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 Machine learning-based predictive models often face challenges, particularly biases and a 
lack of trust in their predictions when deployed by individual agents. Establishing a robust 
deployment methodology that supports validating the accuracy and fairness of these models 
is a critical endeavor. In this paper, we introduce a novel approach to deploying predictive 
models, such as pre-trained neural network models, in a public blockchain network using 
smart contracts. Smart contracts are encoded in our approach as self-executing protocols 
for storing various parameters of the predictive models. We develop efficient algorithms for 
uploading and retrieving model parameters from smart contracts on a public blockchain, 
thereby ensuring the trustworthiness and immutability of the stored models, making them 
available for testing and validation by all peers within the network. In addition, users can 
rate and comment on the models, which are permanently recorded in the blockchain. To 
demonstrate the effectiveness of our approach, we present a case study focusing on storing 
vehicle price prediction models and review comments. Our experimental results show that 
deploying predictive models on a public blockchain network provides a proficient and 
reliable way to ensure model security, immutability, and transparency. 
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1. Introduction 

Tasks that once required intensive manual labor can now be 
automated with the aid of artificial intelligence and machine 
learning (AI/ML) models, guaranteeing efficient completion in 
just minutes [1]. However, as AI/ML technologies revolutionize 
every aspect of our lives, ensuring the validity and fairness of 
these models becomes crucial. For example, in the field of 
recruitment, many organizations are incorporating machine 
learning methods into their hiring processes when dealing with 
high volumes of job applications. To address bias concerns, New 
York City implemented a groundbreaking law in July 2023 that 
requires all automated employment decision tools (AEDTs) to 
undergo bias audits prior to deployment, and the results of these 
audits must be made available to the public [2]. While the new 
regulations can help to ensure the trustworthiness of AI/ML 
models, it is widely recognized that such an approach shifts the 
responsibility for trust to a centralized regulatory body, which 
itself cannot guarantee its trustworthiness. An improved solution 
should allow users to validate the machine learning-based tools 
on their own and expose every facet of the tools to the public. This 
transparency would enable users to validate the functionality and 
efficiency of AI/ML tools and the absence of bias, thus fostering 
trust in these tools. This need for trust is not limited to AI/ML 

tools but pervades various domains where intricate algorithms 
may pose a challenge to human comprehension. Hence, there is a 
vital necessity to develop a practical and trustworthy mechanism 
for deploying immutable and publicly accessible AI/ML-based 
tools, such as predictive models, that can be easily tested and 
validated by users.  

A blockchain network is a peer-to-peer, decentralized ledger 
that eliminates the need to trust a centralized audit mechanism. 
Blockchain was initially recognized for its key role in 
cryptocurrency systems such as Bitcoin and Ethereum, securing 
and decentralizing transaction ledgers [3], [4]. However, the use 
of blockchain technology extends far beyond cryptocurrency 
applications. Blockchain technology can be employed to ensure 
the integrity and permanence of data in diverse industries, 
signifying data that is verifiable and untamperable [5]-[7]. A 
blockchain securely organizes data into linked blocks using 
cryptographic techniques, ensuring a tamper-proof and immutable 
record of transactions and smart contracts. The decentralized 
design of the blockchain network, with its features of 
immutability, security, and transparency, naturally addresses the 
issue of public accountability for data stored in the blockchain 
network. Therefore, if AI/ML-based predictive tools are deployed 
on a public blockchain, users of the AI/ML systems no longer 
need to rely on internal auditing for assurance. This paper uses 
ML-based neural network predictive models as an example to 
demonstrate how to deploy such models on a public blockchain 

ASTESJ 

ISSN: 2415-6698 

*Corresponding Author: Haiping Xu, University of Massachusetts Dartmouth, 
Dartmouth, MA 02747, Email: hxu@umassd.edu  
 

 

Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024) 

www.astesj.com   

Special Issue on Computing, Engineering and Multidisciplinary Sciences 

 

 

http://www.astesj.com/
https://dx.doi.org/10.25046/aj090307
mailto:hxu@umassd.edu
http://www.astesj.com/


 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024) 

www.astesj.com    73 

for predicting vehicle prices, an area that is susceptible to biases 
driven by company or dealer interests. Machine learning models 
might inadvertently set prices too high or too low for specific 
vehicle types in order to optimize profit. The main goal of this 
paper is to provide a secure way of deploying machine learning 
tools that support user validation of predictive models to ensure 
that the models operate in the best interest of the user, rather than 
serving corporate goals. To this end, the model should receive 
vehicle parameters and generate price predictions, allowing users 
to validate the predicted prices even if they do not have 
specialized knowledge. In addition, users should be able to obtain 
validation from other users, which could be supported by the 
establishment of a comprehensive rating system. 

In this paper, we present a novel approach to deploying 
predictive models using smart contracts by storing the parameters 
of the predictive models on a public blockchain. This method 
allows a user to recreate the predictive models on a local computer 
using the stored model parameters. The user can then validate a 
version of the model by running certain test cases to ensure the 
required accuracy and fairness of the model predictions. In 
addition, we define a mutable meta-block (MB) attached to the 
beginning of the blockchain to record indexing information of all 
models deployed on the blockchain network. The MB can be used 
to efficiently retrieve the predictive models and their review 
comments, thereby significantly improving the performance of the 
blockchain network system. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 presents the public blockchain 
framework that supports the use of smart contracts to store 
predictive models. It also describes the structural design of the 
regular blocks for storing predictive models and review comments, 
and the meta-block for efficiently retrieving models and the review 
comments. Section 4 describes in detail the procedures for 
deploying and retrieving predictive models and reviews. Section 5 
presents a case study and the analysis results. Section 6 concludes 
the paper and mentions future work. 

2. Related Work 

Blockchain is a secure means of storing immutable and 
protected transactional data through a peer-to-peer decentralized 
ledger system. Recent advances have extended the traditional 
application of blockchain in cryptocurrencies to the storage of 
medical records, including the use of InterPlanetary File System 
(IPFS) in blockchain based healthcare secure storage solutions 
[8]. In [9], the authors proposed a blockchain model for creating 
a secure system for storing and sharing Electronic Health Records 
(EHRs). Their strategy is to store large amounts of medical data 
in the cloud, while the blockchain is dedicated to storing metadata 
related to EHRs. In [10], the authors introduced a storage 
framework integrating blockchain and IPFS for efficient 
transaction storage within the blockchain. In their architecture, the 
primary patient reports are stored in a decentralized off-chain 
storage system using IPFS, and the blockchain exclusively stores 
hash values of these reports. This approach effectively reduces the 
overall block size within the blockchain. In [11], the authors 
overcame the security concerns of pure cloud storage and 
provided a robust and scalable solution that utilizes blockchain 
technology to handle big data storage of healthcare multimedia 

files. The approach introduces a hierarchical cloud-based 
blockchain framework for storing large amounts of healthcare 
data, resulting in significant efficiencies. Similarly, in [12] and 
[13], blockchain is again used as a step towards digital healthcare 
by storing medical images and EHRs directly in the blockchain 
instead of storing their metadata. Their goal in storing healthcare 
data via blockchain is to apply the security of blockchain to the 
healthcare system, mitigating the threat of tampering and 
increasing security. Blockchain technology has also been used in 
other areas to store data that may be public but must be trusted to 
be accurate, which is more similar to the intended application of 
this paper. For example, in [14], the authors proposed a public 
auditing mechanism for cloud storage systems using blockchain. 
They demonstrated that the proposed scheme is secure against 
type I/II/III/IV adversaries. In [15], the authors described a system 
that utilizes blockchain technology for video surveillance storage 
and sharing of videos that are encrypted but publicly accessible 
with a decryption key. Their approach consists of encrypting and 
storing camera-acquired video off-chain using distributed IPFS 
and storing the associated metadata in the blockchain. In addition, 
some other researchers proposed a secure method for sharing 
sensitive financial data using blockchain [16]. Their methodology 
involves recording access control rules, hash values, and storage 
addresses of financial data in the blockchain, while storing the 
actual financial data in a distributed database external to the 
blockchain. While blockchain technology has been effective in 
ensuring the immutability of stored data across various domains, 
our approach differs from existing methods in that, in addition to 
storing regular transactional data, we deploy ML-based predictive 
models in the blockchain network that are publicly available for 
validation and adoption by all users. 

The challenge of bias and fairness in ML models has been a 
prevalent issue that currently lacks a universally accepted 
solution. A comprehensive survey on bias and fairness across 
various ML domains identified many areas of possible bias that 
can exist in AI/ML models [17]. ML models investigated in a 
number of real-world commercial use cases have shown that data 
integrity, learning parameters, and the lack of safeguards against 
bias can have a significant impact on the fairness of a model. The 
survey provides a taxonomy for determining the fairness of 
models and suggests that this is a pervasive problem for which 
researchers must find practical solutions. Furthermore, as noted in 
[18], mitigating bias in datasets for supervised ML is a pressing 
need for the emerging field of ML. Expanding on this idea, some 
researchers used statistical methods to assess the significant 
amount of bias in ML algorithms. For example, in [19], gender 
bias in facial recognition algorithms was measured and found to 
be prevalent, whereas in [20], the bias in the training data and its 
effect on the predictive results were detected and analyzed. The 
above approaches introduce methods for analyzing and assessing 
the amount of bias in ML models, and generally describe an 
approximation of the amount of bias in certain areas of ML. 
However, each of these proposed solutions for fairness and bias 
assessment requires trust in a centralized organization. In the 
absence of trust, e.g., when the model organizer has a strong 
incentive to manipulate the price of an object, a satisfactory 
solution remains elusive. In contrast, our approach utilizes the 
inherent security offered by blockchain technology for the storage 
of ML models. By employing decentralized hosting of ML models 
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within a blockchain network, each user can independently verify 
the accuracy of the models deployed by different organizations. 
This approach eliminates the need for users to worry about the 
fairness and potential bias of the models, as they can perform 
validation checks on each model individually. 

The prevalence of substantial bias in ML models necessitates 
the need for dedicated research to mitigate bias. While bias 
mitigation relies on suitable bias assessment methods tailored to 
each unique problem, distinct solutions are needed. In [21], the 
authors introduced a novel approach to mitigating bias by visually 
displaying the attributes of an ML model to indicate bias in an 
intuitive manner. Subsequently, manual adjustments are required 
to rectify these attributes by modifying the dataset. In [22], the 
authors proposed a methodology for assessing fairness specific to 
dynamic pricing methods, where the fairness constraints on price 
prediction are assessed by a centralized entity. This provides a 
valuable mechanism for measuring and enforcing the fairness of 
model-based price prediction, even when the demand for the item 
is unpredictable. In [23], the authors described how to mitigate 
bias in neural network-based ML models trained on image data. 
The authors showed three main categories of bias mitigation 
methods, namely data-level techniques to balance the training 
data, model-level approaches to modify the learning algorithm, 
and adversarial approaches to identify biases in the data. Unlike 
the above methods, our approach reduces bias by employing a 
review system to ensure that users can easily find better-reviewed 
ML models, which tend to be less biased. Our bias mitigation 
strategy is centered on minimizing the bias directly encountered 
by users. Furthermore, our approach is versatile and applicable to 
a wide range of ML models, bypassing the reliance on statistical 
rigor and instead emphasizing user satisfaction. 

The fusion of blockchain and machine learning is an 
emerging frontier, with ongoing research underscoring its 
promising potential. In [24], the authors presented various 
techniques concerning the preservation and processing of big data 
necessary for ML models. While this decentralized machine 
learning approach has advantages in terms of mitigating bias and 
improving fairness, the proposed solution falls short in describing 
the potentials for evaluating and validating the models, focusing 
mainly on the data stored in the blockchain. In [25], the authors 
described an ML-based approach where training gradients are 
validated by a decentralized blockchain network. They proposed 
a decentralized learning framework called LearningChain, where 
organizations can collaborate on training models by computing 
gradients together to update specific models. In [26], a similar 
approach to [25] was used to compute the parameters of an on-
chain ML in a decentralized multi-threaded environment. Using 
association rule mining as an example, the authors showed how 
blockchain can be used to enable trusted machine learning. In 
[27], the authors further advanced the idea of using blockchain in 
the learning process by introducing explainable and traceable 
algorithms that make the learning process meaningful and 
trackable. Their study showed that smart contract-based training 
and prediction techniques produced mean square errors similar to 
scikit-learn-based prediction models. In [28], the authors analyzed 
the design space regarding the integration of machine learning 
into blockchain applications, a concept termed ML on chain. They 
presented a taxonomy for ML on chain, categorizing existing and 
prospective approaches based on design attributes and their 

characteristics. While the above methods inherently offer the 
fundamental security advantages associated with blockchain 
technology, our approach is different because we only store the 
model parameters on the blockchain, excluding the data used in 
training, as all training is done off-chain. Note that storing training 
data on a large public blockchain would be costly and impractical. 
Thus, by focusing on storing only the essential components 
needed to reconstruct ML models, our approach optimizes 
deployment efficiency on a blockchain platform. Furthermore, we 
allow users to review a model to verify its fairness. This enables 
even non-technical users to make informed decisions about the 
degree of bias present in the model. Table 1 summarizes the main 
contributions and novelties of our approach by comparing it with 
existing approaches in terms of five key features.  

Table 1: Comparison with Existing Approaches 

      Approach Trustless Fairness Scalability Security Performance 

Bias Mitigation 
Methods [21]-[23] 

No Yes N/A No N/A 

Conventional 
Blockchain [25]-[28] Yes No No Yes No 

Our Approach Yes Yes Yes Yes Yes 

As shown in Table 1, a feature can be supported (Yes) or not 
supported (No) by an approach, or not applicable (N/A) to an 
approach. The features we consider include whether the method 
is trustless, whether the fairness of the model can be verified, 
whether the method is scalable and secure, and whether the 
method supports improved performance in terms of efficiently 
searching for stored predictive models. Methods that focus on bias 
mitigation are typically centralized [21]-[23], so they do not 
support trustless computing. Since the fairness constraints of 
stored models are assessed by centralized entities, no security 
mechanisms are provided to users. On the other hand, while 
conventional blockchain approaches support trustless and secure 
computing [25]-[28], they typically do not support bias mitigation 
for stored models and are also not scalable due to on-chain 
training of predictive models. Furthermore, since conventional 
blockchains do not contain a meta-block, they do not support 
efficient search for stored predictive models. 

3. Deploying Predictive Models on a Public Blockchain 

3.1. A Framework for a Public Blockchain with Smart Contracts 

Each peer in a blockchain network may have a complete copy 
of the blockchain with a number of blocks. Figure 1 shows a 
framework for a public blockchain with smart contracts, as well 
as the list of transactions and the list of smart contracts stored in 
block B2. As shown in the figure, each block in the blockchain 
consists of three main parts: a block header, a list of transactions, 
and a list of smart contracts. The block header is defined as a 5-
tuple (BID, HPB, BTS, NTR, NSC), where BID is the block ID, 
HPB is the hash value of the previous block, BTS is the timestamp 
when the block was created, and NTR and NSC are the number of 
transactions and the number of smart contracts contained within 
the block, respectively. Transactions are used to record new 
transactional information added to the blockchain, such as 
associated data related to a predictive model and review data of 
the model provided by users. Each transaction is defined as a 5-
tuple (TID, UID, TTS, DES, DAT), where TID is the ID of the 
transaction, UID is the ID of the user who initiated the transaction, 
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TTS is the timestamp when the transaction was created, DES is the 
detailed description of the transaction, and DAT is any associated 
data stored with the transaction.  

 
Figure 1: A Framework for a Public Blockchain with Smart Contracts 

Smart contracts are initially defined as self-executing code 
stored in the blockchain and are often seen as the terms of an 
agreement between two parties. These terms are encoded directly 
into the smart contract, which is publicly accessible, allowing 
both parties to fully agree to these terms. In this paper, we broaden 
the concept of smart contracts to include methods for storing and 
accessing immutable data on the blockchain. We define a smart 
contract as a 3-tuple (SID, COD, INF), where SID is the identifier 
of the smart contract, COD is the code of the smart contract, which 
is usually stored as binary code, and INF is the interface of the 
smart contract, which defines the methods that can be invoked. 
The process of deploying a smart contract involves creating a 
transaction T, where T.DES describes the smart contract to be 
deployed, including the smart contract’s location in the block, and 
T.DAT may include any associated data, e.g., a test dataset of a 
predictive model that is encoded in the smart contract. 

Running unverified code, such as smart contracts, on a user’s 
local machine can pose potential security risks. To address this 
issue, we can assign the responsibility of verifying the 
trustworthiness of smart contracts on a blockchain to full-node 
peers. Additionally, executing smart contracts on a virtual 
machine, such as the Ethereum Virtual Machine (EVM), can help 
minimize security vulnerabilities by restricting their interactions 
within the virtual environment. This approach ensures a 
deterministic execution of smart contracts, as the virtual machine 
maintains full control over the execution environment.  

3.2. Storing Predictive Models Using Smart Contracts 

Smart contracts being used as storage for predictive models 
provide a layer of abstraction that increases the efficiency for 
users to access and verify predictive models stored on a 
blockchain network. For example, a predictive model stored with 
a smart contract can be efficiently extracted by invoking a 
corresponding method defined in the smart contract. We call a 
smart contract that stores a predictive model a Model Smart 
Contract (MSC), which contains the serialized parameters of the 
model and a set of methods that can be used to access and verify 
the model. Every version of a model must have both a model ID 

(MID) and a version ID (VID), where MID and VID refer to the 
type of model and an instance of that model, respectively. For 
example, when MID refers to a set of predictive models used to 
forecast a company’s stock price, each model version refers to a 
specific prediction model. Models sharing the same MID can be 
published by the same publisher at various times or by different 
publishers, but it is essential for each model to have a unique VID. 

In our approach, predictive models are trained off-chain and 
only trained models are stored on-chain. Each peer can extract and 
recreate an exact copy of the trained model on a local machine by 
invoking a smart contract method defined in the corresponding 
MSC, which then allows the user to validate and execute the 
model without having to trust a centralized party. A smart contract 
containing a predictive model requires an associated transaction 
to be stored in the same block, documenting its deployment, 
location, and related data. The review comments of a model are 
also recorded in transactions but do not require an associated 
smart contract to access them. Instead, they are stored as plain text 
in a review transaction, directly accessible to peers. If transaction 
T tracks the deployment of an MSC, T.DES and T.DAT describe 
the MSC and its associated data, respectively. In contrast, if 
transaction T records the review data for a model version, T.DES 
and T.DAT contain the VID of the model and the corresponding 
review of the model, respectively. Figure 2 shows m versions of a 
predictive model that are stored on a blockchain network.  

 
Figure 2: A Predictive Model with Multiple Versions and Review Data 

As shown in Figure 2, each model version VID is stored in an 
MSC that defines its smart contract ID, the code of the model 
version, and an interface listing the methods that can be invoked 
by users. Each MSC model version i, where 1 ≤ i ≤ m, stored in 
block B is accompanied by a transaction with ID i_0 that describes 
the model version and is stored in the same block B. Suppose 
model version i has ki reviews. These reviews are stored in 
transactions with IDs from i_1 to i_ki. Note that since the reviews 
for a model version are uploaded at different times, the review 
transactions can be stored in different blocks other than block B. 

3.3. The Structure of a Meta-Block 

In order to store indexing information for efficiently finding 
specific versions of a predictive model and all reviews about the 

http://www.astesj.com/


 B. Wetzel et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 72-83 (2024) 

www.astesj.com    76 

model versions, we introduce the MB, which is a mutable meta-
block attached to the blockchain. When a new block is approved 
and added to the blockchain, each peer needs to update its MB so 
that it contains the latest indexing information about the models, 
versions, and review comments contained in the new block. 
Figure 3 shows the structure of the MB that consists of three parts, 
namely header, model index, and review index.  

 
Figure 3: The Structure of a Meta-Block 

The MB header contains the general information of the MB, 
which is defined as a 3-tuple (NM, NV, TS), where NM and NV are 
the total number of models and the total number of versions, 
respectively, and TS is the timestamp when MB was last updated. 
The model index and the review index modules contain indexing 
information about model versions, associated data and review 
data in terms of their addresses in the blockchain. The address of 
a model version is defined as a pair (BID, ISC), where BID is the 
ID of the block that stores the smart contract containing the model 
version, and ISC is the index of the smart contract within the list 
of smart contracts in the block. Similarly, the address of the model 
associated data or review data is defined as a pair (BID, ITR), 
where BID is the ID of the block that stores the associated data of 
the model or its review data, respectively, and ITR is the index of 
the transaction that records the information about the model 
version and review data within the list of transactions in the block. 
As shown in the figure, the model index module can be 
implemented in the form of a HashMap, where the key is an MID 
and the output value is a list of pairs (mVer_addr, assoDat_addr), 
containing the model version address and the model associated 
data address, i.e., the address of the smart contract with the 
predictive model and the address of the transaction that records 
information about the smart contract, respectively. Likewise, the 
review index module can also be implemented in the form of a 
HashMap, where the key is a VID of a model version, and the 
output value is a list of addresses that can be used to locate the 
transactions that record the reviews about the model version. 

4. Deployment and Retrieval of Predictive Models 

4.1. Process Overview 

To support efficient peer usage of a blockchain network, we 
require a distinction between full-node peers and regular peers, 
where a full-node peer contains a full copy of the entire 
blockchain, while a regular peer is not required to maintain a full 
copy but can make a request to a full-node peer for information 
retrieval and uploading. In this paper, we allow regular peers to 
retrieve a predictive model from a full-node peer and also to send 
reviews to a full-node peer for publication. Full-node peers have 
the privilege of deploying models by adding an MSC and its 

accompanying transaction to a new block. When a new block is 
added, it is broadcast to all full-node peers for updating. Figure 4 
shows the process of model deployment and extraction on a  
blockchain with the MB and m blocks. As shown in the figure, the 
blockchain contains models deployed by n full-node peers. There 
are also r regular peers, each of which is connected to a full-node 
peer and can utilize this connection to retrieve a model or post a 
review for the model. A full-node peer connected to the regular 
peer can add these retrieval transactions and reviews to a new 
block. Once the new block contains enough transactions, the full-
node peer can broadcast the new block to all full-node peers on 
the network for approval and adoption. 

 
Figure 4: An Overview of the Model Deployment and Extraction Process 

4.2. Generating a Meta-Block 

 The process of generating an MB involves searching each block 
in a blockchain. While searching a block, the addresses of models 
and reviews are found and added to the MB. Each model 
transaction tr, where tr.DES describes an MSC with an MID, must 
have the accompanying smart contract found in the same block. 
The address of tr and the address of the smart contract described 
in tr.DES are paired and added to the MB’s Model Index  
HashMap with MID as a key. If the pair represents the first 
instance of a model, an empty list of addresses is created before 
the pair of addresses can be added. On the other hand, if tr is a 
review transaction that contains a review on a particular model 
VID, its address is added to the Review Index HashMap with VID 
as a key. The complete process to generate an MB for a public 
blockchain is described in Algorithm 1. According to the 
algorithm, we search for transactions in each block of the 
blockchain. For each transaction, if it describes the deployment of 
an MSC with MID and the model has not been recorded in MB, 
the pair <MID, [(mVer_addr, assoDat_addr)]> is added to the 
Model Index, where mVer_addr, assoDat_addr are the address of 
the model version and the address of the associated data 
transaction, respectively. On the other hand, if the transaction is a 
review transaction for a model version VID, the pair <VID, 
[reviewDat_addr]> is added to the Review Index, where 
reviewDat_addr is the address of review transaction for the model 
version VID. This process is repeated for all transactions in each 
block of the blockchain until all blocks have been processed. 
While generating an MB on an existing blockchain can be a time-
consuming process, this process only needs to be performed once 
to be usable, thereby significantly reducing the time it takes to 
search and extract data from the blockchain. Additionally, a peer 
can download an already existing MB from another peer that has 
the latest MB, thus eliminating the need to search through the 
blockchain to create a new MB. Note that when a new block is 
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added to the blockchain, the MB can be updated in a similar 
manner as defined in Algorithm 1.  

Algorithm 1:  Generating a Meta-Block for a Public Blockchain 

Input: A public blockchain PB with n blocks 
Output: A generated MB 

1.  Create an empty MB with Model Index and Review Index HashMap    
     ΠM and ΠR, respectively 
2.  Initialize the total number of models NM to 0 
3.  Initialize the total number of model versions NV to 0 
4.  Set the time stamp TS to the current time 
5.  for each block B in PB 
6.      for each transaction tr in block B 
7.          if tr.DES describes a model with MID stored in MSC 
8.              if ΠM does not contain any versions with key MID 
9.                  Add <MID, [(mVer_addr, assoDat_addr)]> to ΠM 
10.                Increase NM by 1 
11.            else Update the list of model versions in ΠM with key MID 
12.        else if tr.DES describes a review of a model version VID 
13.            if ΠR does not contain any reviews of VID 
14.                 Add <VID, [reviewDat_addr]> to ΠR 
15.                 Increase NV by 1  
16.            else Update the list of reviews in ΠR with key VID 
17. return MB 

4.3. Deploying Models and Posting Reviews 

The process of deploying a classifier can only be done by a 
full-node peer. This process must first check whether the 
corresponding model version has been deployed. The MB is used 
to ensure that a particular version of a model has not yet been 
deployed to the blockchain by checking whether the version being 
deployed has been indexed by the MB. Formally, we define a 
model as a 4-tuple (MDA, MID, VID, ASD), where MDA is the 
data required to recreate the model, stored in a standard way of 
storing model data such as HDF5 [29]; MID and VID are the 
model ID and version ID, respectively; and ASD is the associated 
data of model version VID. Deploying a model α requires the 
creation of a transaction T_α and a model smart contract MSC_α, 
where MSC_α contains a method for extracting model data for the 
model version. The transaction T_α contains a description of 
MSC_α including the use cases of the model and the address of 
MSC_α. T_α must also contain any associated data, ASD_α. T_α 
and MSC_α are then added to a new block B that is being 
deployed. Deploying review β requires the creation of a review 
transaction, T_β, where T_β contains the review being posted. A 
new block B may contain multiple models or reviews, as defined 
by the full-node peer running the algorithm. Once block B is 
ready, it is broadcast to all full-node peers for approval before it 
can be published and added to the blockchain. If block B is 
successfully published, the MB must be updated to index the new 
data in block B. Algorithm 2 describes the process of generating 
and deploying a new block with multiple new models on a public 
blockchain. The efficiency of this process is predominantly 
influenced by the duration needed to broadcast block B and the 
quantity of transactions and smart contracts contained within the 
new block. Note that the process of publishing a review is similar 
to the process of deploying a model, but without the need to create 
an MSC. Therefore, in Algorithm 2, we do not show the process 
of adding a review transaction to the new block B. Once the new 
block B is approved and deployed, the MB needs to be updated to 

add the model information and the review data addresses to the 
HashMaps Model Index and Review Index, respectively. 

Algorithm 2:  Generate and Deploy a New Block 

Input: A public blockchain PB with an MB; a list of new models LNM 
Output: Boolean value indicating successful or failed deployment 

1.  Let B be a new block to be generated and deployed  
2.  for each predictive model α in LNM 
3.      if MB contains key α.MID in the Model Index HashMap 
4.          Let ΓM be a list of deployed models with key α.MID 
5.          if ΓM contains a model with version ID α.VID 
6.              continue  // the model version has already been deployed 
7.      Create a new model smart contract MSC_α for model α 
8.      Add MSC_α to the list of smart contracts in B 
9.      Create a new transaction T_α with model data α.ASD and a 
         description of MSC_α 
10.    Add T_α to the list of transactions in B 
11. Broadcast B and await consensus approval determination 
12. if new block B is not approved  
13.    return false  // failed deployment 
14. else Update MB to include new information from B 
15. return true // successful deployment 

4.4. Extracting Models and Reviews 

For a regular peer, the process of extracting a model of MID 
from the blockchain requires a connection to a full-node peer in 
order to make the request. When a full-node peer receives such a 
request, it retrieves all its model versions of MID and their reviews 
from the blockchain, and then returns the result as a list of model 
instances to the regular peer. Algorithm 3 describes the process of 
extracting all predictive models of MID and their reviews from 
the public blockchain PB with an MB.  

Algorithm 3:  Extracting Predictive Models and their Reviews 
Input: A public blockchain PB with an MB; a model MID to retrieve all 
its model versions and their reviews 
Output: A list of model instances of MID along with their reviews 
1.  Initialize LM to an empty list of model instances of MID  
2.  if MB contains the key MID in the Model Index HashMap 
3.   Let ΓM be a list of (mVer_addr, assoDat_addr) with key MID 
4.  else return LM     // LM is an empty list, i.e., no model is found 
5.  for each pair (mVer_addr, assoDat_addr) in ΓM  
6.    Let the model to which the pair refers be model α with VID_α 
7.    Create a new empty model instance Λ  
8.    Extract model α stored at mVer_addr 
9.    Extract associated data assoDat stored at assoDat_addr 
10.  Add model α and associated data assoDat to Λ 
11.  if MB contains the key VID_α in the Review Index HashMap 
12.  Let ΓV be a list of reviewDat_addr with key VID_α 
13.  for each reviewDat_addr in ΓV 
14.  Extract the review reviewDat stored at reviewDat_addr  
15. Attach reviewDat to Λ 
16.  Add Λ to the list of model instances LM 
17. return LM  

As shown in Algorithm 3, the full-node peer first searches for 
MID in its Model Index HashMap. If the model with MID does 
not exist, an empty list of model instances is returned. Otherwise, 
each model version must be extracted from the blockchain and 
added to a list of model instances LM. For each pair (mVer_addr, 
assoDat_addr), both the model α stored at MSC_addr and the 
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model data assoDat stored at assoDat_addr are extracted from the 
corresponding blocks in the blockchain and added to a model 
instance Λ. Then, the full-node peer searches for VID_α in its 
Review Index HashMap. For each review stored at address 
reviewDat_addr, it is extracted from the corresponding block in 
the blockchain and attached to the model instance Λ. Once all 
review comments have been retrieved, Λ is added to the list of 
model instances LM. Finally, when all model instances have been 
retrieved, LM is returned to the regular peer with the retrieval 
request. Note that without the MB, the extraction process requires 
traversing the entire blockchain. With the MB, it is possible to 
quickly find the addresses of predictive models and their review 
comments, thus making the extraction process very efficient. 

5. Case Study and Simulation Results 

The case study presented in this section demonstrates the 
efficacy of storing predictive models on a public blockchain. The 
stored models are multilayer perceptron (MLP) neural network 
classifiers that predict vehicle prices based on given parameters 
such as age and mileage. MLP classifiers were chosen due to their 
relatively large storage requirements compared to other ML 
methods such as linear regression. By showcasing the successful 
storage of MLP classifiers on a public blockchain network, we 
enhance our confidence in the adaptability of our approach to 
other types of predictive models and domains. This provides a 
springboard for more ambitious future research efforts. The MLP 
classifiers used in this case study are deployed by vehicle 
dealerships with an MID for each model, and a VID for each 
version of these models. For simplicity, in this case study, the 
MID and VID contain the vehicle model and vehicle year as 
substrings, respectively. For example, the classifier that predicts 
the price of a 2011 Toyota Camry, deployed by car dealer D on 
March 15, 2024, may have an MID of “Toyota Camry” and a VID 
of “2011_D_03152024”. 

5.1. Environment Settings 

We have developed two different modules: one using the  
Ethereum blockchain [4] and the other providing users with a web 
interface to interact with the blockchain. To experiment on the 
Ethereum blockchain, we employed Ganache, a tool commonly 
used for testing and development [30]. As with many smart 
contracts on Ethereum, the smart contracts developed in this case 
study were also coded in Solidity. While this approach is 
experimentally tested on the Ethereum network, it also involves 
simulating processes such as connecting to a full-node peer to 
retrieve data from the blockchain. In addition, since the approval 
of new blocks takes place through a consensus mechanism [31], 
we simulated the approval times of new blocks, assuming that the 
times are normally distributed with appropriate means and 
standard deviations (STDs). In this sense, we collect data points 
partly from measurements of real-world implementations and 
partly from simulated values that best fit real-world scenarios.  

The web interface was created to allay the concerns of regular 
users about the complexity of blockchain usage and to establish a 
secure environment for conducting the case study. Regular users 
can interact with the user-friendly interface to search for 
classifiers and their review comments, select suitable classifiers, 
extract classifiers and execute them on their local machines. It 
also allows regular users to create, publish, and read reviews 

comments through the interface. The website interacts with 
Ethereum through the Web3.js tool, facilitating user engagement 
with the Ethereum nodes. A regular peer can use the website by 
connecting to a full-node peer and assembling a classifier locally 
with the support of the TensorFlow.js tool. Review comments on 
a classifier are uploaded and viewed through the website by 
regular users. Various types of users such as companies or dealers 
can create and train classifiers with TensorFlow before deploying 
them to the blockchain through the interface. 

5.2. Space Efficiency for Storing Classifiers 

Space efficiency is crucial in a public blockchain because the 
blockchain needs to be stored on every full-node peer. This 
experiment provides a basis for the expected spatial storage of our 
proposed solution. In an MLP classifier, parameters are numerical 
values that quantify the complexity of the classifier. TensorFlow 
contains efficient methods for storing a classifier that allow us to 
isolate these parameters. The number of parameters nP in an MLP 
classifier can be calcaulted as in (1).  

                       𝑛𝑛𝑛𝑛 = ∑ � �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 + 1� ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑖𝑖+1

 �𝑛𝑛−1
𝑖𝑖=1                      (1) 

where Layeri refers to the number of neurons in layer i of the 
classifier. The rationale for this equation is that for each neuron in 
a layer, the number of connections to that node must be the same 
as the number of neurons in the previous layer plus a connection 
from a bias neuron. For example, a model with 5 input neurons, 1 
output neuron, and 3 hidden layers, each with 128 neurons, would 
have a total of 33,536 parameters. This quantifies the complexity 
of the classifier, which allows for comparisons between the 
different scenarios in this case study.  

In our approach, when determining the storage size of a 
classifier, we consider the size of the classifier itself as well as the 
overhead of storage, including the storage size of the methods 
defined in a smart contract and the size of the transactions that 
track the deployment of the classifier. The storage overhead is 
usually stable, while the size of the stored classifier can be 
efficiently measured by the number of bytes stored for its 
parameters. In addition, we must also account for the number of 
reviews for each classifier. We define a random number of 
reviews for each classifier by skewing the normal distribution 
[32], [33], and define its pdf (probability density function) and cdf 
(cumulative density function) using the pdf and cdf of the normal 
distribution as shown in (2-5).  

                                    𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥) = 1
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In (2-5), the parameters 𝜇𝜇 and 𝜎𝜎 represent the mean and STD 
of a normal distribution and are set to 0 and 1, respectively. 
Parameters α, ξ, and ω represent the shape, scale and location of 
a skew normal distribution and their values are chosen to be 10, 
0, and 200, respectively, to better match real-world scenarios. The 
rational for using this distribution and the chosen parameter 
values is based on the observations on websites such as Amazon 
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and others with reviews of items, where only a few items are 
highly popular and reviewed but most items are unpopular and 
have much fewer reviews. With this understanding, we can adjust 
the parameter values to create a right-skewed distribution we 
would find in the real world. The chosen values can produce a 
highly skewed distribution, similar to the distribution of product 
reviews on Amazon. This distribution is visualized as in Figure 5, 
where the distribution has a high variance and a significant skew 
to the right. The mode can be visually shown to be approximately 
70 reviews, although the mean is expected to be larger due to the 
significant skew.   

 
Figure 5: An Example of Skew Normal Distribution of Reviews 

The mean, STD and skewness of a skew normal distribution 
can be calculated as in (6-8): 

                                 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜉𝜉 + 𝜔𝜔𝜔𝜔�2
𝜋𝜋

 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛿𝛿 = 𝛼𝛼
√1+𝛼𝛼2
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                                     (7) 
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Table 2 shows the resulting mean, STD, and skewness of the 
number of reviews, as well as the MAX and MIN chosen for the 
skew normal distribution.  

Table 2: Chosen Parameters for the Size of Review Storage 

 Number of Reviews1 Review Transaction Size (KB)2 

Mean 159 0.35 
STD 121 0.03 
Max 600 0.6 
Min 0 0.25 

Skewness 0.96 0 
1 Number of Reviews follows a skew-normal distribution with skewness of 0.96 
2 Review Transaction Size follows a normal distribution (skewness = 0) 

As shown in Table 2, we assume the review transaction size 
follows a normal distribution with a mean of 0.35KB, a standard 
deviation of 0.03, and a skewness of 0. Note that review 
transactions stored on Ethereum require a minimum transaction 
size, while the maximum size is set to prevent malicious attacks 
on the blockchain network, such as posting unreasonably large 
reviews. With a generated random number of reviews for a 
classifier, we can calculate the total space Scla to store the classifier 
and its reviews on Ethereum as in (9).  

             𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)             (9) 

In (9), claComp is the classifier complexity (i.e., the number 
of model parameters), MSCSize is a function that computes the 
amount of storage space required to store the model’s MSC in a 
block, numRev is a random variable representing the number of 
reviews, and RevSizes(numRev) is the size of numRev randomized 
review transactions. The function MSCSize was determined from 
experimental test data on the Ethereum network, where a linear 
relationship was found between the complexity of a classifier and 
the size of the associated MSC containing the method of extracting 
the model parameters of a classifier. 

Figure 6 shows the 500 data points generated based on the 
chosen parameters listed in Table 2 and the storage space required 
on Ethereum. Each data point is generated by randomizing the 
model complexity (i.e., a random number of parameters in the 
model) and yields the storage space required to store the model 
and the associated transaction describing the model. We further 
generate the random number of reviews and their review 
transaction sizes based on the distributions provided in Table 2. 
The storage sizes of the classifier and all its reviews are summed 
to yield the total size required to store the model on the Ethereum 
blockchain network.  

 
Figure 6: Storage Size of Uploaded Classifier and Their Reviews 

As shown in Figure 6, the trendline clearly demonstrates that 
the average size of storing a model on Ethereum is reasonably 
small and increases with classifier complexity. While the presence 
of highly reviewed models puts the trendline slightly above the 
large clustering of models, the size required to store such 
classifiers is typically less than 250KB, even at the far end of the 
range where high-complexity classifiers are accompanied by 
many reviews. This result is promising and demonstrates both the 
spatial efficiency and scalability of this approach. For example, if 
there are 100 car dealerships, each deploying 50 models per year, 
with approximately 200K parameters in each model, for 10 years, 
the blockchain storage requirement would be merely 10GB. It is 
worth noting that while we used Ethereum for our experiments in 
this paper, our vision for the future is to develop dedicated public 
blockchain networks for storing specific types of predictive 
models. Thus, such dedicated public blockchain networks could 
be scalable and available for a long period of time (e.g., 10+ 
years). In addition, we could also consider mitigating the 
scalability issue further by using historical blockchains, such as 
those discussed in [34].  
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5.3. Time Efficiency for Deploying a New Block 

The amount of time to deploy a new block containing multiple 
classifiers includes the time to broadcast a new block to other full-
node peers and the time to approve the new block using a 
consensus mechanism. The broadcast time can be estimated based 
on the broadcast rate and sizes of the classifiers included in the 
new block. As shown in Table 3, we assume that the size of the 
classifier is normally distributed with a mean value of 200KB for 
storing the classifier parameters with different model complexity 
and the overhead required to store the model on Ethereum. Note 
that the classifier size distribution requires a maximum value to 
avoid unrestricted file upload attacks on the blockchain network 
and a minimum classifier size to avoid deployment of trivial 
models on the blockchain. Considering the uncertainty of network 
traffic and the possible bandwidth constraints that may be 
enforced by the full-node peers, we assume that the broadcast rate 
and the approval time (i.e., the consensus time) are also normally 
distributed with the parameters listed in Table 3.  

Table 3: Parameters for Deploying a New Block with Multiple Classifiers 

 Broadcast Rate 
(KB/s) 

Classifier Size 
(KB) 

Consensus Time 
(s) 

Mean 500 200 12 
STD 300 20 2 
Max 1,000 1,000 100 
Min 200 10 8 

Our estimate of the approval time is based on the average time 
it takes to add a new block to the Ethereum blockchain, which is 
about 12 seconds [35]. Similarly, the consensus time must be able 
to time out (e.g., 100 seconds) when there are not enough full-
node peers to approve a new block. Since classifiers must be 
deployed through blocks, the number of transactions or classifiers 
in each block directly affects the time required for deployment. 
The time required to broadcast a new block to other full-node 
peers increases with the number of transactions and classifiers, as 
well as the sizes of the transactions and classifiers. The time to 
deploy a new block Tdeploy can be generated using (10), where 
ClaSizes(numCla) returns the size of numCla classifiers in the 
new block, BCR is a random broadcast rate, and ConsTime is a 
random consensus time.  

                         𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
𝐵𝐵𝐵𝐵𝐵𝐵

+ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                   (10) 

Figure 7 shows the time required to deploy a new block with 
1 to 10 classifiers. There are 30 data points for each number of 
classifiers, each representing a new block, and the variables are 
chosen randomly according to the distributions defined in Table 
3. The trendline in the figure shows how much deployment time 
is expected to be needed as the number of classifiers increases. 
With 10 classifiers, the expected deployment time is about 18 
seconds, which is a reasonable waiting time for the users. We note 
that among the above data points, the time used for the approval 
process accounts for the largest percentage of the total 
deployment time, while the percentage of the time used for 
broadcasting new blocks increases slightly with the number of 
classifiers. Based on the experimental results, it is desirable to 
include more classifiers in the same block when there is a high 
demand for uploading classifiers in a short period of time. 

 

Figure 7: Time to Deploy a New Block 

5.4. Generation of a Meta-Block 

Another key use case for this approach is the generation of an 
MB by a full-node peer. This process is largely affected by the 
number of transactions in each block and the total number of 
blocks in the blockchain. Since there is usually an upper limit to 
the number of transactions that can be reasonably placed in a 
block, the time to generate an MB would be approximately linear 
with the number of blocks in the blockchain. In a real-world 
setting, a full-node peer needs to connect to other full-node peers 
to verify the consistency of its blockchain before generating an 
MB. The time to connect to other full-node peers for such 
verification is assumed to be normally distributed with a mean 
time of 10 seconds and a STD of 2 seconds. The time TgenMB to 
generate a meta-block can be calculated using (11), where GenMB 
is the time to generate an MB based on experimental tests, and 
ConnPeer is the randomly simulated time to connect to a full-node 
peer node. 
                         𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                               (11) 

Figure 8 shows the simulation time to generate an MB based 
on the number of blocks in the blockchain.  

 

Figure 8: Time to Generate a Meta-Block 

Note that Figure 8 only shows up to 1,500 blocks; however, 
based on the degree of linearity shown in the figure, we can infer 
how long it takes to generate an MB for a blockchain with a larger 
number of blocks. Additionally, the stochastic impact of the time 
to connect to a full-node peer is reduced when the number of 
blocks increases. This is because the connection time is centered 
on a 10-second average, so as the number of blocks increases, the 
impact of the connection time becomes smaller compared to the 
total generation time. For a blockchain with 1,500 blocks, the time 
required to generate an MB in less than a minute is reasonable, 
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and the fact that it only needs to be executed once demonstrates 
the effectiveness of this approach.  

5.5. Analysis of Search and Retrieval Time 

The search and retrieval (S&R) time for classifiers and their 
reviews is the main waiting time for regular users; therefore, we 
must minimize this time as much as possible. For each retrieval 
request made by a regular peer, several versions and their review 
comments must be retrieved and sent back. While the search time 
through an MB is expected to be efficient, regular peers that do 
not maintain the blockchain need time to connect to a full-node 
peer, which retrieves the requested data and returns results to the 
regular peer. Thus, the S&R time TS&R consists of three 
components as shown in (12): the time required to connect to a 
full-node peer from the regular peer (ConnPeer), the time required 
for the full-node peer to search for each requested classifier and 
its review comments, and the time required to send this data back 
to the regular peer (i.e., the download time). Note that the 
download time is based on the total size of the classifiers ClaSizes, 
the total size of all reviews RevSizes, and the download rate (DLR) 
for downloading the classifiers and their reviews.  

            𝑇𝑇𝑆𝑆&𝑅𝑅 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑛𝑛) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐷𝐷𝐷𝐷𝐷𝐷

            (12) 

The search time is measured on an Ethereum blockchain 
network. According to Algorithm 3, the expected search time 
Search(n) is approximately linear as the number of blocks n 
increases. The number of reviews for each model version follows 
the skew normal distribution defined in Table 2. The size of a 
classifier, the size of a review and the download rate are randomly 
generated following the normal distribution defined in Table 4.  

Table 4: Parameters for Searching and Retrieving Classifiers 

 Review Size 
(KB) 

Classifier 
Size (KB) 

Download 
Rate (KB/s) 

Connection 
Time (Sec) 

Mean 0.1 100 500 10 
STD 0.03 50 300 2 
Max 0.35 800 1,000 100 
Min 0 10 200 1 

As shown in Table 4, the size of each review and classifier is 
significantly different from those listed in Table 2 and Table 3, 
respectively. This is because in this experiment, we only need to 
download the reviews and classifiers themselves and not the 
transactions associated with them. It is important to note that 
transactions stored with Ethereum usually contain additional 
information that is not necessary for a regular peer to download. 
The time to download data is determined by the amount of data 
downloaded, defined as the last term in (12).  In addition, we 
assume that ConnPeer is normally distributed, with a mean time 
of 10 seconds and a STD of 2.  

Figure 9 shows the time required to search and retrieve three 
arbitrarily chosen classifiers and their reviews versus the number 
of blocks in a blockchain. To demonstrate the effectiveness of our 
approach, two different search methods are included in the figure: 
one is our approach using MB, and the other is a conventional 
blockchain method that does not use MB. The conventional 
approach searches for all transactions from the newest block to 
the oldest block and saves reviews and model data during the 
search. We conducted 250 experiments with each approach, 

where a data point represents a request from a regular peer. The 
S&R time for each data point is calculated using (12), where the 
search times were measured by simulations on Ethereum. 

 
Figure 9: Search and Retrieval Time for Classifiers and Their Reviews 

In order to clearly demonstrate the effectiveness of our 
approach, we show the trendlines for both methods. As can be 
seen from the trendlines, the average S&R time of the blockchains 
using MB remains relatively stable. The difference between a 
large number of blocks and a small number of blocks is about 5 
seconds, while the conventional method without using MB takes 
significantly longer as the number of blocks increases. Thus, 
based on the experimental results, our approach greatly improves 
the ability to search a blockchain compared to a conventional 
approach without using MB.  

It is worth noting that the experimental results are based on 
real-world data collected from the Ethereum blockchain network, 
as well as simulated data designed to demonstrate the practical 
implications of the case study. The inclusion of carefully selected 
distribution values enhances the credibility of the case study and 
increases confidence in the case study solution.  

6. Conclusions and Future Work 

As machine learning becomes an increasingly important part 
of many people’s lives, the need to address the issue of trust in 
these algorithms grows every day. The approach proposed in this 
paper aims to completely eliminate the need for trust by 
combining machine learning models with a decentralized public 
blockchain network. Machine learning models are stored on a 
blockchain through smart contracts, which contain methods for 
accessing and validating the stored models. Transactions are used 
to track the deployment of models and record their reviews. Thus, 
model users do not need to trust individual organizations, but only 
peer reviews and their own audits of machine learning algorithms. 
To further enhance the user experience, we add a meta-block at 
the beginning of the blockchain to record indexing information 
for all models and reviews stored on the blockchain. Our 
experimental results on Ethereum show that our approach is 
effective and efficient when deploying predictive models on a 
public blockchain network.  

For future work, we plan to develop dedicated public 
blockchain networks for deploying predictive models. Storage 
and computation costs can be reduced as the scale of a dedicated 
public blockchain network is more manageable. The impact of 
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congestion on the blockchain is also a key issue that needs to be 
addressed [36]. In our current approach, the approval of new 
blocks and the retrieval of classifiers and their reviews are handled 
by full-node peers. In future work, we may consider developing 
efficient load balancing mechanisms for full-node peers [34] to 
mitigate the impact of blockchain network congestion on system 
performance. Furthermore, combined with the trustless nature of 
blockchain, we can bring more systematic changes to the way the 
machine learning models are created. This could include 
publishing metrics for training data or goals for the training 
process on the blockchain. Additionally, training could take place 
entirely on the blockchain, rather than off-chain as in our 
approach. While an on-chain approach may lead to scalability 
issues, it allows users to trust the process of creating the model 
rather than the model itself. This can be important in situations 
where the trustworthiness of a model cannot be easily validated 
by regular users. To elaborate on this approach, a new smart 
contract could be designed to handle on-chain training, where full-
node peers have the ability to define new methods and execute 
them to train predictive models. Finally, we can consider 
implementing automated auditing of new AI/ML models [37]. 
This automated approach helps eliminate undesirable AI/ML 
models from being stored on the blockchain, thus saving model 
storage space. Based on previous work [38], new models can be 
initially deployed in a temporary block, transitioning to a 
permanent block upon successful completion of auditing. This 
auditing procedure can be automated, facilitated by classifiers 
trained on historical data to discern undesirable models. 
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