

www.astesj.com 14

* Corresponding Author: Stefania Nanni, Lepida ScpA; stefania.nanni@lepida.it

From Sensors to Data: Model and Architecture of an IoT Public Network

Stefania Nanni 1, Massimo Carboni 2, Gianluca Mazzini 3

1 LepidaScpa, Research & Prototypes, Bologna, 40128, Italy

2 LepidaScpa, CEO, Bologna, 40128, Italy

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 03 April, 2024
Revised: 28 May,2024
Accepted: 29 June, 2024
Online: 11 July, 2024

 RetePAIoT of Emilia-Romagna region is an IoT Public Network, financed by Emilia-
Romagna Region and developed by Lepida Scpa, where citizens, private companies and
Public Administrations can integrate free of charge their own sensors of any type and
anywhere in the region. The main objective of the project is to provide a facility to
implement the IoT paradigm, receiving data potentially from thousands of different sensors
from the territory and to make them available to their owners and, in aggregate or
anonymous form, to Public Administrations for their institutional purposes. In this context
the interpretation of payloads sent by sensors, i.e. the extraction of the values measured by
sensors, as well sharing them with all authorized subjects. are fundamental aspects that
present a significant complexity due to the variety and unplannable context of the project.
This paper illustrates the model and the architecture of a solution for the automatic
extraction of values potentially coming from thousands of different sensors, which therefore
requires a high level of flexibility, robustness and scalability as well as different methods
for sharing them with third parties, depending on purposes and technical level required.

Keywords:
IoT network
Decoder
Data extraction

1. Introduction

As illustrated in the original paper [1], in 2019 LepidaScpa
launched a project, financed by Emilia-Romagna Region, called
retePAIoT, aimed at covering the entire regional territory with a
LoRaWan network [2], offering an IoT infrastructure to both
Public Administrations and to private citizens or companies to
connect their own sensors.

Several actors are participating to this project, with different
roles:

• LepidaScpA is in charge of the development and the
maintenance of the IoT infrastructure: gateways, server
network, included the web platform for the management of
sensors, their data and users;

• Municipalities have to provide free of charge places of
installation of gateways and to advertise the initiative on their
own territory;

• Municipalities have to provide free of charge places of
installation of gateways and to advertise the initiative on their
own territory;

• End users (both public and private) have to purchase sensors.
Type and model of sensors can be any, but users have to
provide LepidaScpa with information on those not yet present
in the catalog, to be update. Users, in fact, have also to register
their own sensors into retePAIoT network, through retePAIoT
web interface [3], specifying the correct brand and model of
sensors, from which decoding rules of payload of sensors
messages depend.

The main objective of the retePAIoT project is to make
available a free of charge IoT regional network to Public
Administrations as well as private users or companies, to facilitate
the installation of their own sensors, collecting data from the
territory and making them available to owners of the sensors and
to Public Administrations for their institutional purposes [4]. This
means that the measurements sent by the sensors integrated in the

ASTESJ

ISSN: 2415-6698 Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 14-20 (2024)

www.astesj.com

https://dx.doi.org/10.25046/aj090403

http://www.astesj.com/
https://www.manuscriptlink.com/journals/astesj/manager/email?toEmail=stefania.nanni@lepida.it&manuscriptId=4443
http://www.astesj.com/
https://dx.doi.org/10.25046/aj090403

 S. Nanni et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 14-20 (2024)

www.astesj.com 15

public IoT network, retePAIoT, can be consulted both by owners
of the sensors, but also, anonymously or in aggregate form, by the
Public Administrations interested in exploiting the data coming
from the regional territory. This important goal is possible only if
the retePAIoT project, in addition to facilitate the installation and
the collection of data sent by the sensors, also provides their
decoding, i.e. the extraction of the measured values, making them
usable, through appropriate interfaces, both to the owners of the
sensors and to the Public Administrations.

To encourage the use of the retePAIoT project by all interested
public and private users, no limits have been set to the types,
models and brands of sensors that can be used. For this reason, the
catalogue of the sensors that can be registered in retePAIoT is
constantly updated upon users request with new models and types.

It is important to underline that other LoRaWan networks exist
in Europe and around the world which are public and free and
which allow different types of sensors to be integrated by different
users. An exemplary case is the TTN network, The Thing Network
[5], which, in addition to being widespread in Europe, especially
in France, and in the world, constitutes a global network for the
integration of both sensors and LoRaWan gateways. But while
both networks, TTN and retePAIoT, share the primary purpose of
providing a network infrastructure that is accessible to anyone at
no cost, promoting innovation and widespread adoption of IoT
technology, retePAIoT has the additional and fundamental
objective to use the data collected by the sensors.

This purpose is not only peculiar to the retePAIoT network,
compared to other public ones, which normally delegate it to single
users, but it involves a series of onerous activities such as
knowledge, cataloguing, validation, description of the
measurements and the corresponding units within the Data Base of
all integrated sensors, as well as the implementation of a new
architecture for the automatic extraction of data from the messages
sent by the sensors, which constitutes the real added value and
aspect innovative of the solution presented in the original paper [1]
and in this one.

In this paper it will be highlighted the importance, the critical
issues and the automatic solution adopted for the decoding of the
payloads and for the extraction of the data within a complex
scenario such as an IoT public network like retePAIoT and some
different methods and interfaces to share them to different users,
according to their needs.

For this purpose, this paper starts form a brief overview of the
state of the art of some useful management features offered by
ChirpStack [6], that is the open LoRaWan server network used to
manage retePAIoT network, and on which the model and
architecture of the solution proposed in this paper is based. The
rest of this paper is organised as follows: the third section briefly
illustrates the main architecture of the Internet of Things public
network, retePAIoT; section IV describes the structure of the
centralized database, with particular reference to the fundamental
extension of sensors registry tables introduced to resolve
criticalities and to guarantee the requirements of payload decoding
service; section V focuses on the new architecture implemented to
automatically decode payloads sent by sensors, based on a new
feature made available by ChirpStack, its logical flow, closely
based on sensors database model extended, and the relevant goals

and advantages that it achieves respect the original one [1]; section
VI describes different interfaces made available by retePAIoT
network to share data to different users and objectives; section VII
describes a significant use data case, and the last one summarises
the main results achieved by retePAIoT network.

2. The State of the Art

ChirpStack is an open-source platform for managing and
monitoring LoRaWan networks. It provides a modular software
suite that enables network operators, developers and end users to
build and manage scalable and reliable LoRaWan networks.
ChirpStack Application Server is a module of ChirpStack that
manages IoT applications, allowing developers to create and
manage custom applications to analyze and interact with data from
LoRaWan devices. In particular, the 'device profile' and the
'application' are two entities, managed by the Application server
module, which respectively allow to specify the communication
and configuration settings of the devices and to manage a specific
IoT application or use case within the ChirpStack platform.

Starting from ChirpStack version 3.0, decoding rules of
payloads devices have been associated to the 'device profile' entity
instead of the ‘application’ one, making it possible to avoid
duplication of decoding rules in the very common cases in which
devices of the same type were used in applications associated to
different users.

The new positioning of the payload decoding function
constitutes the opportunity to provide the decoding of the payloads
of the various devices directly within the ChirpStack, in place of
an external module, using directly the javascript code, normally
provided by the devices manufacturers, instead of requiring the
development of different software modules, as implemented in the
first release of retePAIoT [1]. ‘Application' is now only a logical
entity that allows network operators to create and to manage
customized IoT applications according to the specific needs of
different use cases and users, relatively, for example, to different
modalities to share data of devices associated with other external
systems. The two entities ‘device profile’ and ‘application’
managed by ChripStack in last releases are at the base of improved
model and architecture of retePAIoT platform, for the extraction
and the sharing of the data, that are two fundamental aspects for
the use of sensors data, which constitutes the final objective of
retePAIoT and, in general of all IoT networks.

3. retePAIoT Network Architecture

The basic architecture of a public network for the internet of
things like retePAIoT is shown in Fig.1, where main components,
sensors, gateways and network server, and types of connections
are highlighted: the black line represents an internet connection,
the violet line a Lepida fiber connection, the dotted line a
communication based on wireless LoraWan protocol, whose
specifications can be found in [7].

One or more LoraWan gateway are installed in each
participating municipality, and represent the meeting point
between two types of communication: on the one hand, through
the LoraWAN protocol, they receive the data coming from the
users sensors, on the other they are connected to one of the fiber

http://www.astesj.com/

 S. Nanni et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 14-20 (2024)

www.astesj.com 16

points of access of the Lepida Network, allowing the sensors
messages to reach the LoraWan server.

Figure 1: Architecture of internet of things public network, retePAIoT

This server is a virtual machine hosted in one of the four
Regional Data Centers managed by LepidaScpA [8], and it
undertakes the registration of sensors in the network and the
subsequent establishment of encrypted sessions through which
payloads are transmitted. The software installed for the
management of the protocol is the open source LoRa Server
ChirpStack [6].

Every user must register himself and the sensors, for which he
is responsible or owner, through the web portal, another virtual
machine in the same Datacenter where the LoRaServer is hosted.

The lack of a communication standard shared between all IoT
devices is a problem whose solution strongly depends on the
technology and the scope in which you are working [9], [10], [11].
The major criticality addressed in this paper arises from the need
to postpone the decoding process with respect to that of messages
reception, in order to better comply with the nature of the
retePAIoT network which is free, open to any brand and model
that users may require and mindful of the decoupling between raw
and processed information.

In the following paragraphs, the architectural and functional
aspects to save sensors payloads and to interpret and extract their
data and different methods to share them will be examined in
depth, because, as already highlighted, they constitute essential
services of the project that present some elements of complexity
which require not only a critical and in-depth analysis, but it also
deserves a specific focus, that this paper intends to highlight,
together with the solution devised and implemented to resolve
them.

4. Extended DataBase

The database of retePAIoT network is an Oracle relational
database that allows to manage both sensors and users data and to
store the payloads and the values of the measured quantities, as
shown in Figure 2, as already illustrated in a previous paper [3].

The next one [1], instead, focused on extension of some tables
of the database provided for the description of the sensors, 'sensor',
and for saving of their messages, ‘sensor-value’, which became
necessary to deal with some cricities related to the decoding
process. In this paragraph it is considered useful to summarise the
critical aspects that made it necessary and above all the advantages
that derived from it.

The problems that managers of retePAIoT network have to
face and have to solve in retePAIoT scenario are basically three:

1. check of the correctness of the brand and the model specified
by the user for a sensor, through the comparison between the
format of expected payload and that of payloads actually
received

2. description of all measures, provided by a sensor, in ‘sensor-
measure’ table, according to sensor brand and model

3. implementation of the rules for extracting and storing the
values from payloads for every new type, brand a model of a
sensor

Figure 2: DataBase schema of retePAIoT

These problems imply that it is not possible to ensure that a
sensor has been completely described within the database, through
the specification of the corresponding measurements neither the
payload decoding service is active at the very moment in which its
payloads start to arrive.

To cope with these problems and guarantee the correct
decoding of the payloads at any later time without any loss of
information, an extension of two tables, 'sensor' and 'sensor-value'
tables, which respectively contain the details of all the sensors
registered on the PAIoT network and all payloads received by
sensors, was provided:

‘sensor’ table:

• instance (integer, default = 0)

• interpretation (boolean, default = false)

 ‘sensor-values’ table:

• interpreted (boolean, default = false)

The 'sensor.instance= 0' field indicates that the correctness of
the model and brand specified by the user for the sensor has not
yet been verified and that, in particular, within the database, in the
'sensor-measure' table the sensor corresponding measures have not
been described yet.

The 'sensor.interpretation = false' field indicates that the sensor
payloads cannot be decoded yet, either because the sensor has not
yet been instantiated, 'sensor.istance = 0', or because the decoding
rules of the specific sensor have not been implemented yet.

http://www.astesj.com/

 S. Nanni et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 14-20 (2024)

www.astesj.com 17

The sensor-value.interpreted=false' field keeps track of the
payloads already received from the network server and stored
within the database in the 'sensor-value' table, but not interpreted
yet.

The extension of the 'sensor.instance' field allows to complete
the description of the corresponding measurements of a sensor at
any time after the registration and only thereafter the validation of
the corresponding model.

The extension of the 'sensor.interpretation' field allows to
postpone the decoding of the payloads until all the conditions that
make it possible are verified:

• consistent description of the sensor corresponding measures
within the database in the 'measure' table, corresponding to
’sensor.istance’ = 2

• availability of the rules for extracting the corresponding values
in the decoding module ‘sensor.interpretation = true’

Finally, the extension of the 'sensor-values’ table with the
‘interpreted' field allows to keep track of the received and stored
payloads, which have not yet been decoded and to be able to do
that at any subsequent time, without losing any information.

5. Decoding Modules Improvement

As already explained in the original paper [1], in retePAIoT
platform the process of receiving, decrypting, saving and
interpreting messages sent by sensors via the LoRaWan network is
carried out by ChirpStack network server and two main modules:
'archiver payload' and ‘decoder'. In the original release [1],
however, the 'archiver payload' module had only the task of saving
the messages decrypted by the network server into ‘sensor-value’
table, completely delegating the extraction of the corresponding
values to the asynchronous 'decoder' module, when all the
conditions necessary for decoding payloads i.e. description of the
sensor measurements within the database (sensor.istance = 'true')
and the implementation of the payload decoding rules
(sensor.interpretation='true'), had been verified. The need to
provide an asynchronous 'decoder' module capable of decoding
payloads in a phase following the reception of the messages, is
intrinsic into the complex and unplannable scenario in which the
public network RetePaIoT operates and has been also maintained
in the advanced solution illustrated in this paper. The possibility
offered by the new versions of ChirpStack of inserting the payload
decoding code into the ChirpStack ‘device_profile’ for each
different type of sensor has the big advantage of exploiting the
javascript code normally provided by the sensors manufacturers,
optimising its development and maintenance.

The advanced solution presented in this paper provides the
possibility of decoding the payloads of the messages both in
synchronous mode by the ChirpStack server, once the
configuration of the new sensors in retePAIoT is fully operational,
and in asynchronous mode, as a robust and flexible mechanism for
recovering all the messages received and not yet decoded or even
for the re-execution of the message decoding phase in case of need
to correct any decoding errors.

It is important to underline that, for each type of sensor, the
advanced solution presented in this paper uses the same decoding

code implemented in the correspondent ‘device profile’ both in the
synchronous and asynchronous mode. To this end, the
asynchronous 'decoder' module has been modified so that, for each
record in the 'sensor-value' table to be decoded, it recalls the
decoder code foreseen for the 'device_profile' assigned to the
device sending the message. In the second release, therefore, the
asynchronous decoding of the messages process has been
improved regarding the following two aspects:

• entrusting the network server with the real-time decoding of the
messages coming from the sensors already associated with a
profile and already validated and described (sensor.instance =
2 and sensor.interpretation = true)

• taking charge of the decoding only of those messages not still
interpreted by the network server ('sensor-value.interpreted =
'false'), but using the same javascript code specified in the
ChirpStack devices profiles, once it has been made available

In the new release of retePAIoT the process of managing
messages received by ChirpStack network server works as follow
(Fig.3):

Figure 3: Decoding improved modules data flow

5.1. “archiver payload” module

This module, always running, via the mqtt protocol performs a
subscribe on the queue with topic "application" of the LoRaWan
ChirpStack network server.

When the network server receives a frame from a device
registered on its network database, it decrypts the message, it packs
all the information of the frame, both the payload and transmission
metadata (i.e. SF, RSSI, SNR, ect.) into a json format and it
publishes them on the internal mqtt server. If for the device, that
has sent the message, is associated a ‘profile device’ for which is
provided also a decoder java script code, that knows how to
analyse, parse and extract the values from the hexadecimal data of
the payload, the server network also extracts the values contained
in the payload, adding them to the published json data.

http://www.astesj.com/

 S. Nanni et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 14-20 (2024)

www.astesj.com 18

The callback function registered for the ‘onMessage’ event of
the topic ‘application’ is invoked in the "archiver module", that
receives the json of the message just published from the server
network as an argument and it provides to save the content, i.e.
payload and metadata transmission of the message in ‘sensor-
value’ table of the database and, if present and sensor.istance = 2
and sensor.interpretation=true, also moves the decoded data, in
‘measure_value’ table. In this case the field ‘sensor-
value.interpreted’ of the record just saved in table ‘sensor-value’ is
set to ‘true’, meaning that the payload has already been interpreted,
otherwise to ‘false’.

5.2. “decoder” module

‘Decoder’ module is an asynchronous module that queries the
database by joining the ‘sensor’ and ‘sensor-value’ tables, in order
to retrieve all and only payloads which still need to be interpreted,
for which the decoder is now available and whose measurements
are now described within the database, that satisfy, therefore, the
following correspondents conditions, expressed in the ‘ where’
clause:

• sensor-value.interpreted=0

• sensor.interpretation=1

• sensor.istance=2

It should be highlighted that, in case of crash of the ‘decoder’
module, the ‘sensor-value.interpreted’ flag remains set to zero: this
does not involve loss of decoded data, since the payloads can
always be reprocessed asynchronously at any later time. The same
applies in case one of the above conditions (instance,
interpretation) is not satisfied at the moment of first processing but
changes afterwards. Additionally it becomes possible to reprocess
the payloads as many many times as needed in case of errors or
updates in the decoder javascript.

5.3. The transition to the new architecture

The design of the data flow in steps controlled by flags set in
the database for each sensor and payload was crucial also to allow
for a seamless transition from the previous to the new system
architecture. With the previous design, a php decoder script was
always alert to catch newly stored payloads into the database with
‘sensor-value.interpreted=false’ flag. This software was not
terminated but is being kept running to process the data from those
sensors that do not have a decoder profiled in the ChirpStack server
yet. At the same time, those payloads arriving from sensors with a
profile equipped with a decoder javascript are given a ‘sensor-
value.interpreted=true’ flag before being written to the database in
such a way that the php script of the old architecture will not catch
them up. Conversely, the payloads that have not been decoded
directly by the network server because no code was added to their
sensor profile, are given an ‘sensor-value.interpreted=0’ flag
allowing the payload module to store the raw payload in the
database without attempting to recover the decoded information
and leaving to the php script the decoding task.

The two systems, old and new architecture, are therefore
running at the same time: the old php decoders are progressively
dismissed while new js-decoders are added to the ChirpStack
sensor profiles. No sudden switch from the old to the new system

was necessary, allowing the administrators to test the new
decoders with ease one at the time.

5.4. Derived measures

It is often useful to compute derived measurements from the
data that has been decoded, for example changes in the unit of
measure or collection of cumulated values. If a description of the
new measures is provided for a sensor in the ‘sensor-measure’
table, the relative information is accessed during the processing of
the payload and a new attribute ‘sensor-values.to_be_derived’ can
be set for the payload and stored in the database. This technique
allows to compute derived measurements for flagged payloads at
any subsequent time employing asynchronous scripts with no
waste of computing resources.

6. Data sharing interfaces

There are different ways to provide users of the retePAIoT
network with access to the transmitted data, both in real-time and
at a later time. They consist in taking advantage of the mqtt
functionalities, in creating push integrations and offering restful
API interfaces.

To exploit the mqtt features, a new instance of mqtt server has
been created and made available on a public ip address. The public
mqtt server is tightly and bidirectionally linked with the private
mqtt instance of ChirpStack by means of the mqtt bridge (Fig.4):

Figure 4: Public and Private instance of MQTT server

The mqtt bridge configuration requires to specify the topics
that are to be shared; in this way, any message published on any of
these topics on one of the mqtt instances is immediately sent to the
other. The user, who has previously been provided with personal
login credentials (username, password), has simply to connect to
the public instance and subscribe to any desired topic. The login
credentials are needed to profile the users in order to restrict the
access only to their own data and keep all data private. Besides, the
implementation design of dividing the devices into groups of
‘applications’, as defined on the ChirpStack application server,
allows for simple and immediate management of data sharing with
all authorized users. This solution highlights the advantage of
using a public mqtt, that is to allow data sharing in a transparent
and secure manner with all and only the authorized users.

It is worth noting that data are published only after having
being decrypted, since the retePAIoT network is the owner of the
devices and knows the communication keys for each device; that
must be done immediately upon receiving a message because the
keys are subject to change, ie the device can eventually renegotiate
them at any time both in otaa and abp connection modes.
Moreover, the private mqtt instance of the ChirpStack will receive
all messages from any device that is in communication range of a
gateway belonging to the retePAIoT network, so it is not unlikely

http://www.astesj.com/

 S. Nanni et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 14-20 (2024)

www.astesj.com 19

that it will receive a message from an unknown device. However,
the public mqtt will receive all and only the messages managed by
the retePAIoT network that must be shared. . The availability of a
public MQTT directly connected to the private one allows to share
even very large quantities of data in real time and in row form as
if they were arriving directly from the private MQTT ChirpStack
network server.

In our specific case of the retePAIoT network, an additional
integration with an external InfluxDB database has been set up.
For this integration to work, the user is required to notify the
retePAIoT administrators for the settings to use. Once the server
configuration is done - which in our case only necessitated editing
a configuration file - the ChirpStack server automatically handles
all the communication steps with the database, dramatically
simplifying the process of acquiring and storing data on the
database side.

InfluxDB is specialized in managing time series, which makes
it a perfect match for IoT applications. When exporting the sensor
data, the only attention should be paid to the building of the json
data block with the prescription given by InfluxDB. In our specific
case the aim of the external application is to monitor and analyse
the information concerning the signal transmission quality,
therefore only this part of data is being shared outside the
retePAIoT and no specific adjustment was required to our json
format. With this feature of the ChirpStack server the whole
process of sharing the information with an external source was
essentially effortless.

The retePAIoT project also offers access to data by means of
the well-known restful APIs. Since APIs work on stored data, they
can fetch measurements only after all of the previous modules have
finished processing the incoming payloads. So far, the retePAIoT
projects offers APIs to access the raw data (ie. the unprocessed
message from the sensor) enriched with specific LoRaWan
parameters like the RSSI, the SNR, the spreading factor and the
used fPort as well as APIs to access the decoded value of any of
the measurements of the sensor. The output is generated in the
common json format for ease of use. For security reasons,
moreover, when using the APIs the user must provide his personal
access key in the body of the request. No data will be extracted
without the auth key or if the requested sensor is not owned by the
user identified by the auth key. The use of APIs for data retrieval
is especially indicated for application purposes in the case of a
limited number of sensors involved to exploit the availability of
already decoded measurement values.

7. A significant data use case

Currently retePaIoT network is composed by seventy LoRa
gateways, installed in fifty municipalities of Emilia-Romagna
region; it manages almost one hundred type of sensors and their
correspondents decoder through as many 'device profile' and ten
'application' to share data with mqtt interface to as many users; it
integrates more than two-thousand sensors.

In this section a simple but significant use case of data from a
single type of sensor integrated into retePAIoT is presented, which
highlights the ultimate purpose of retePAIoT i.e. the use of sensors
data which, in the specific case, concern the support to the
rationalization of water resource.

Figure.5, in particular, shows a graphic relating to a water
meter installed in a school immediately downstream of the multi-
utility one, which accounts for daily water usage inside the
building. Graphed data immediately highlight any losses,
especially the large ones as in the case focused: the figure shows
that during the first two week-ends, in the base line of the graph,
when schools are closed, the daily consumption of water results
more than seven cubic meters, evidently due to a loss in the piping
system, and corresponding to almost 50% of the actual average
daily consumption. The prompt detection of extra consumptions
led to its subsequent resolution without further unnecessary waste,
as shown in the graphic during following week-ends.

Figure 5: Graph of water consumption in a school

Figure.6 shows last, but not least, the installation of the water
meter in the school, which by exploiting the LoRaWan interface
and being battery-based, is particularly simple as well as the use of
its data.

Figure 6: Installation of the meter water in the school

8. Conclusions

RetePAIoT is the public IoT network of Emilia-Romagna
region, based on LoRaWan protocol, available for free to all
public and private users interested in installing their own sensors
of any type and for any purpose within the region.

Data generated by the sensors and collected by retePAIoT are
made available through different interfaces, both real-time value
and historical series, to the owners of the sensors, but, in aggregate
and anonymized form, also to the Public Administrations for their
own institutional purposes.

The original paper [1] had already highlighted the critical
issues that the decoding process must manage in a public IoT
network and the flexibility, robustness and scalability of the

http://www.astesj.com/

 S. Nanni et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 14-20 (2024)

www.astesj.com 20

solution implemented to solve them. Its evolution, presented in this
paper, adds, however, a significant improvement of the decoding
management of messages, because it based on a new native
functionality of ChirpStack network server, on which retePAIoT is
based, and on the javascript code normally provided by sensors
manufacturers, without the need for new development for each
type of new sensor and in favour of a greater efficiency. In
particular, while the flexibility and robustness aspects of the
solution presented derive mainly from having made the messages
decoding phase asynchronous with respect to their reception, the
evolution presented in this document has a positive impact
especially with regards to the scalability of the service understood
as the ability to manage new types of sensors efficiently in
response to the increase of the market offers, maintaining
unchanged performance, reliability and quality of service. The
scalability is ensured, in fact, not only because, as in the original
version, the management of the decoding modules grows linearly
with the number of sensor types, and not with that of the sensors,
but also because the possibility of using the java script code
enormously reduces the time for the update of the service.

The improved model and architecture of data extraction and the
different interfaces with which they are made available to all users
and to third party platforms not only highlight the main goal of
retePAIoT but they also provide an efficient and effective solution
replicable for all IoT platforms which, like retePAIoT, have not
only the objective of providing the collection, transport and storage
of the messages of the sensors, but also that of the extraction of
their data and the sharing for their use.

The data use case described at the end of the paper it’s a
demonstration of the importance of the use of data and therefore of
the process of their extraction and sharing illustrated in this paper.
It also shows how retePAIoT is an IoT infrastructure that can
enable efficient and low-cost monitoring of various phenomena,
processes and infrastructures, through which it is possible to detect
and understand certain problems and act consequently to resolve
them.

References

 [1] S. Nanni, M. Carboni, G. Mazzini, “Flexible, Robust, Scalable Solution to
Extract Information from IoT Public Network Sensors”, Softcom 2023 –
Conference

[2] Vangelista, Lorenzo et al. “Long-Range IoT Technologies: The Dawn of
LoRa™.” FABULOUS (2015)

[3] Web interface for managing an Internet of Things Public Network Elisa
Benetti (LepidaScpA, Italy); Gian Paolo Jesi (Lepida ScpA, Italy); Gianluca
Mazzini (LepidaSpA & UniFe, Italy), Sensornets 2019 – Technical
Workshop.

[4] S. Nanni, M. Carboni, G. Mazzini, “PAIoT Network: a unique regional IoT
network for very different applications ”, Sensornets 2021 – Conference

[5] https://www.thethings network.org

[6] https://www.chirpstack.io (May 2022)

[7] LoRa specification provided by LoRa Alliance (2015). [Online]. Available:
https://lora-alliance.org/about-lorawan, last retrieved 10 May 2019

[8] Benetti, E., Bonino, S., Odorizzi, A., Mazzini, G. (2014). Design of Data
Centers for Public Administration. In SoftCom 2014 (pp. 1-5). IEEE.

[9] https://www.chirpstack.io/application-server/use/device-profiles/#custom-
javascript-codec-functions

[10] P.P. Ray, A survey on Internet of Things architectures, Journal of King Saud

University - Computer and Information Sciences, vol. 30, no. 3, pp 291-319,
2018, doi: 10.1016/j.jksuci.2016.10.003

[11] Jararweh, Y., Al-Ayyoub, M., Darabseh, SDIoT: a software defined based
internet of things framework., J Ambient Intell Human Comput, vol. 6, pp
453–461, 2015, doi: 10.1007/s12652- 015-0290-y.

 Copyright: This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution (CC
BY-SA) license (https://creativecommons.org/licenses/by-
sa/4.0/).

http://www.astesj.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	2. The State of the Art
	3. retePAIoT Network Architecture
	4. Extended DataBase
	5. Decoding Modules Improvement
	5.1. “archiver payload” module
	5.2. “decoder” module
	5.3. The transition to the new architecture
	5.4. Derived measures

	6. Data sharing interfaces
	7. A significant data use case
	8. Conclusions
	References

