

www.astesj.com 72
https://dx.doi.org/10.25046/aj090307

Deploying Trusted and Immutable Predictive Models on a Public Blockchain Network

Brandon Wetzel, Haiping Xu

Computer and Information Science Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 25 March, 2024
Revised: 12 May, 2024
Accepted: 29 May, 2024
Online: 16 June, 2024

 Machine learning-based predictive models often face challenges, particularly biases and a
lack of trust in their predictions when deployed by individual agents. Establishing a robust
deployment methodology that supports validating the accuracy and fairness of these models
is a critical endeavor. In this paper, we introduce a novel approach to deploying predictive
models, such as pre-trained neural network models, in a public blockchain network using
smart contracts. Smart contracts are encoded in our approach as self-executing protocols
for storing various parameters of the predictive models. We develop efficient algorithms for
uploading and retrieving model parameters from smart contracts on a public blockchain,
thereby ensuring the trustworthiness and immutability of the stored models, making them
available for testing and validation by all peers within the network. In addition, users can
rate and comment on the models, which are permanently recorded in the blockchain. To
demonstrate the effectiveness of our approach, we present a case study focusing on storing
vehicle price prediction models and review comments. Our experimental results show that
deploying predictive models on a public blockchain network provides a proficient and
reliable way to ensure model security, immutability, and transparency.

Keywords:
Machine learning
Predictive model
Public blockchain
Smart contract
On-chain storage

1. Introduction

Tasks that once required intensive manual labor can now be
automated with the aid of artificial intelligence and machine
learning (AI/ML) models, guaranteeing efficient completion in
just minutes [1]. However, as AI/ML technologies revolutionize
every aspect of our lives, ensuring the validity and fairness of
these models becomes crucial. For example, in the field of
recruitment, many organizations are incorporating machine
learning methods into their hiring processes when dealing with
high volumes of job applications. To address bias concerns, New
York City implemented a groundbreaking law in July 2023 that
requires all automated employment decision tools (AEDTs) to
undergo bias audits prior to deployment, and the results of these
audits must be made available to the public [2]. While the new
regulations can help to ensure the trustworthiness of AI/ML
models, it is widely recognized that such an approach shifts the
responsibility for trust to a centralized regulatory body, which
itself cannot guarantee its trustworthiness. An improved solution
should allow users to validate the machine learning-based tools
on their own and expose every facet of the tools to the public. This
transparency would enable users to validate the functionality and
efficiency of AI/ML tools and the absence of bias, thus fostering
trust in these tools. This need for trust is not limited to AI/ML

tools but pervades various domains where intricate algorithms
may pose a challenge to human comprehension. Hence, there is a
vital necessity to develop a practical and trustworthy mechanism
for deploying immutable and publicly accessible AI/ML-based
tools, such as predictive models, that can be easily tested and
validated by users.

A blockchain network is a peer-to-peer, decentralized ledger
that eliminates the need to trust a centralized audit mechanism.
Blockchain was initially recognized for its key role in
cryptocurrency systems such as Bitcoin and Ethereum, securing
and decentralizing transaction ledgers [3], [4]. However, the use
of blockchain technology extends far beyond cryptocurrency
applications. Blockchain technology can be employed to ensure
the integrity and permanence of data in diverse industries,
signifying data that is verifiable and untamperable [5]-[7]. A
blockchain securely organizes data into linked blocks using
cryptographic techniques, ensuring a tamper-proof and immutable
record of transactions and smart contracts. The decentralized
design of the blockchain network, with its features of
immutability, security, and transparency, naturally addresses the
issue of public accountability for data stored in the blockchain
network. Therefore, if AI/ML-based predictive tools are deployed
on a public blockchain, users of the AI/ML systems no longer
need to rely on internal auditing for assurance. This paper uses
ML-based neural network predictive models as an example to
demonstrate how to deploy such models on a public blockchain

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Haiping Xu, University of Massachusetts Dartmouth,
Dartmouth, MA 02747, Email: hxu@umassd.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com

Special Issue on Computing, Engineering and Multidisciplinary Sciences

http://www.astesj.com/
https://dx.doi.org/10.25046/aj090307
mailto:hxu@umassd.edu
http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 73

for predicting vehicle prices, an area that is susceptible to biases
driven by company or dealer interests. Machine learning models
might inadvertently set prices too high or too low for specific
vehicle types in order to optimize profit. The main goal of this
paper is to provide a secure way of deploying machine learning
tools that support user validation of predictive models to ensure
that the models operate in the best interest of the user, rather than
serving corporate goals. To this end, the model should receive
vehicle parameters and generate price predictions, allowing users
to validate the predicted prices even if they do not have
specialized knowledge. In addition, users should be able to obtain
validation from other users, which could be supported by the
establishment of a comprehensive rating system.

In this paper, we present a novel approach to deploying
predictive models using smart contracts by storing the parameters
of the predictive models on a public blockchain. This method
allows a user to recreate the predictive models on a local computer
using the stored model parameters. The user can then validate a
version of the model by running certain test cases to ensure the
required accuracy and fairness of the model predictions. In
addition, we define a mutable meta-block (MB) attached to the
beginning of the blockchain to record indexing information of all
models deployed on the blockchain network. The MB can be used
to efficiently retrieve the predictive models and their review
comments, thereby significantly improving the performance of the
blockchain network system.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents the public blockchain
framework that supports the use of smart contracts to store
predictive models. It also describes the structural design of the
regular blocks for storing predictive models and review comments,
and the meta-block for efficiently retrieving models and the review
comments. Section 4 describes in detail the procedures for
deploying and retrieving predictive models and reviews. Section 5
presents a case study and the analysis results. Section 6 concludes
the paper and mentions future work.

2. Related Work

Blockchain is a secure means of storing immutable and
protected transactional data through a peer-to-peer decentralized
ledger system. Recent advances have extended the traditional
application of blockchain in cryptocurrencies to the storage of
medical records, including the use of InterPlanetary File System
(IPFS) in blockchain based healthcare secure storage solutions
[8]. In [9], the authors proposed a blockchain model for creating
a secure system for storing and sharing Electronic Health Records
(EHRs). Their strategy is to store large amounts of medical data
in the cloud, while the blockchain is dedicated to storing metadata
related to EHRs. In [10], the authors introduced a storage
framework integrating blockchain and IPFS for efficient
transaction storage within the blockchain. In their architecture, the
primary patient reports are stored in a decentralized off-chain
storage system using IPFS, and the blockchain exclusively stores
hash values of these reports. This approach effectively reduces the
overall block size within the blockchain. In [11], the authors
overcame the security concerns of pure cloud storage and
provided a robust and scalable solution that utilizes blockchain
technology to handle big data storage of healthcare multimedia

files. The approach introduces a hierarchical cloud-based
blockchain framework for storing large amounts of healthcare
data, resulting in significant efficiencies. Similarly, in [12] and
[13], blockchain is again used as a step towards digital healthcare
by storing medical images and EHRs directly in the blockchain
instead of storing their metadata. Their goal in storing healthcare
data via blockchain is to apply the security of blockchain to the
healthcare system, mitigating the threat of tampering and
increasing security. Blockchain technology has also been used in
other areas to store data that may be public but must be trusted to
be accurate, which is more similar to the intended application of
this paper. For example, in [14], the authors proposed a public
auditing mechanism for cloud storage systems using blockchain.
They demonstrated that the proposed scheme is secure against
type I/II/III/IV adversaries. In [15], the authors described a system
that utilizes blockchain technology for video surveillance storage
and sharing of videos that are encrypted but publicly accessible
with a decryption key. Their approach consists of encrypting and
storing camera-acquired video off-chain using distributed IPFS
and storing the associated metadata in the blockchain. In addition,
some other researchers proposed a secure method for sharing
sensitive financial data using blockchain [16]. Their methodology
involves recording access control rules, hash values, and storage
addresses of financial data in the blockchain, while storing the
actual financial data in a distributed database external to the
blockchain. While blockchain technology has been effective in
ensuring the immutability of stored data across various domains,
our approach differs from existing methods in that, in addition to
storing regular transactional data, we deploy ML-based predictive
models in the blockchain network that are publicly available for
validation and adoption by all users.

The challenge of bias and fairness in ML models has been a
prevalent issue that currently lacks a universally accepted
solution. A comprehensive survey on bias and fairness across
various ML domains identified many areas of possible bias that
can exist in AI/ML models [17]. ML models investigated in a
number of real-world commercial use cases have shown that data
integrity, learning parameters, and the lack of safeguards against
bias can have a significant impact on the fairness of a model. The
survey provides a taxonomy for determining the fairness of
models and suggests that this is a pervasive problem for which
researchers must find practical solutions. Furthermore, as noted in
[18], mitigating bias in datasets for supervised ML is a pressing
need for the emerging field of ML. Expanding on this idea, some
researchers used statistical methods to assess the significant
amount of bias in ML algorithms. For example, in [19], gender
bias in facial recognition algorithms was measured and found to
be prevalent, whereas in [20], the bias in the training data and its
effect on the predictive results were detected and analyzed. The
above approaches introduce methods for analyzing and assessing
the amount of bias in ML models, and generally describe an
approximation of the amount of bias in certain areas of ML.
However, each of these proposed solutions for fairness and bias
assessment requires trust in a centralized organization. In the
absence of trust, e.g., when the model organizer has a strong
incentive to manipulate the price of an object, a satisfactory
solution remains elusive. In contrast, our approach utilizes the
inherent security offered by blockchain technology for the storage
of ML models. By employing decentralized hosting of ML models

http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 74

within a blockchain network, each user can independently verify
the accuracy of the models deployed by different organizations.
This approach eliminates the need for users to worry about the
fairness and potential bias of the models, as they can perform
validation checks on each model individually.

The prevalence of substantial bias in ML models necessitates
the need for dedicated research to mitigate bias. While bias
mitigation relies on suitable bias assessment methods tailored to
each unique problem, distinct solutions are needed. In [21], the
authors introduced a novel approach to mitigating bias by visually
displaying the attributes of an ML model to indicate bias in an
intuitive manner. Subsequently, manual adjustments are required
to rectify these attributes by modifying the dataset. In [22], the
authors proposed a methodology for assessing fairness specific to
dynamic pricing methods, where the fairness constraints on price
prediction are assessed by a centralized entity. This provides a
valuable mechanism for measuring and enforcing the fairness of
model-based price prediction, even when the demand for the item
is unpredictable. In [23], the authors described how to mitigate
bias in neural network-based ML models trained on image data.
The authors showed three main categories of bias mitigation
methods, namely data-level techniques to balance the training
data, model-level approaches to modify the learning algorithm,
and adversarial approaches to identify biases in the data. Unlike
the above methods, our approach reduces bias by employing a
review system to ensure that users can easily find better-reviewed
ML models, which tend to be less biased. Our bias mitigation
strategy is centered on minimizing the bias directly encountered
by users. Furthermore, our approach is versatile and applicable to
a wide range of ML models, bypassing the reliance on statistical
rigor and instead emphasizing user satisfaction.

The fusion of blockchain and machine learning is an
emerging frontier, with ongoing research underscoring its
promising potential. In [24], the authors presented various
techniques concerning the preservation and processing of big data
necessary for ML models. While this decentralized machine
learning approach has advantages in terms of mitigating bias and
improving fairness, the proposed solution falls short in describing
the potentials for evaluating and validating the models, focusing
mainly on the data stored in the blockchain. In [25], the authors
described an ML-based approach where training gradients are
validated by a decentralized blockchain network. They proposed
a decentralized learning framework called LearningChain, where
organizations can collaborate on training models by computing
gradients together to update specific models. In [26], a similar
approach to [25] was used to compute the parameters of an on-
chain ML in a decentralized multi-threaded environment. Using
association rule mining as an example, the authors showed how
blockchain can be used to enable trusted machine learning. In
[27], the authors further advanced the idea of using blockchain in
the learning process by introducing explainable and traceable
algorithms that make the learning process meaningful and
trackable. Their study showed that smart contract-based training
and prediction techniques produced mean square errors similar to
scikit-learn-based prediction models. In [28], the authors analyzed
the design space regarding the integration of machine learning
into blockchain applications, a concept termed ML on chain. They
presented a taxonomy for ML on chain, categorizing existing and
prospective approaches based on design attributes and their

characteristics. While the above methods inherently offer the
fundamental security advantages associated with blockchain
technology, our approach is different because we only store the
model parameters on the blockchain, excluding the data used in
training, as all training is done off-chain. Note that storing training
data on a large public blockchain would be costly and impractical.
Thus, by focusing on storing only the essential components
needed to reconstruct ML models, our approach optimizes
deployment efficiency on a blockchain platform. Furthermore, we
allow users to review a model to verify its fairness. This enables
even non-technical users to make informed decisions about the
degree of bias present in the model. Table 1 summarizes the main
contributions and novelties of our approach by comparing it with
existing approaches in terms of five key features.

Table 1: Comparison with Existing Approaches

 Approach Trustless Fairness Scalability Security Performance

Bias Mitigation
Methods [21]-[23]

No Yes N/A No N/A

Conventional
Blockchain [25]-[28] Yes No No Yes No

Our Approach Yes Yes Yes Yes Yes

As shown in Table 1, a feature can be supported (Yes) or not
supported (No) by an approach, or not applicable (N/A) to an
approach. The features we consider include whether the method
is trustless, whether the fairness of the model can be verified,
whether the method is scalable and secure, and whether the
method supports improved performance in terms of efficiently
searching for stored predictive models. Methods that focus on bias
mitigation are typically centralized [21]-[23], so they do not
support trustless computing. Since the fairness constraints of
stored models are assessed by centralized entities, no security
mechanisms are provided to users. On the other hand, while
conventional blockchain approaches support trustless and secure
computing [25]-[28], they typically do not support bias mitigation
for stored models and are also not scalable due to on-chain
training of predictive models. Furthermore, since conventional
blockchains do not contain a meta-block, they do not support
efficient search for stored predictive models.

3. Deploying Predictive Models on a Public Blockchain

3.1. A Framework for a Public Blockchain with Smart Contracts

Each peer in a blockchain network may have a complete copy
of the blockchain with a number of blocks. Figure 1 shows a
framework for a public blockchain with smart contracts, as well
as the list of transactions and the list of smart contracts stored in
block B2. As shown in the figure, each block in the blockchain
consists of three main parts: a block header, a list of transactions,
and a list of smart contracts. The block header is defined as a 5-
tuple (BID, HPB, BTS, NTR, NSC), where BID is the block ID,
HPB is the hash value of the previous block, BTS is the timestamp
when the block was created, and NTR and NSC are the number of
transactions and the number of smart contracts contained within
the block, respectively. Transactions are used to record new
transactional information added to the blockchain, such as
associated data related to a predictive model and review data of
the model provided by users. Each transaction is defined as a 5-
tuple (TID, UID, TTS, DES, DAT), where TID is the ID of the
transaction, UID is the ID of the user who initiated the transaction,

http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 75

TTS is the timestamp when the transaction was created, DES is the
detailed description of the transaction, and DAT is any associated
data stored with the transaction.

Figure 1: A Framework for a Public Blockchain with Smart Contracts

Smart contracts are initially defined as self-executing code
stored in the blockchain and are often seen as the terms of an
agreement between two parties. These terms are encoded directly
into the smart contract, which is publicly accessible, allowing
both parties to fully agree to these terms. In this paper, we broaden
the concept of smart contracts to include methods for storing and
accessing immutable data on the blockchain. We define a smart
contract as a 3-tuple (SID, COD, INF), where SID is the identifier
of the smart contract, COD is the code of the smart contract, which
is usually stored as binary code, and INF is the interface of the
smart contract, which defines the methods that can be invoked.
The process of deploying a smart contract involves creating a
transaction T, where T.DES describes the smart contract to be
deployed, including the smart contract’s location in the block, and
T.DAT may include any associated data, e.g., a test dataset of a
predictive model that is encoded in the smart contract.

Running unverified code, such as smart contracts, on a user’s
local machine can pose potential security risks. To address this
issue, we can assign the responsibility of verifying the
trustworthiness of smart contracts on a blockchain to full-node
peers. Additionally, executing smart contracts on a virtual
machine, such as the Ethereum Virtual Machine (EVM), can help
minimize security vulnerabilities by restricting their interactions
within the virtual environment. This approach ensures a
deterministic execution of smart contracts, as the virtual machine
maintains full control over the execution environment.

3.2. Storing Predictive Models Using Smart Contracts

Smart contracts being used as storage for predictive models
provide a layer of abstraction that increases the efficiency for
users to access and verify predictive models stored on a
blockchain network. For example, a predictive model stored with
a smart contract can be efficiently extracted by invoking a
corresponding method defined in the smart contract. We call a
smart contract that stores a predictive model a Model Smart
Contract (MSC), which contains the serialized parameters of the
model and a set of methods that can be used to access and verify
the model. Every version of a model must have both a model ID

(MID) and a version ID (VID), where MID and VID refer to the
type of model and an instance of that model, respectively. For
example, when MID refers to a set of predictive models used to
forecast a company’s stock price, each model version refers to a
specific prediction model. Models sharing the same MID can be
published by the same publisher at various times or by different
publishers, but it is essential for each model to have a unique VID.

In our approach, predictive models are trained off-chain and
only trained models are stored on-chain. Each peer can extract and
recreate an exact copy of the trained model on a local machine by
invoking a smart contract method defined in the corresponding
MSC, which then allows the user to validate and execute the
model without having to trust a centralized party. A smart contract
containing a predictive model requires an associated transaction
to be stored in the same block, documenting its deployment,
location, and related data. The review comments of a model are
also recorded in transactions but do not require an associated
smart contract to access them. Instead, they are stored as plain text
in a review transaction, directly accessible to peers. If transaction
T tracks the deployment of an MSC, T.DES and T.DAT describe
the MSC and its associated data, respectively. In contrast, if
transaction T records the review data for a model version, T.DES
and T.DAT contain the VID of the model and the corresponding
review of the model, respectively. Figure 2 shows m versions of a
predictive model that are stored on a blockchain network.

Figure 2: A Predictive Model with Multiple Versions and Review Data

As shown in Figure 2, each model version VID is stored in an
MSC that defines its smart contract ID, the code of the model
version, and an interface listing the methods that can be invoked
by users. Each MSC model version i, where 1 ≤ i ≤ m, stored in
block B is accompanied by a transaction with ID i_0 that describes
the model version and is stored in the same block B. Suppose
model version i has ki reviews. These reviews are stored in
transactions with IDs from i_1 to i_ki. Note that since the reviews
for a model version are uploaded at different times, the review
transactions can be stored in different blocks other than block B.

3.3. The Structure of a Meta-Block

In order to store indexing information for efficiently finding
specific versions of a predictive model and all reviews about the

http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 76

model versions, we introduce the MB, which is a mutable meta-
block attached to the blockchain. When a new block is approved
and added to the blockchain, each peer needs to update its MB so
that it contains the latest indexing information about the models,
versions, and review comments contained in the new block.
Figure 3 shows the structure of the MB that consists of three parts,
namely header, model index, and review index.

Figure 3: The Structure of a Meta-Block

The MB header contains the general information of the MB,
which is defined as a 3-tuple (NM, NV, TS), where NM and NV are
the total number of models and the total number of versions,
respectively, and TS is the timestamp when MB was last updated.
The model index and the review index modules contain indexing
information about model versions, associated data and review
data in terms of their addresses in the blockchain. The address of
a model version is defined as a pair (BID, ISC), where BID is the
ID of the block that stores the smart contract containing the model
version, and ISC is the index of the smart contract within the list
of smart contracts in the block. Similarly, the address of the model
associated data or review data is defined as a pair (BID, ITR),
where BID is the ID of the block that stores the associated data of
the model or its review data, respectively, and ITR is the index of
the transaction that records the information about the model
version and review data within the list of transactions in the block.
As shown in the figure, the model index module can be
implemented in the form of a HashMap, where the key is an MID
and the output value is a list of pairs (mVer_addr, assoDat_addr),
containing the model version address and the model associated
data address, i.e., the address of the smart contract with the
predictive model and the address of the transaction that records
information about the smart contract, respectively. Likewise, the
review index module can also be implemented in the form of a
HashMap, where the key is a VID of a model version, and the
output value is a list of addresses that can be used to locate the
transactions that record the reviews about the model version.

4. Deployment and Retrieval of Predictive Models

4.1. Process Overview

To support efficient peer usage of a blockchain network, we
require a distinction between full-node peers and regular peers,
where a full-node peer contains a full copy of the entire
blockchain, while a regular peer is not required to maintain a full
copy but can make a request to a full-node peer for information
retrieval and uploading. In this paper, we allow regular peers to
retrieve a predictive model from a full-node peer and also to send
reviews to a full-node peer for publication. Full-node peers have
the privilege of deploying models by adding an MSC and its

accompanying transaction to a new block. When a new block is
added, it is broadcast to all full-node peers for updating. Figure 4
shows the process of model deployment and extraction on a
blockchain with the MB and m blocks. As shown in the figure, the
blockchain contains models deployed by n full-node peers. There
are also r regular peers, each of which is connected to a full-node
peer and can utilize this connection to retrieve a model or post a
review for the model. A full-node peer connected to the regular
peer can add these retrieval transactions and reviews to a new
block. Once the new block contains enough transactions, the full-
node peer can broadcast the new block to all full-node peers on
the network for approval and adoption.

Figure 4: An Overview of the Model Deployment and Extraction Process

4.2. Generating a Meta-Block

 The process of generating an MB involves searching each block
in a blockchain. While searching a block, the addresses of models
and reviews are found and added to the MB. Each model
transaction tr, where tr.DES describes an MSC with an MID, must
have the accompanying smart contract found in the same block.
The address of tr and the address of the smart contract described
in tr.DES are paired and added to the MB’s Model Index
HashMap with MID as a key. If the pair represents the first
instance of a model, an empty list of addresses is created before
the pair of addresses can be added. On the other hand, if tr is a
review transaction that contains a review on a particular model
VID, its address is added to the Review Index HashMap with VID
as a key. The complete process to generate an MB for a public
blockchain is described in Algorithm 1. According to the
algorithm, we search for transactions in each block of the
blockchain. For each transaction, if it describes the deployment of
an MSC with MID and the model has not been recorded in MB,
the pair <MID, [(mVer_addr, assoDat_addr)]> is added to the
Model Index, where mVer_addr, assoDat_addr are the address of
the model version and the address of the associated data
transaction, respectively. On the other hand, if the transaction is a
review transaction for a model version VID, the pair <VID,
[reviewDat_addr]> is added to the Review Index, where
reviewDat_addr is the address of review transaction for the model
version VID. This process is repeated for all transactions in each
block of the blockchain until all blocks have been processed.
While generating an MB on an existing blockchain can be a time-
consuming process, this process only needs to be performed once
to be usable, thereby significantly reducing the time it takes to
search and extract data from the blockchain. Additionally, a peer
can download an already existing MB from another peer that has
the latest MB, thus eliminating the need to search through the
blockchain to create a new MB. Note that when a new block is

http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 77

added to the blockchain, the MB can be updated in a similar
manner as defined in Algorithm 1.

Algorithm 1: Generating a Meta-Block for a Public Blockchain

Input: A public blockchain PB with n blocks
Output: A generated MB

1. Create an empty MB with Model Index and Review Index HashMap
 ΠM and ΠR, respectively
2. Initialize the total number of models NM to 0
3. Initialize the total number of model versions NV to 0
4. Set the time stamp TS to the current time
5. for each block B in PB
6. for each transaction tr in block B
7. if tr.DES describes a model with MID stored in MSC
8. if ΠM does not contain any versions with key MID
9. Add <MID, [(mVer_addr, assoDat_addr)]> to ΠM
10. Increase NM by 1
11. else Update the list of model versions in ΠM with key MID
12. else if tr.DES describes a review of a model version VID
13. if ΠR does not contain any reviews of VID
14. Add <VID, [reviewDat_addr]> to ΠR
15. Increase NV by 1
16. else Update the list of reviews in ΠR with key VID
17. return MB

4.3. Deploying Models and Posting Reviews

The process of deploying a classifier can only be done by a
full-node peer. This process must first check whether the
corresponding model version has been deployed. The MB is used
to ensure that a particular version of a model has not yet been
deployed to the blockchain by checking whether the version being
deployed has been indexed by the MB. Formally, we define a
model as a 4-tuple (MDA, MID, VID, ASD), where MDA is the
data required to recreate the model, stored in a standard way of
storing model data such as HDF5 [29]; MID and VID are the
model ID and version ID, respectively; and ASD is the associated
data of model version VID. Deploying a model α requires the
creation of a transaction T_α and a model smart contract MSC_α,
where MSC_α contains a method for extracting model data for the
model version. The transaction T_α contains a description of
MSC_α including the use cases of the model and the address of
MSC_α. T_α must also contain any associated data, ASD_α. T_α
and MSC_α are then added to a new block B that is being
deployed. Deploying review β requires the creation of a review
transaction, T_β, where T_β contains the review being posted. A
new block B may contain multiple models or reviews, as defined
by the full-node peer running the algorithm. Once block B is
ready, it is broadcast to all full-node peers for approval before it
can be published and added to the blockchain. If block B is
successfully published, the MB must be updated to index the new
data in block B. Algorithm 2 describes the process of generating
and deploying a new block with multiple new models on a public
blockchain. The efficiency of this process is predominantly
influenced by the duration needed to broadcast block B and the
quantity of transactions and smart contracts contained within the
new block. Note that the process of publishing a review is similar
to the process of deploying a model, but without the need to create
an MSC. Therefore, in Algorithm 2, we do not show the process
of adding a review transaction to the new block B. Once the new
block B is approved and deployed, the MB needs to be updated to

add the model information and the review data addresses to the
HashMaps Model Index and Review Index, respectively.

Algorithm 2: Generate and Deploy a New Block

Input: A public blockchain PB with an MB; a list of new models LNM
Output: Boolean value indicating successful or failed deployment

1. Let B be a new block to be generated and deployed
2. for each predictive model α in LNM
3. if MB contains key α.MID in the Model Index HashMap
4. Let ΓM be a list of deployed models with key α.MID
5. if ΓM contains a model with version ID α.VID
6. continue // the model version has already been deployed
7. Create a new model smart contract MSC_α for model α
8. Add MSC_α to the list of smart contracts in B
9. Create a new transaction T_α with model data α.ASD and a
 description of MSC_α
10. Add T_α to the list of transactions in B
11. Broadcast B and await consensus approval determination
12. if new block B is not approved
13. return false // failed deployment
14. else Update MB to include new information from B
15. return true // successful deployment

4.4. Extracting Models and Reviews

For a regular peer, the process of extracting a model of MID
from the blockchain requires a connection to a full-node peer in
order to make the request. When a full-node peer receives such a
request, it retrieves all its model versions of MID and their reviews
from the blockchain, and then returns the result as a list of model
instances to the regular peer. Algorithm 3 describes the process of
extracting all predictive models of MID and their reviews from
the public blockchain PB with an MB.

Algorithm 3: Extracting Predictive Models and their Reviews
Input: A public blockchain PB with an MB; a model MID to retrieve all
its model versions and their reviews
Output: A list of model instances of MID along with their reviews
1. Initialize LM to an empty list of model instances of MID
2. if MB contains the key MID in the Model Index HashMap
3. Let ΓM be a list of (mVer_addr, assoDat_addr) with key MID
4. else return LM // LM is an empty list, i.e., no model is found
5. for each pair (mVer_addr, assoDat_addr) in ΓM
6. Let the model to which the pair refers be model α with VID_α
7. Create a new empty model instance Λ
8. Extract model α stored at mVer_addr
9. Extract associated data assoDat stored at assoDat_addr
10. Add model α and associated data assoDat to Λ
11. if MB contains the key VID_α in the Review Index HashMap
12. Let ΓV be a list of reviewDat_addr with key VID_α
13. for each reviewDat_addr in ΓV
14. Extract the review reviewDat stored at reviewDat_addr
15. Attach reviewDat to Λ
16. Add Λ to the list of model instances LM
17. return LM

As shown in Algorithm 3, the full-node peer first searches for
MID in its Model Index HashMap. If the model with MID does
not exist, an empty list of model instances is returned. Otherwise,
each model version must be extracted from the blockchain and
added to a list of model instances LM. For each pair (mVer_addr,
assoDat_addr), both the model α stored at MSC_addr and the

http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 78

model data assoDat stored at assoDat_addr are extracted from the
corresponding blocks in the blockchain and added to a model
instance Λ. Then, the full-node peer searches for VID_α in its
Review Index HashMap. For each review stored at address
reviewDat_addr, it is extracted from the corresponding block in
the blockchain and attached to the model instance Λ. Once all
review comments have been retrieved, Λ is added to the list of
model instances LM. Finally, when all model instances have been
retrieved, LM is returned to the regular peer with the retrieval
request. Note that without the MB, the extraction process requires
traversing the entire blockchain. With the MB, it is possible to
quickly find the addresses of predictive models and their review
comments, thus making the extraction process very efficient.

5. Case Study and Simulation Results

The case study presented in this section demonstrates the
efficacy of storing predictive models on a public blockchain. The
stored models are multilayer perceptron (MLP) neural network
classifiers that predict vehicle prices based on given parameters
such as age and mileage. MLP classifiers were chosen due to their
relatively large storage requirements compared to other ML
methods such as linear regression. By showcasing the successful
storage of MLP classifiers on a public blockchain network, we
enhance our confidence in the adaptability of our approach to
other types of predictive models and domains. This provides a
springboard for more ambitious future research efforts. The MLP
classifiers used in this case study are deployed by vehicle
dealerships with an MID for each model, and a VID for each
version of these models. For simplicity, in this case study, the
MID and VID contain the vehicle model and vehicle year as
substrings, respectively. For example, the classifier that predicts
the price of a 2011 Toyota Camry, deployed by car dealer D on
March 15, 2024, may have an MID of “Toyota Camry” and a VID
of “2011_D_03152024”.

5.1. Environment Settings

We have developed two different modules: one using the
Ethereum blockchain [4] and the other providing users with a web
interface to interact with the blockchain. To experiment on the
Ethereum blockchain, we employed Ganache, a tool commonly
used for testing and development [30]. As with many smart
contracts on Ethereum, the smart contracts developed in this case
study were also coded in Solidity. While this approach is
experimentally tested on the Ethereum network, it also involves
simulating processes such as connecting to a full-node peer to
retrieve data from the blockchain. In addition, since the approval
of new blocks takes place through a consensus mechanism [31],
we simulated the approval times of new blocks, assuming that the
times are normally distributed with appropriate means and
standard deviations (STDs). In this sense, we collect data points
partly from measurements of real-world implementations and
partly from simulated values that best fit real-world scenarios.

The web interface was created to allay the concerns of regular
users about the complexity of blockchain usage and to establish a
secure environment for conducting the case study. Regular users
can interact with the user-friendly interface to search for
classifiers and their review comments, select suitable classifiers,
extract classifiers and execute them on their local machines. It
also allows regular users to create, publish, and read reviews

comments through the interface. The website interacts with
Ethereum through the Web3.js tool, facilitating user engagement
with the Ethereum nodes. A regular peer can use the website by
connecting to a full-node peer and assembling a classifier locally
with the support of the TensorFlow.js tool. Review comments on
a classifier are uploaded and viewed through the website by
regular users. Various types of users such as companies or dealers
can create and train classifiers with TensorFlow before deploying
them to the blockchain through the interface.

5.2. Space Efficiency for Storing Classifiers

Space efficiency is crucial in a public blockchain because the
blockchain needs to be stored on every full-node peer. This
experiment provides a basis for the expected spatial storage of our
proposed solution. In an MLP classifier, parameters are numerical
values that quantify the complexity of the classifier. TensorFlow
contains efficient methods for storing a classifier that allow us to
isolate these parameters. The number of parameters nP in an MLP
classifier can be calcaulted as in (1).

 𝑛𝑛𝑛𝑛 = ∑ � �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 + 1� ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑖𝑖+1

 �𝑛𝑛−1
𝑖𝑖=1 (1)

where Layeri refers to the number of neurons in layer i of the
classifier. The rationale for this equation is that for each neuron in
a layer, the number of connections to that node must be the same
as the number of neurons in the previous layer plus a connection
from a bias neuron. For example, a model with 5 input neurons, 1
output neuron, and 3 hidden layers, each with 128 neurons, would
have a total of 33,536 parameters. This quantifies the complexity
of the classifier, which allows for comparisons between the
different scenarios in this case study.

In our approach, when determining the storage size of a
classifier, we consider the size of the classifier itself as well as the
overhead of storage, including the storage size of the methods
defined in a smart contract and the size of the transactions that
track the deployment of the classifier. The storage overhead is
usually stable, while the size of the stored classifier can be
efficiently measured by the number of bytes stored for its
parameters. In addition, we must also account for the number of
reviews for each classifier. We define a random number of
reviews for each classifier by skewing the normal distribution
[32], [33], and define its pdf (probability density function) and cdf
(cumulative density function) using the pdf and cdf of the normal
distribution as shown in (2-5).

 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
1
2

(𝑥𝑥−𝜇𝜇
𝜎𝜎

)2 (2)

 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥) = ∫ 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥−𝜇𝜇
𝜎𝜎

−∞ (3)

 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 �𝑥𝑥−𝜉𝜉
𝜔𝜔
� ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 �𝛼𝛼 𝑥𝑥−𝜉𝜉

𝜔𝜔
� (4)

 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = ∫ 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥−𝜉𝜉
𝜔𝜔

−∞ (5)

In (2-5), the parameters 𝜇𝜇 and 𝜎𝜎 represent the mean and STD
of a normal distribution and are set to 0 and 1, respectively.
Parameters α, ξ, and ω represent the shape, scale and location of
a skew normal distribution and their values are chosen to be 10,
0, and 200, respectively, to better match real-world scenarios. The
rational for using this distribution and the chosen parameter
values is based on the observations on websites such as Amazon

http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 79

and others with reviews of items, where only a few items are
highly popular and reviewed but most items are unpopular and
have much fewer reviews. With this understanding, we can adjust
the parameter values to create a right-skewed distribution we
would find in the real world. The chosen values can produce a
highly skewed distribution, similar to the distribution of product
reviews on Amazon. This distribution is visualized as in Figure 5,
where the distribution has a high variance and a significant skew
to the right. The mode can be visually shown to be approximately
70 reviews, although the mean is expected to be larger due to the
significant skew.

Figure 5: An Example of Skew Normal Distribution of Reviews

The mean, STD and skewness of a skew normal distribution
can be calculated as in (6-8):

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜉𝜉 + 𝜔𝜔𝜔𝜔�2
𝜋𝜋

 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛿𝛿 = 𝛼𝛼
√1+𝛼𝛼2

 (6)

 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜔𝜔�1 − 2𝛿𝛿2

𝜋𝜋
 (7)

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4−𝜋𝜋
2

(𝛿𝛿�2 𝜋𝜋�)3

�1−2𝛿𝛿2 𝜋𝜋� �
3 2�

 (8)

Table 2 shows the resulting mean, STD, and skewness of the
number of reviews, as well as the MAX and MIN chosen for the
skew normal distribution.

Table 2: Chosen Parameters for the Size of Review Storage

 Number of Reviews1 Review Transaction Size (KB)2

Mean 159 0.35
STD 121 0.03
Max 600 0.6
Min 0 0.25

Skewness 0.96 0
1 Number of Reviews follows a skew-normal distribution with skewness of 0.96
2 Review Transaction Size follows a normal distribution (skewness = 0)

As shown in Table 2, we assume the review transaction size
follows a normal distribution with a mean of 0.35KB, a standard
deviation of 0.03, and a skewness of 0. Note that review
transactions stored on Ethereum require a minimum transaction
size, while the maximum size is set to prevent malicious attacks
on the blockchain network, such as posting unreasonably large
reviews. With a generated random number of reviews for a
classifier, we can calculate the total space Scla to store the classifier
and its reviews on Ethereum as in (9).

 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) (9)

In (9), claComp is the classifier complexity (i.e., the number
of model parameters), MSCSize is a function that computes the
amount of storage space required to store the model’s MSC in a
block, numRev is a random variable representing the number of
reviews, and RevSizes(numRev) is the size of numRev randomized
review transactions. The function MSCSize was determined from
experimental test data on the Ethereum network, where a linear
relationship was found between the complexity of a classifier and
the size of the associated MSC containing the method of extracting
the model parameters of a classifier.

Figure 6 shows the 500 data points generated based on the
chosen parameters listed in Table 2 and the storage space required
on Ethereum. Each data point is generated by randomizing the
model complexity (i.e., a random number of parameters in the
model) and yields the storage space required to store the model
and the associated transaction describing the model. We further
generate the random number of reviews and their review
transaction sizes based on the distributions provided in Table 2.
The storage sizes of the classifier and all its reviews are summed
to yield the total size required to store the model on the Ethereum
blockchain network.

Figure 6: Storage Size of Uploaded Classifier and Their Reviews

As shown in Figure 6, the trendline clearly demonstrates that
the average size of storing a model on Ethereum is reasonably
small and increases with classifier complexity. While the presence
of highly reviewed models puts the trendline slightly above the
large clustering of models, the size required to store such
classifiers is typically less than 250KB, even at the far end of the
range where high-complexity classifiers are accompanied by
many reviews. This result is promising and demonstrates both the
spatial efficiency and scalability of this approach. For example, if
there are 100 car dealerships, each deploying 50 models per year,
with approximately 200K parameters in each model, for 10 years,
the blockchain storage requirement would be merely 10GB. It is
worth noting that while we used Ethereum for our experiments in
this paper, our vision for the future is to develop dedicated public
blockchain networks for storing specific types of predictive
models. Thus, such dedicated public blockchain networks could
be scalable and available for a long period of time (e.g., 10+
years). In addition, we could also consider mitigating the
scalability issue further by using historical blockchains, such as
those discussed in [34].

http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 80

5.3. Time Efficiency for Deploying a New Block

The amount of time to deploy a new block containing multiple
classifiers includes the time to broadcast a new block to other full-
node peers and the time to approve the new block using a
consensus mechanism. The broadcast time can be estimated based
on the broadcast rate and sizes of the classifiers included in the
new block. As shown in Table 3, we assume that the size of the
classifier is normally distributed with a mean value of 200KB for
storing the classifier parameters with different model complexity
and the overhead required to store the model on Ethereum. Note
that the classifier size distribution requires a maximum value to
avoid unrestricted file upload attacks on the blockchain network
and a minimum classifier size to avoid deployment of trivial
models on the blockchain. Considering the uncertainty of network
traffic and the possible bandwidth constraints that may be
enforced by the full-node peers, we assume that the broadcast rate
and the approval time (i.e., the consensus time) are also normally
distributed with the parameters listed in Table 3.

Table 3: Parameters for Deploying a New Block with Multiple Classifiers

 Broadcast Rate
(KB/s)

Classifier Size
(KB)

Consensus Time
(s)

Mean 500 200 12
STD 300 20 2
Max 1,000 1,000 100
Min 200 10 8

Our estimate of the approval time is based on the average time
it takes to add a new block to the Ethereum blockchain, which is
about 12 seconds [35]. Similarly, the consensus time must be able
to time out (e.g., 100 seconds) when there are not enough full-
node peers to approve a new block. Since classifiers must be
deployed through blocks, the number of transactions or classifiers
in each block directly affects the time required for deployment.
The time required to broadcast a new block to other full-node
peers increases with the number of transactions and classifiers, as
well as the sizes of the transactions and classifiers. The time to
deploy a new block Tdeploy can be generated using (10), where
ClaSizes(numCla) returns the size of numCla classifiers in the
new block, BCR is a random broadcast rate, and ConsTime is a
random consensus time.

 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
𝐵𝐵𝐵𝐵𝐵𝐵

+ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (10)

Figure 7 shows the time required to deploy a new block with
1 to 10 classifiers. There are 30 data points for each number of
classifiers, each representing a new block, and the variables are
chosen randomly according to the distributions defined in Table
3. The trendline in the figure shows how much deployment time
is expected to be needed as the number of classifiers increases.
With 10 classifiers, the expected deployment time is about 18
seconds, which is a reasonable waiting time for the users. We note
that among the above data points, the time used for the approval
process accounts for the largest percentage of the total
deployment time, while the percentage of the time used for
broadcasting new blocks increases slightly with the number of
classifiers. Based on the experimental results, it is desirable to
include more classifiers in the same block when there is a high
demand for uploading classifiers in a short period of time.

Figure 7: Time to Deploy a New Block

5.4. Generation of a Meta-Block

Another key use case for this approach is the generation of an
MB by a full-node peer. This process is largely affected by the
number of transactions in each block and the total number of
blocks in the blockchain. Since there is usually an upper limit to
the number of transactions that can be reasonably placed in a
block, the time to generate an MB would be approximately linear
with the number of blocks in the blockchain. In a real-world
setting, a full-node peer needs to connect to other full-node peers
to verify the consistency of its blockchain before generating an
MB. The time to connect to other full-node peers for such
verification is assumed to be normally distributed with a mean
time of 10 seconds and a STD of 2 seconds. The time TgenMB to
generate a meta-block can be calculated using (11), where GenMB
is the time to generate an MB based on experimental tests, and
ConnPeer is the randomly simulated time to connect to a full-node
peer node.
 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (11)

Figure 8 shows the simulation time to generate an MB based
on the number of blocks in the blockchain.

Figure 8: Time to Generate a Meta-Block

Note that Figure 8 only shows up to 1,500 blocks; however,
based on the degree of linearity shown in the figure, we can infer
how long it takes to generate an MB for a blockchain with a larger
number of blocks. Additionally, the stochastic impact of the time
to connect to a full-node peer is reduced when the number of
blocks increases. This is because the connection time is centered
on a 10-second average, so as the number of blocks increases, the
impact of the connection time becomes smaller compared to the
total generation time. For a blockchain with 1,500 blocks, the time
required to generate an MB in less than a minute is reasonable,

http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 81

and the fact that it only needs to be executed once demonstrates
the effectiveness of this approach.

5.5. Analysis of Search and Retrieval Time

The search and retrieval (S&R) time for classifiers and their
reviews is the main waiting time for regular users; therefore, we
must minimize this time as much as possible. For each retrieval
request made by a regular peer, several versions and their review
comments must be retrieved and sent back. While the search time
through an MB is expected to be efficient, regular peers that do
not maintain the blockchain need time to connect to a full-node
peer, which retrieves the requested data and returns results to the
regular peer. Thus, the S&R time TS&R consists of three
components as shown in (12): the time required to connect to a
full-node peer from the regular peer (ConnPeer), the time required
for the full-node peer to search for each requested classifier and
its review comments, and the time required to send this data back
to the regular peer (i.e., the download time). Note that the
download time is based on the total size of the classifiers ClaSizes,
the total size of all reviews RevSizes, and the download rate (DLR)
for downloading the classifiers and their reviews.

 𝑇𝑇𝑆𝑆&𝑅𝑅 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑛𝑛) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐷𝐷𝐷𝐷𝐷𝐷

 (12)

The search time is measured on an Ethereum blockchain
network. According to Algorithm 3, the expected search time
Search(n) is approximately linear as the number of blocks n
increases. The number of reviews for each model version follows
the skew normal distribution defined in Table 2. The size of a
classifier, the size of a review and the download rate are randomly
generated following the normal distribution defined in Table 4.

Table 4: Parameters for Searching and Retrieving Classifiers

 Review Size
(KB)

Classifier
Size (KB)

Download
Rate (KB/s)

Connection
Time (Sec)

Mean 0.1 100 500 10
STD 0.03 50 300 2
Max 0.35 800 1,000 100
Min 0 10 200 1

As shown in Table 4, the size of each review and classifier is
significantly different from those listed in Table 2 and Table 3,
respectively. This is because in this experiment, we only need to
download the reviews and classifiers themselves and not the
transactions associated with them. It is important to note that
transactions stored with Ethereum usually contain additional
information that is not necessary for a regular peer to download.
The time to download data is determined by the amount of data
downloaded, defined as the last term in (12). In addition, we
assume that ConnPeer is normally distributed, with a mean time
of 10 seconds and a STD of 2.

Figure 9 shows the time required to search and retrieve three
arbitrarily chosen classifiers and their reviews versus the number
of blocks in a blockchain. To demonstrate the effectiveness of our
approach, two different search methods are included in the figure:
one is our approach using MB, and the other is a conventional
blockchain method that does not use MB. The conventional
approach searches for all transactions from the newest block to
the oldest block and saves reviews and model data during the
search. We conducted 250 experiments with each approach,

where a data point represents a request from a regular peer. The
S&R time for each data point is calculated using (12), where the
search times were measured by simulations on Ethereum.

Figure 9: Search and Retrieval Time for Classifiers and Their Reviews

In order to clearly demonstrate the effectiveness of our
approach, we show the trendlines for both methods. As can be
seen from the trendlines, the average S&R time of the blockchains
using MB remains relatively stable. The difference between a
large number of blocks and a small number of blocks is about 5
seconds, while the conventional method without using MB takes
significantly longer as the number of blocks increases. Thus,
based on the experimental results, our approach greatly improves
the ability to search a blockchain compared to a conventional
approach without using MB.

It is worth noting that the experimental results are based on
real-world data collected from the Ethereum blockchain network,
as well as simulated data designed to demonstrate the practical
implications of the case study. The inclusion of carefully selected
distribution values enhances the credibility of the case study and
increases confidence in the case study solution.

6. Conclusions and Future Work

As machine learning becomes an increasingly important part
of many people’s lives, the need to address the issue of trust in
these algorithms grows every day. The approach proposed in this
paper aims to completely eliminate the need for trust by
combining machine learning models with a decentralized public
blockchain network. Machine learning models are stored on a
blockchain through smart contracts, which contain methods for
accessing and validating the stored models. Transactions are used
to track the deployment of models and record their reviews. Thus,
model users do not need to trust individual organizations, but only
peer reviews and their own audits of machine learning algorithms.
To further enhance the user experience, we add a meta-block at
the beginning of the blockchain to record indexing information
for all models and reviews stored on the blockchain. Our
experimental results on Ethereum show that our approach is
effective and efficient when deploying predictive models on a
public blockchain network.

For future work, we plan to develop dedicated public
blockchain networks for deploying predictive models. Storage
and computation costs can be reduced as the scale of a dedicated
public blockchain network is more manageable. The impact of

http://www.astesj.com/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 82

congestion on the blockchain is also a key issue that needs to be
addressed [36]. In our current approach, the approval of new
blocks and the retrieval of classifiers and their reviews are handled
by full-node peers. In future work, we may consider developing
efficient load balancing mechanisms for full-node peers [34] to
mitigate the impact of blockchain network congestion on system
performance. Furthermore, combined with the trustless nature of
blockchain, we can bring more systematic changes to the way the
machine learning models are created. This could include
publishing metrics for training data or goals for the training
process on the blockchain. Additionally, training could take place
entirely on the blockchain, rather than off-chain as in our
approach. While an on-chain approach may lead to scalability
issues, it allows users to trust the process of creating the model
rather than the model itself. This can be important in situations
where the trustworthiness of a model cannot be easily validated
by regular users. To elaborate on this approach, a new smart
contract could be designed to handle on-chain training, where full-
node peers have the ability to define new methods and execute
them to train predictive models. Finally, we can consider
implementing automated auditing of new AI/ML models [37].
This automated approach helps eliminate undesirable AI/ML
models from being stored on the blockchain, thus saving model
storage space. Based on previous work [38], new models can be
initially deployed in a temporary block, transitioning to a
permanent block upon successful completion of auditing. This
auditing procedure can be automated, facilitated by classifiers
trained on historical data to discern undesirable models.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

We thank the editors and all anonymous referees for spending
their valuable time carefully reviewing this paper and making
many suggestions for improvement. We also thank the University
of Massachusetts Dartmouth for providing financial support to the
first author to complete this work.

References

[1] Sarker, “AI‑based modeling: techniques, applications and research issues
towards automation, intelligent and smart systems,” SN Computer Science,
3(158), 1-20, 2022, doi: 10.1007/s42979-022-01043-x.

[2] NYC 311, “Automated employment decision tools,” The Official Website
of the City of New York, July 2023. Retrieved on September 1, 2023 from
https://portal.311.nyc.gov/article/?kanumber=KA-03552.

[3] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” White Paper,
Bitcoin Project, October 2008. Retrieved on January 15, 2023 from
https://bitcoin.org/bitcoin.pdf.

[4] V. Buterin, “Ethereum: a next-generation smart contract and decentralized
application platform,” Ethereum Whitepaper, 2014. Retrieved on May 15,
2023 from https://ethereum.org/en/whitepaper/.

[5] O. Dib, K.-L. Brousmiche, A. Durand, E. Thea, E. B. Hamida, “Consortium
blockchains: overview, applications and challenges,” International Journal
on Advances in Telecommunications, 11(1&2), 51-64, 2018.

[6] H. Guo, X. Yu, “A survey on blockchain technology and its security,”
Blockchain: Research and Applications, 3(2), February 2022, doi: 10.1016/
j.bcra.2022.100067.

[7] Thamrin, H. Xu, “Cloud-based blockchains for secure and reliable big data
storage service in healthcare systems,” In Proceedings of the 15th IEEE
International Conference on Service-Oriented System Engineering (IEEE
SOSE 2021), 81-89, Oxford Brookes University, UK, August 2021, doi:
10.1109/SOSE52839.2021.00015.

[8] S. Kumar, A. K. Bharti, R. Amin, “Decentralized secure storage of medical
records using blockchain and IPFS: a comparative analysis with future
directions,” Security and Privacy, 4(5), 1-16, April 2021. doi:
10.1002/spy2.162.

[9] H. Wang, Y. Song, “Secure cloud-based EHR system using attribute-based
cryptosystem and blockchain,” Journal of Medical Systems, 42(152), 1-9,
July 2018, doi: 10.1007/s10916-018-0994-6.

[10] S. Liu, H. Tang, “A consortium medical blockchain data storage and sharing
model based on IPFS,” In Proceedings of the 4th International Conference
on Computers in Management and Business (ICCMB 2021), 147-153,
Singapore, January 2021, doi: 10.1145/3450588. 3450944.

[11] Thamrin, H. Xu, “Hierarchical cloud-based consortium blockchains for
healthcare data storage,” 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security Companion (QRS-C), 644-651,
Hainan, China, December 2021, doi: 10.1109/QRS-C55045.2021.00098.

[12] S. D. Ashwini, A. P. Patil, S. K. Shetty, “Moving towards blockchain-based
solution for ensuring secure storage of medical images,” In Proceedings of
the 2021 IEEE 18th India Council International Conference (INDICON), 1-
5, Guwahati, India, December 19-21, 2021, doi: 10.1109/INDICON52576.
2021.9691516.

[13] S. Ballal, Y. Chandre, R. Pise, B. Sonare, S. Patil, “Blockchain-based
decentralized platform for electronic health records management,” In
Proceedings of the 2023 IEEE International Conference on Blockchain and
Distributed Systems Security (ICBDS), 1-5, New Raipur, India, October
06-08, 2023, doi: 10.1109/ICBDS58040.2023.10346392.

[14] S. Ajjarapu, S. K. Pasupuleti, “Blockchain based certificateless privacy
preserving public auditing for cloud storage systems,” In Proceedings of the
2022 Seventh International Conference on Parallel, Distributed and Grid
Computing (PDGC), 286-291, Solan, Himachal Pradesh, India, November
25-27, 2022, doi: 10.1109/PDGC56933.2022.10053241.

[15] Y. Jeong, D. Hwang, K. Kim, “Blockchain-based management of video
surveillance systems,” In Proceedings of the 2019 International Conference
on Information Networking (ICOIN), 465-468, Kuala Lumpur, Malaysia,
January 2019, doi: 10.1109/ICOIN.2019.8718126.

[16] Z. Su, H. Wang, H. Wang, X. Shi, “A financial data security sharing solution
based on blockchain technology and proxy re-encryption technology,” In
Proceeedings of the IEEE 3rd International Conference of Safe Production
and Informatization (IICSPI), 462-465, Chongqing City, China, 2020, doi:
10.1109/IICSPI51290.2020.9332363.

[17] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, “A Survey
on bias and fairness in machine learning,” ACM Computing Surveys, 54(6),
Article No. 115, 1-35, July 2022, doi:10.1145/3457607.

[18] V. N. Mandhala, D. Bhattacharyya, D. Midhunchakkaravarthy, “Need of
mitigating bias in the datasets using machine learning algorithms,” In
Proceedings of the 2022 International Conference on Advances in
Computing, Communication and Applied Informatics (ACCAI), 1-7,
Chennai, India, 2022, doi: 10.1109/ACCAI53970.2022.9752643.

[19] M. Atay, H. Gipson, T. Gwyn, K. Roy, “Evaluation of gender bias in facial
recognition with traditional machine learning algorithms,” In Proceedings
of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI),
1-7, Orlando, FL, USA, December 2021, doi: 10.1109/SSCI50451.2021.
9660186.

[20] S. Rohani, R. Baeza-Yates, “Measuring bias,” In Proceedings of the 2023
IEEE International Conference on Big Data (BigData), 1289-1298,
Sorrento, Italy, 2023, doi: 10.1109/BigData59044.2023.10386679.

[21] H. Wang, S. Mukhopadhyay, Y. Xiao, S. Fang, “An interactive approach to
bias mitigation in machine learning,” In Proceedings of the 2021 IEEE 20th
International Conference on Cognitive Informatics & Cognitive Computing
(ICCI*CC), 199-205, Banff, AB, Canada, October 2021, doi:
10.1109/ICCICC53683.2021.9811333.

http://www.astesj.com/
https://portal.311.nyc.gov/article/?kanumber=KA-03552
https://bitcoin.org/bitcoin.pdf
https://ethereum.org/en/whitepaper/

 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024)

www.astesj.com 83

[22] M. C. Cohen, S. Miao, Y. Wang, “Dynamic pricing with fairness
constraints,” SSRN, September 2021. Retrieved on October 1, 2023 from
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3930622.

[23] Y. Wang, H. Liu, “De-biasing methods in neural networks: a survey,” In
Proceedings of the 2023 International Conference on Machine Learning and
Cybernetics (ICMLC), 458-463, Adelaide, Australia, July 2023, doi:
10.1109/ICMLC58545.2023.10327985.

[24] H. Maheshwari, U. Chandra, D. Yadav, A. Gupta, R. Kaur, “Machine
learning and blockchain: a promising future,” In Proceedings of the 4th
International Conference on Intelligent Engineering and Management
(ICIEM), 1-6, London, United Kingdom, May 09-11, 2023, doi:
10.1109/ICIEM59379.2023.10166343.

[25] X. Chen, J. Ji, C. Luo, W. Liao, P. Li, “When machine learning meets
blockchain: a decentralized, privacy-preserving and secure design,” In
Proceedings of the 2018 IEEE International Conference on Big Data (Big
Data), 1178-1187, Seattle, WA, USA, December 10-13, 2018,
doi:10.1109/BigData.2018.8622598.

[26] T. Wang, “A unified analytical framework for trustable machine learning
and automation running with blockchain,” In Proceedings of the 2018 IEEE
International Conference on Big Data (Big Data), 4974-4983, Seattle, WA,
USA, 2018, doi: 10.1109/BigData.2018.8622262.

[27] S. Badruddoja, R. Dantu, Y. He, A. Salau, K. Upadhyay, “Scalable smart
contracts for linear regression algorithm,” International Conference on
Blockchain Technology and Emerging Applications (BlockTEA 2022),
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, 498, 19-31, Springer, Cham, April
2023, doi: 10.1007/978-3-031-31420-9_2.

[28] B. Gu, A. Singh, Y. Zhou, J. Fang, F. Nawab, “ML on chain: the case and
taxonomy of machine learning on blockchain,” In Proceedings of the 2023
IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
1-18, Dubai, United Arab Emirates, May 1-5, 2023, doi:
10.1109/ICBC56567.2023.10174908.

[29] M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, “An overview of
the HDF5 technology suite and its applications,” In Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, 36-47, Uppsala Sweden,
March 25, 2011, doi: 10.1145/1966895.1966900.

[30] ConsenSys, “What is Ganache?” Overview - Truffle Suite, ConsenSys
Software Inc., 2022. Retrieved on March 15, 2024 from https://archive.
trufflesuite.com/docs/ganache/.

[31] al-Qerem, A. Hammarsheh, A. M. Ali, Y. Alslman, M. Alauthman, “Using
consensus algorithm for blockchain application of roaming services for
mobile network,” International Journal of Advances in Soft Computing &
its Applications, 15(1), 99-112, March 2023, doi: 10.15849/IJASCA.
230320.07.

[32] O’Hagan, T. Leonard, “Bayes estimation subject to uncertainty about
parameter constraints,” Biometrika, 63(1), 201-203, 1976, doi: 10.1093/
biomet/63.1.201.

[33] S. K. Ashour, M. A. Abdel-hameed, “Approximate skew normal
distribution,” Journal of Advanced Research, 1(4), 341-350, October 2010,
doi: 10.1016/j.jare.2010.06.004

[34] M. Felipe, H. Xu, “A scalable storage scheme for on-chain big data using
historical blockchains,” In 2022 IEEE 22nd International Conference on
Software Quality, Reliability and Security Companion (QRS-C), 54-61,
IEEE BSC 2022, Guangzhou, China, December 5-9, 2022, doi: 10.1109/
QRS-C57518.2022.00017.

[35] Ethereum, “Blocks,” Ethereum Documents, Feburary 27, 2024. Retrieved
on March 15, 2024 from https://ethereum.org/developers/docs/blocks.

[36] S. Ahn, T. Kim, Y. Kwon, S. Cho, “Packet aggregation scheme to mitigate
the network congestion in blockchain networks,” In Proceedings of the
2020 International Conference on Electronics, Information, and
Communication (ICEIC), 1-3, Barcelona, Spain, January 19-22, 2020, doi:
10.1109/ ICEIC49074.2020.9051158.

[37] J. R. Beckstrom, “Auditing machine learning algorithms: a white paper for
public auditors,” International Journal of Government Auditing, 48(1), 40-
41, Winter Edition, 2021.

[38] R. Ming, H. Xu, “Timely publication of transaction records in a private
blockchain,” In 2020 IEEE 20th International Conference on Software
Quality, Reliability and Security Companion (QRS-C), 116-123, IEEE BSC
2020, Macau, China, December 11-14, 2020, doi: 10.1109/QRS-C51114.
2020.00030.

Copyright: This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution (CC
BY-SA) license (https://creativecommons.org/licenses/by-
sa/4.0/).

http://www.astesj.com/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3930622
https://doi.org/10.1093/biomet/63.1.201
https://doi.org/10.1093/biomet/63.1.201
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	2. Related Work
	3. Deploying Predictive Models on a Public Blockchain
	3.1. A Framework for a Public Blockchain with Smart Contracts
	3.2. Storing Predictive Models Using Smart Contracts
	3.3. The Structure of a Meta-Block

	4. Deployment and Retrieval of Predictive Models
	4.1. Process Overview
	4.2. Generating a Meta-Block
	4.3. Deploying Models and Posting Reviews
	4.4. Extracting Models and Reviews

	5. Case Study and Simulation Results
	5.1. Environment Settings
	5.2. Space Efficiency for Storing Classifiers
	5.3. Time Efficiency for Deploying a New Block
	5.4. Generation of a Meta-Block
	5.5. Analysis of Search and Retrieval Time

	6. Conclusions and Future Work
	Conflict of Interest
	Acknowledgment

	References

