.1 13.8 94.8 71.5 13.6 
4 50 8 93.1 72.0 13.9 95.3 73.7 14.3 94.2 72.9 14.1 
5 50 8 93.0 72.4 13.9 96.0 74.8 14.4 94.4 73.6 14.1 
1 101 8 94.8 72.5 13.7 96.7 74.0 14.0 95.8 73.2 13.8 
1 152 8 94.6 72.8 14.3 96.5 74.6 14.7 95.4 73.7 14.5 
1 50 4 94.4 72.5 14.8 96.6 74.7 15.3 95.6 73.6 15.0 
1 101 4 94.5 72.6 14.9 96.6 74.5 15.3 95.2 73.5 15.1 
1 152 4 94.6 72.8 14.3 96.5 74.6 14.7 95.4 73.7 14.5 

Considering the experimental results, Fold-1, ResNet-50, and 
batch size: eight (which show the best overall performance), were 
selected the customization setting values of the detector. Since the 
performance was the best when using the Fold-1 dataset trained 
using the ResNet-50 neural network, the experiments using the 
ResNet-101 and ResNet-152 neural networks were compared with 
the ResNet-50 using only the Fold-1 dataset. 

Table 7 shows a comparison between the 3ch-CLAHE and 
reference datasets using customization setting values in ResNet-
50. First, comparing the results with 1ch-ORI (an unprocessed CT 
image) showed a performance improvement in the sensitivity 
(+0.74%), precision (+0.70%), and F1-score (+0.44%). 
Additionally, comparing the result with 3ch-HE, which applied HE 
to all pixels, showed a performance improvement in the sensitivity 
(+0.94%), precision (+0.33%), and F1-score (+0.60%). Therefore, 
it was found that the dataset in which each ROI was composed of 
three three-channels and CLAHE applied for contrast 
enhancement had a significant effect on the performance 
improvement of deep learning. 

Table 7: Comparison of proposed dataset with reference datasets 

Dataset Sensitivity (%) Precision (%) F1-score (%) 
3ch-CLAHE 94.90 96.70 95.56 

1ch-ORI 94.26 96.00 95.12 
3ch-HE 93.96 96.37 94.96 

 

   
(a) Sensitivity (b) Precision (c) F1-score 

Figure 11:  Comparison of the proposed dataset (3ch-CLAHE) with the reference 
dataset (1ch-ORI) 

The dataset with the best performance can be obtained from the 
experimental results in the table; however, visual performance 
analysis using a graph as shown in Figure 11 can be used as a tool 
for selecting an appropriate model and determining when to stop 
learning at the highest performance. The maximum measurement 
value (y-axis) of each epoch (x-axis) for the comparison datasets 
1ch-ORI and 3ch-CLAHE appeared before approximately 200 
epochs; nonetheless, stable learning results appeared after 

approximately 250 epochs. Two hundred and fifty epochs indicate 
that the learning efficiency is the best. 

Figure 12 shows only a few cases among the actual detection 
results using the test set of 1ch-ORI and 3ch-CLAHE. Using the 
coordinate values of the GT box (blue box) and bounding box 
(green box) shown in each image, IoU was calculated and used for 
the evaluation. 

 

  

 

 
(a) Lung cancer detected sample images of 1ch-ORI 

 

  

 

 
(b) Lung cancer detected sample images of 3ch-CLAHE 

Figure 12:  Examples of detected result images 

  

(a) Train loss  (b) F1 score. 

Figure 13:  Comparison of RetinaNet with the Faster R-CNN 

Finally, the performance was compared to Faster R-CNN, 
which was used as a reference detector to select the final detector. 
As shown in Figure 13-(A), which compares the average train loss, 
RetinaNet shows a result of 0.03856. This a big difference from 
the Faster R-CNN, which shows a result of 0.5294, and the 
difference in performance and stability during the training process 
is reflected in the evaluation result. As shown in Figure 13-(B), 
RetinaNet (red line) shows a high F1-score of 0.9 or higher. 
However, the train loss of Faster R-CNN (blue line) is unstable, 
and the F1-score shows a result between 0.7 and 0.8 in Figure 13-
(B). 

4. Conclusion 

In this study, to detect lung cancer quickly and accurately, we 
attempted to improve the detection performance by improving the 
image quality. Novel lung cancer detection methods using image 
processing provide a high level of accuracy by applying noise 
removal from CT images, segmentation techniques, and methods 
using 3D images for deep learning. The segmentation technique, 

http://www.astesj.com/


Y. Park et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 4, 01-08 (2022) 

www.astesj.com     7 

which is mainly used to find a small nodule, has the advantage of 
concentrating on the area. Nonetheless, it also consumes a lot of 
application time and resources and has the disadvantage that the 
shape and boundary line may appear irregularly for each image. 
Because the 3D visualization method of CT images can represent 
the lungs more realistically, it consumes a lot of resources 
compared to the other methods although it is used to detect the 
shape of the lesion with more details. 

In this study, we propose a CLAHE-based three-channel 
dataset construction method that automatically detects lung cancer 
tumors. Although this method processes CT images in a relatively 
simple way compared to the novel lung cancer detection methods, 
high performance has been confirmed through several comparative 
experiments, and a better performance is expected when applied to 
the methods of other studies.  In addition, the customization of the 
deep learning process is as important as the configuration of the 
dataset, and the experimental results reveal that the CT image with 
improved human visual perception is important for the neural 
network that mimics the human brain. However, owing to the lack 
of reference studies, the study was conducted with the goal of 
improving the performance of the original dataset, and achieved a 
sensitivity, precision and F1-score rates of 94.90%, 96.70%, and 
95.56%. In the results of this study, the one-stage detector showed 
better performance in train stability and object detection rate than 
the two-stage detector. Since the images used in this study are 
medium or small size objects, different results may appear when 
big size objects are detected using a natural scene dataset, etc. 

In addition, although this study cannot be directly compared to 
studies using the popular public dataset, it serves as a prior study 
using a dataset that has insufficient comparative studies. 

5. Data Availability 

The CT scan images used to support the findings of this study 
have been collected from the Cancer Imaging Archive (TCIA) 
(link: 
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70
224216) 
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