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While Virtual reality is becoming more popular, 360-degree video transmission over the Internet
is challenging due to the video bandwidth. Viewport Adaptive Streaming (VAS) was proposed to
reduce the network capacity demand of 360-degree video by transmitting lower quality video
for the parts of the video that are not in the current viewport. Understanding how to forecast
future user viewing behavior is therefore a crucial VAS concern. This study presents a new
deep learning-based method for predicting the typical view for VAS systems. Our proposed
solution is termed Head Eye Movement oriented Viewport Estimation based on Deep Learning
(HEVEL). Our proposed model seeks to enhance the comprehension of visual attention dynamics
by combining information from two modalities. Through rigorous experimental evaluations, we
illustrate the efficacy of our approach versus existing models across a range of attention-based
tasks. Specifically, viewport prediction performance is proven to outperform four reference
methods in terms of precision, RMSE, and MAE.

1. Introduction

The proliferation of mobile head-mounted display (HMD) devices
has led to the widespread adoption of 360-degree video streaming
within the consumer video industry [1]. Since 360-degree videos
offer users immersive settings and improve the Quality of Expe-
rience (QoE) of both video-on-demand and live-video streaming,
they have seen a growing amount of public interest [2]. Compared
to standard videos, 360-degree videos provide a more engaging
viewing experience [3]. Therefore, VR streaming has begun to be
used for live broadcasts of events like sporting contests and breaking
news, giving viewers access to instantly immersive experiences [1].

In comparison to traditional flat videos, 360-degree videos ne-
cessitate significantly higher resolution and frame rates. For in-
stance, to deliver an authentic experience to consumers, 360-degree
videos are expected to have resolutions up to 24K and frame rates of
60fps [4, 5]. Consequently, streaming 360-degree videos demands
considerable network bandwidth.

In contrast to the approximate 25 Mb/s bandwidth requirement
for traditional 4K videos, streaming a 360-degree video requires
about 400 Mb/s to deliver a 4K resolution while offering a complete
360-degree viewing range [6]. However, traditional 360-degree

panoramic video streaming solutions are ineffective because they
download the complete picture, while the viewer only sees a small
portion of 360-degree video known as the viewport. This approach
can result in the wastage of over 80% of network bandwidth [7].

Cutting-edge 360-degree video streaming techniques aim at de-
creasing video streaming bandwidth while retaining a good user
experience. One of these is the Viewport Adaptive Streaming (VAS),
which is a technique used in 360-degree video streaming to dynami-
cally adjust the parameters based on the user’s viewport. Instead of
streaming the entire panoramic video, VAS delivers only the portion
of the content that is currently visible to the user, optimizing band-
width usage and improving streaming quality. The fundamental
concept involves delivering the viewport (i.e., the portion of the
video visible to a user) at a high bitrate (ensuring high quality),
while the remaining parts are provided at a lower bitrate (ensuring
lower quality) [8].

In Viewport Adaptive Streaming (VAS), these videos are seg-
mented into tiles, each assigned weights corresponding to the user’s
viewport, and then transmitted accordingly. We can reduce the
bandwidth of tiles that users overlook while maintaining the quality
of tiles that users pay attention to by allocating the weights among
the most likely tiles. However, as users view a 360-degree video,
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Figure 1: Head movements and eyes movements

their viewport positions frequently change. This dynamic nature
underscores the necessity of viewport prediction. Viewport predic-
tion refers to the process of forecasting where a user’s viewport
will be located in the near future. It is a fundamental component
of delivering immersive 360-degree video experiences. By intel-
ligently anticipating where the viewer’s attention will be focused,
streaming services can optimize resource usage, improve quality,
reduce latency, enhance interactivity, and ultimately provide a more
satisfying and immersive viewing experience.

Thus, a wrong viewport prediction will drastically lower the
quality of the VAS system due to wasted bandwidth on unnoticed ar-
eas. Therefore, viewport prediction is a crucial requirement for VAS,
which consequently requires a high level of precision in viewport
prediction [9].

Nonetheless, forecasting the user’s point of view with intensive
accuracy is challenging. Users can shift their viewpoints as they
rotate their heads in different directions. Additionally, the user’s
viewpoint may vary due to eye movements with or without moving
their heads. Therefore, eye movements should be an important com-
ponent to be considered. As Figure 1 illustrates, regarding the user’s
movements when watching 360 videos, while the recent methods
only take the head movement into account, while our research con-
siders both eye movements and head movements to determine the
viewport more accurately.

Regarding viewport prediction, recently machine learning and
deep learning-based solutions have been widely used for viewport
prediction applications to enhance user experience [10, 11, 12, 13].
Based on past behavior and other characteristics, these solutions
can learn and forecast the possibility that a user would pay attention
to a particular area of the screen. Therefore, deployment of a proper
Deep learning model that includes more actual behaviors of users
potentially provides a more accurate predictive ability.

In this paper, we propose an accurate viewport prediction for
360-degree video viewport adaptive streaming that is based on a
deep learning technique - LSTM and takes into account both the
head and eye movements of viewers. Our solution is proven to out-
perform some current models like RNN [14], GRU [15], AEVE [16],
and GLVP [9] in terms of Precision by 2.65%.

The remainder of this paper is structured as follows: The related
work is discussed in Section 2. The proposed viewport estimation
method is described in Section 3. The performance evaluation can
be found in Section 4. Finally a discussion of our findings and
pending issues is presented in 5.

2. Related work

Viewport adaptive streaming techniques have been proposed to ad-
dress the bandwidth limitations of 360-degree videos, as evidenced
by studies [5, 8, 17, 18, 19, 20]. These methods involve dividing the
video into tiles and encoding each tile in multiple quality versions.
The tiles within the user’s viewport are transmitted in high quality,
while the remaining tiles are delivered in lower quality [8]. This
approach reduces redundancy in transmission and allows for flexible
adaptation of tile quality based on the predicted viewport, taking
into account network capacity constraints [21]. In the realm of Ma-
chine learning, researchers in [22] have employed machine learning
techniques to anticipate future head movements, indirectly infer-
ring future viewport positions. By analyzing past head movement
data and leveraging statistical patterns observed in other viewers
of spherical videos, the author utilizes regression models, includ-
ing linear regression, to estimate the head orientation at each time
point during the video. Similarly, linear regression has been used to
predict motion-based fixation [13]. However, the authors in [23, 3]
have shown that linear regression may be less impressive compared
to alternative algorithms. In [23], algorithms such as average (Avg),
linear regression (LR), and weighted LR (WLR) are compared,
with the weighted LR yielding the best results. Furthermore, [3]
demonstrates the performance of three machine learning models,
including linear regression, Bayesian regression, and random forest,
with random forest achieving the best results. Moreover, researchers
in [7] proposed an advanced machine learning approach utilizing
3DCNN (3D-Convolutional Neural Networks) and LSTM-based
RNN (Long Short-Term Memory) to extract spatiotemporal features
from videos. This approach is proven to outperform other strategies
in terms of accuracy and prediction [7].

However, it is important to note that all of the above models
only consider the head movements to estimate the user’s viewport
positions, which could be a limitation since other factors, such as
eye movement, also contribute to the viewport and may result in
non-generalizable predictions. Thus, there is an overlooked poten-
tial for accuracy enhancement by incorporating both head and eye
movements to the viewport prediction task.

Therefore, in this article, we design a solution that uses a deep-
learning machine to forecast the viewport for the VAS system, using
Long-Short Term Memory (LSTM) cells in Figure 2. This deep
learning solution with LSTM can achieve the ideal balance between
accuracy and redundancy [9]. During the learning process, head and
eye movements are taken into account to increase the accuracy of
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the precognition of future viewports.
This deep learning solution with LSTM can achieve the ideal

balance between accuracy and redundancy [9]. During the learning
process, head and eye movements are taken into account to increase
the accuracy of the precognition of future viewports.

3. Proposed viewport estimation method - HEVEL

The proposed solution is named HEVEL as an acronym for Head
Eye Movement oriented Viewport Estimation based on Deep
Learning. Before the HEVEL design is described, we will for-
mulate the video streaming problem with the assumptions and con-
straints in Section 3.

3.1. Problem Formulation

On the one hand, we define several concepts below to address the
viewport prediction problem. Assume P(t0) is the position of the
viewport at time t0. A viewport’s center point can be located by
using the longitude and latitude values of the viewport [24, 25].
Figure 3 illustrates how spherical video captures a scene from every
angle. It is the primary form of content used in Virtual Reality, giv-
ing viewers an immersive experience. The viewport is the portion of
the video that a user can currently watch due to their field of vision.

On the other hand, predicting where the viewport P(t0 + m)
will be in time t0 in the future is the responsibility of the viewport
predictor. At the same time, the letter m is used to indicate the
forecast horizon. As shown in Figure 4, the predictor must offer a
prediction for the interval [t0 +m, t0 +m+ s], where s stands for the
segment duration because 360-video streaming is commonly done
on a segment/adaptation interval basis [26, 27].

3.2. Viewport prediction and selection framework

In our proposed HEVEL framework, we employ the LSTM model
because it can capture and model long-term dependencies within
input data. By maintaining an internal state capable of retaining
information from previous time steps, LSTM helps the HEVEL
framework effectively model and utilize historical information of
head and eyes movements, thereby enhancing its predictive or ana-
lytical capabilities.

Modeling these long-term dependencies is achieved through
gating mechanisms that selectively enable the network to hold or
discard information from past time steps [28]. In addition, HEVEL
also helps to save memory usage since it eliminates unnecessary po-
sitions by adapting to both head and eye movements. As a result, our
approach requires less memory while ensuring accurate viewport
predictions. Each of the n inputs in the Long Short-Term Memory
(LSTM) model corresponds to n video frames or images that have
been taken out of a video. {x1, x2, ...xn−1, xn} is a representation
of this sequence. Each input xi represents the visual information
present in the video sequence’s i-th frame. The LSTM analyzes this
series of inputs in time steps while taking into consideration their
temporal relationship.

The LSTM creates an output known as yt at each time step t.
This output is the anticipated viewport, which is the precise region
of interest within the video frame that a viewer is most likely to

pay attention to at that exact time step. The geographical posi-
tion and visual information that are thought to be most important
to the viewer’s attention at the given time instant are essentially
encapsulated by yt.

In LSTM, the cell represents the long-term memory component.
It is responsible for storing and updating information over time. The
cell maintains a state vector that carries information from previous
time steps and is passed along through the recurrent connections. In
contrast, the hidden state represents the output of the LSTM unit at
a given time step. It carries information relevant for making predic-
tions at the current time step stored in the cell. Moreover, in LSTM
network design, gates play an important role in regulating the flow
of information through the network. Its purpose is to determine how
much of the new information should be stored in the cell state. As
Figure 5 illustrates, ct−1, ht−1 are the cell state and hidden cell state
respectively at time t − 1. While ct, ht are the cell state and hidden
state at time t that will be used as input for the next cell. At the end,
ht represents output yt - the predicted viewport.

Next, Wiα, Wiβ, W f , Woα, Woβ are the recurrent weight matrices,
biα, biβ, b f , boα, boβ are the bias terms.

Additionally, we employ tanh as the tanh function and σ as the
logistic sigmoid function. The gates used in the cell are defined as
follows:

• Input gate - it, iαt, iβt: to decide which values should be
stored in the cell state.

• Forget gate - ft: to decide which information from the long-
term memory should be kept or discarded.

• Output gate - oαt, oβt, yt: to decide which data from the
current cell will be managed as output.

In more detail, the working mechanism of those gates can be
described as follows:

Input gate: The input gate helps regulating the process of de-
ciding what to forget and what new information to store in the
cell state. The input gate with data from the current input xt and
short-term memory from the last time step ht−1 to determine what
brand-new data should be kept. In this part, we have designed the
input interface in two layers:

• First layer: The sigmoid activation function is used in the
first layer to help an LSTM cell decide which information
from the input and previous cell state is important to retain or
forget. Because the Sigmoid Activation Function turns any
input into a number between 0 and 1, the output determines
what percentage of the Long-term Memory is remembered.
Output 0 indicates that part of the information is unimportant,
akin to forgetting that piece of information. In contrast, 1
suggests that the information will be retained. This is cru-
cial for managing the memory of past viewport positions and
deciding what new information to incorporate. Formula 1
encapsulates this process.

iαt = σ(Wiα ⊗ (ht−1, xt) + biα) (1)

• Second layer: The tanh activation function is used in the
second layer to regulate the output gate of LSTM cells. To
normalize the output values iβt obtained from equation (2)
in the LSTM architecture, we normalize the values from the
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Figure 2: The Proposed model compares the viewport sweep in the past H-seconds to predict the viewport sweep in the future F seconds.

Figure 3: The viewport of a user at a time
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Figure 4: Problem formulation of Viewport Prediction

Figure 5: LSTM model for viewport estimation

Table 1: Characteristics of the five experimental videos

Video Description
Turtle People are releasing baby turtles into the sea on the beach during the day
Bar Light, users moving, bartender at work
Ocean Under the ocean, people are going underwater to see whales.
Sofa People are sitting on sofas in the living room to talk
Po. Riverside Riverside, outdoor, during the day, with human activities
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range [-1, 1] to [0, 1] by the formula: nov = (otv + 1) / 2,
with otv represents the value obtained from the LSTM cell
within the range [-1, 1], and nov represents the corresponding
normalized value within the range [0, 1]. Layer 2 combines
the Short-term memory and the input to create a potential
long-term memory. Formula 2 shows the process.

iβt = tanh(Wiβ ⊗ (ht−1, xt) + biβ) (2)

Note that, placing the tanh activation function in Layer 1 might
disrupt the gating mechanism of the LSTM cell. The purpose of
using sigmoid in Layer 1 is to regulate the flow of information, de-
ciding what information to keep and discard. Tanh activation in this
context might not provide the necessary gating behavior required
for effective memory management.

Finally, we calculate it by multiplying the above two layers, and
obtain the input gate by Formula 3:

it = iαt ∗ iβt (3)

Forget gate: The forget gate ft (Formula 4) selects which data
from the long-term memory should be retained or erased. This is
calculated using the previously hidden state ht−1 and the current
input xt with the sigmoid function, similarly to the first input layer
iαt but with different weights.

ft = σ(W f ⊗ (ht−1, xt) + b f ) (4)

The forget gate ft is a scalar value between 0 and 1 used to
weigh the previous cell state when combined with the current input
to update the cell state. A value of 0 indicates the last cell state has
been completely forgotten. Whereas a value of 1 indicates that have
should be retained entirely. The LSTM cell can simulate long-term
dependencies and recall pertinent information over time thanks to
the forget gate’s assistance in selectively maintaining and forgetting
information from the input sequence.

Cell state: The cell state ct (Formula 5) is a new feature of
LSTM based on RNN to overcome the memory limitation of the old
algorithm. It is a ”memory” in an LSTM cell that stores information
from the input sequence over time. The update at each time step is
based on the input xt, forget ft, and the previous cell state ct−1. The
outcomes of the Input and Forget gates will be added pointwise to
create a new version of the long-term memory that will be sent to
the next cell.

ct = cc−1 ∗ ft + it (5)

Furthermore, the new long-term memory will be employed in
the output gate, which is the last gate.

Output gate: The following hidden state’s value is determined.
This state stores information from previous inputs. Two layers can
be described as follows:

• First layer: Once again, the current input and the hidden
state are passed into a sigmoid function to generate the last
filter oαt (Formula 6):

oαt = σ(Woα ⊗ (ht−1, xt) + boα) (6)

• Second layer: an activation tanh function is implemented on
the newly created long-term memory from the cell state in
Formula 7:

oβt = tanh(Woβ ⊗ ct + boβ) (7)

Finally, using Formula 6 and 7, new short-term memory is cal-
culated according to the formula below:

ht, yt = oαt ∗ oβt (8)

The new short-term memory refers to the hidden state ht, and
long-term memory ct will be moved to the next cell, where the pro-
cess will repeat. The outcome of each step will also derive from ht,
which we define as yt. The Pseudo code in Algorithm 1 summarizes
the entire process of estimating viewports.

4. Performance Evaluation

4.1. Experimental Settings

In our experiment, we employ five 360-degree videos with different
contexts, as shown in Table 1, and Figure 6. The videos depict a
variety of situations and environments. Using such a diverse set of
videos, we can assess the model’s ability to deal with diversified
situations. For example, video Turle possesses turtle movement that
may cause a user’s eyes and head to continuously move to track
this object location. While video Bar presents a complex scenario
with its varying lighting and conditions, human presence, and sound.
This intricate mix of factors may cause a user to focus at some
random spots from one time to another time. In video Ocean, space,
height, frequency, and direction of waves and marine life will affect
observations through water clarity and visibility. Video Sofa offers
a static setting, with only small movements and tends to be quiet
in sound. Video Po. Riverside Video shows vivid and exciting
portraits of the plant world, surrounding trees and birds, insects,
and other animals. Each video contains a corresponding head-eye
motion trace. Even while the head position is fixed, the eyes can still
move to different positions and change the viewport. The video’s
head-eye movement traces are obtained from the dataset in [29]
and illustrated in Figure 7. Each 60-second video is encoded and
projected using equirectangular projection with a 4K quality (3840
× 1920). The video is divided into 24 tiles, each with a resolution
of 480 × 480. In this context, ”pitch” refers to the user’s head-eye
position’s longitude, which ranges from -180 to 180 degrees. ”Yaw”
represents the latitude and has a range of -90 to 90 degrees.

On the other hand, we conduct the experiments using the same
five videos to facilitate an unbiased comparison of the performance
of HEVEL with the reference models.

4.2. Viewport prediction performance

The viewport prediction performance of HEVEL is compared
with the current reference models such as GLVP [9], RNN [14],
GRU [15], and AEVE [16] in terms of Precision, RMSE (Root
Mean Square Error), MAE (Mean Absolute Error).
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(a) Bar (b) Ocean

(c) Porto Riverside

(d) Sofa (e) Turtle

Figure 6: Experimental 360-Degree videos

Algorithm 1: Viewport Estimation
Input: ct−1, ht−1, xt

Output: ct, ht, yt

1 for t = 1 to N do
2 Calculate iαt = σ(Wiα ⊗ (ht−1, xt) + biα)
3 Calculate iβt = tanh(Wiβ ⊗ (ht−1, xt) + biβ)
4 Calculate it = iαt ⊙ iβt
5 Calculate ft = σ(W f ⊗ (ht−1, xt) + b f )
6 Calculate ct = ct−1 ⊙ ft + it
7 Calculate oαt = σ(Woα ⊗ (ht−1, xt) + boα)
8 Calculate oβt = tanh(Woβ ⊗ (ct) + boβ)
9 Calculate ht = oαt ⊙ oβt

10 Calculate yt = ht

11 end
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(a) Bar (b) Ocean

(c) Porto Riverside

(d) Sofa (e) Turtle

Figure 7: Head and eye movements of experimental videos over time

Precision: a fraction of correctly-predicted viewport positions
relative to all the viewport positions predicted.

Precision =
T P

T P + FP
(9)

Where:

• TP is the number of correctly predicted viewport positions.

• FP is the number of incorrectly predicted viewport positions.

In addition, to evaluate the precision of our prediction solution,
each VR video is divided into small cells as illustrated in Fig. 8.
Within Figure 8, you can observe two regions depicting the actual
and predicted regions evolving over time. When the expected and
actual regions overlap, as demonstrated in Figure 8a, the prediction
is classified as a TP (True Positive). If the predicted and actual
regions fail to overlap, the prediction is considered an FP (False
Positive), as shown in Fig. 8b. If the overlapped area of the actual

and estimated viewport exceeds a threshold of 50%, it is considered
a TP; otherwise, it is counted as an FP.

RMSE: the average magnitude of the errors between predicted
and observed viewport positions.

RMS E =

√∑N
t=1(Actt − Pret)2

N
(10)

MAE: the average absolute magnitude of the errors between
predicted and observed (true) viewport positions.

MAE =
1
N

n∑
i=1

|Actt − Pret | (11)

Where:

• Pret is the predicted viewport position for data point i

• Actt is the actual viewport position in the testing data set

• N is the number of data points.
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Figure 8: Calculation of TP and FP

Table 2: Accuracy (%) of HEVEL compared to the reference methods

Videos GRU RNN GLVP HEVEL
BAR 61.65 62.12 74.21 84.54

Ocean 60.52 71.30 73.21 85.86
Po. Riverside 88.65 87.23 90.11 91.62

Sofa 74.21 58.16 74.21 85.86
Turtle 72.57 71.62 74.21 75.58

Average 70.09 68.62 76.64 84.54

For the RMSE metric, as shown in Figure 9, the CDF curves for
HEVEL is the steepest curve among the curves for RNN, AEVE,
GRU,GLVP, this means that HEVEL generally exhibits smaller
RMSE values compared to those reference methods across a range
of data points. This suggests that HEVEL exhibits better prediction
performance than the reference methods.

For the MAE metric, as shown in Figure 10, the CDF for HEVEL
is also steeper than the curves for RNN, AEVE, GRU, and GLVP.
The results demonstrate that those reference methods generally have
larger MAE values compared to HEVEL across a range of data
points. This suggests that HEVEL is better than those reference
methods in terms of MAE.

The result is shown in Figure 11 in which HEVEL has the steep-
est CDF curve. It indicates that HEVEL consistently achieves higher
precision across various decision thresholds. Therefore, HEVEL is
proven to be more effective at correctly identifying correct viewport
positions and avoiding false viewport prediction compared to the
other reference methods.

As Table 2 shows, HEVEL improve accuracy in comparison
with to the reference methods by from 1.37% to 27.71%. It consis-
tently exhibits higher accuracy, with the lowest recorded accuracy in
the Turtle video being approximately 75.58%. In the Ocean video,
the proposed method surpasses GRU by 25.35%, RNN by 14.56%,
and GLVP by 12.65% in terms of accuracy.

Therefore, HEVEL is proven to be more effective at correctly
identifying correct viewport positions and avoiding false viewport
prediction compared to the other reference methods.

The findings indicated above can come from the facts that
LSTM, leveraging its capacity to grasp long-term relationships

in sequential data, effectively preserves and transmits information
across extended sequences. This makes it particularly adept for
tasks such as viewport prediction, which heavily relies on prolonged
dependencies, consequently enhancing overall performance. More-
over, LSTM allows it to selectively update and forget unnecessary
information, allowing the model to focus on relevant information
while ignoring noise input. This helps the LSTM process be more
effective.

LSTM’s gating mechanism and memory cell provide a more
stable and efficient training process than other models like GLVP,
GRU, RNN, and AEVE. This stability and efficiency ensure more re-
liable convergence and improved performance, even in challenging
scenarios like shaky videos.

Moreover, since HEVEL incorporates eye and head movements,
it gains a more holistic perspective on the user’s focus and intention.
This input understanding allows the model to make more accu-
rate prediction and adapt to various scenarios, leading to improved
performance.

In summary, our prediction model has been proved to guarantee
users to be consistently provided the most relevant and engaging
content at any given moment.

4.3. Training time evaluation

In general, for such a video application, once a viewport predic-
tion model has been built, we can use it for a long time. Because
the data pattern and user’s behavior of such an application do not
change rapidly over time. However, in some specific case, it might
be necessary to re-train the learning model regularly in real-time. In
that case is good to have more insight into the training time of the
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Figure 9: CDF of RMSE of HEVEL vs. the reference methods

Figure 10: CDF of MAE of HEVEL vs. the reference methods
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Figure 11: CDF of Precision of HEVEL vs. the reference methods

current prediction model solutions.
Figure 12 shows that the reference methods GRU, AEVE, GLVP,

and our proposed HEVEL take a training time of more or less than
0.1s. In summary, our approach addresses the dual concerns of
training efficiency and real-time responsiveness. The experiment’s
outcomes firmly position our proposed HEVEL method as a promis-
ing solution for practical applications on devices with inherent
resource constraints.

5. Conclusions, Discussion and Future work

In this research, we have delved into a specific focus on addressing
the challenging viewport prediction task. The proposed solution
has been proven to outperform the 4 reference methods in several
critical evaluation metrics, including Precision, RMSE, and MAE.
By accurately predicting the user’s viewport, VR video streaming
has taken one more step toward reducing the latency and improving
the quality of VR content delivery, ultimately enhancing user satis-
faction on a more immersive and enjoyable VR services in multiple
domains, including gaming, education, training.

For the future work, there are opportunities for further explo-
ration and refinement of our approach such as adapting our solution
to different VR hardware configurations. It would entail tailoring
our approach to work seamlessly with the various VR devices that
are currently available. This could include popular headsets like the
Oculus Rift, HTC Vive, or PlayStation VR, as well as emerging tech-
nologies like augmented reality (AR) glasses. Each hardware con-

figuration may have distinct technical specifications and interaction
mechanisms, necessitating adjustments to improve our solution’s
performance and usability. In addition, we need understanding and
modeling more user behaviors in VR environments to improve the
overall VR experience. Our approach could concentrate on specific
user behaviors, like locomotion and object manipulation. However,
many other aspects of user interaction and engagement in VR can
be investigated and integrated. This could entail researching and
incorporating interaction patterns such as more behaviors, commu-
nication cues, and collaborative actions to create more immersive
and realistic virtual worlds.

Furthermore, more research could be done to investigate user
preferences, comfort levels, and physiological responses in VR.
Understanding how users perceive and interact with virtual environ-
ments allows us to tailor our approach to better meet their needs
and preferences. This could include conducting user studies, gather-
ing feedback, and iteratively optimizing our solution based on the
findings.

Another space for exploration can be investigation on incre-
mental or online learning paradigm where the model is trained
continuously as new data becomes available, without needing to
retrain on the entire dataset.

The investigation can be extended to combining LSTM with
other deep learning model such as GRU in order to boost up the
training and processing data like VR services faster.

Last but not least, using information about the head and eyes
movement may pose some challenges in capturing long-term depen-
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Figure 12: Training time overview

dencies. That is, if there is a long period between when the person
looks at an object and then moves their head to look at a new loca-
tion. This creates a significant time delay between related events.
LSTM is designed to understand and remember long-term data pat-
terns through its LSTM gate mechanism, helping it retain important
information and forget unnecessary information. However, if the
delay between events is too large, LSTM may struggle to maintain
long-term dependencies and retain complete information. Thus, our
next work will involve around the question: how to preprocess the
input data to cope with the large delay between 2 events.
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