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This paper presents a system that combines speech and pointing gestures along with four distinct
hand gestures to precisely identify both the object of interest and parameters for robotic tasks.
We utilized skeleton landmarks to detect pointing gestures and determine their direction, while
a pre-trained model, trained on 21 hand landmarks from 2D images, was employed to interpret
hand gestures. Furthermore, a dedicated model was trained to extract task information from
verbal instructions. The framework integrates task parameters derived from verbal instructions
with inferred gestures to detect and identify objects of interest (OOI) in the scene, essential for
creating accurate final task configurations.

1. Introduction

The rapid advancement of robotics, automation, and artificial intelli-
gence has ignited a revolution in robotics. While industrial robots
have proliferated over the past few decades, there’s been a recent
surge in the integration of robots into our daily lives. This shift has
led to a significant change in robotics research focus, moving from
industrial applications to service robots. These robots now serve as
assistants in various tasks such as cooking, cleaning, and education,
among others. Consequently, this transformation has redefined the
role of human users, evolving them from primary controllers to
collaborative teammates, fostering increased interaction between
humans and robots.

While robots can autonomously handle tasks in certain scenar-
ios, human interaction is often necessary. Unlike industrial robots
that perform repetitive tasks, service robots are designed to engage
with humans while carrying out their functions. In such contexts,
it’s crucial for interactions to feel natural and intuitive.

To achieve this, interaction components should mirror those
commonly observed in human-to-human interactions. Human in-
teractions typically involve gestures, gaze, speech, and facial ex-
pressions. While speech effectively conveys complex information,
gestures can indicate direction, location within a scene, and com-
mon task-specific actions. Combining speech and gestures enhances
the interaction experience by enabling intuitive communication and
conveying meaningful commands.

In this work, our focus was on integrating pointing and four dis-

tinct hand gestures with verbal interactions. We developed a neural
network model to extract task parameters from verbal instructions,
utilizing a dataset of 60,769 annotated samples. For recognizing
pointing gestures, we employed AlphaPose to capture skeletal joint
positions and calculated the forearm’s angle and length ratio to
determine the pointing direction. Additionally, we predicted the
Object of Interest (OOI) based on the shortest distance from the
pointing direction vector. Finally, we identified four common hand
gestures—bring, hold, stop, and point—using hand landmarks from
Google’s Mediapipe and trained a 3-layer fully connected neural
network for gesture recognition. This integration not only enhances
natural interaction but also gathers crucial additional information
and context, thereby aiding in disambiguating and inferring missing
task parameters. By combining speech with gestures, our system
enhances the richness and clarity of interactions, which is essential
for service robots designed to assist in everyday tasks. To this effect,
the following are our contributions:

1. Multimodal Integration: Unlike existing approaches that often
rely on a single mode of interaction, our research integrates
pointing gestures, four distinct hand gestures, and verbal in-
structions. This multimodal integration is crucial for creating
interactions that are more natural and intuitive, closely mir-
roring how humans communicate with each other.

2. Enhanced Task Parameter Estimation: By combining verbal
commands with gestures, our system is able to disambiguate
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and infer missing task parameters more effectively. This leads
to more accurate and reliable task configurations, which is a
significant advancement in the field of human-robot interac-
tion.

3. Real-time Processing: Our framework operates in real-time,
managing multiple inputs concurrently. This capability is
vital for practical applications where timely and responsive
interactions are required.

4. Experimental Validation: We conducted experiments to val-
idate our approach, demonstrating its efficacy in generating
reliable task configurations. Our results show that the integra-
tion of gestures and verbal instructions significantly improves
the system’s performance in real-world applications.

Our work introduces a framework that seamlessly integrates
multiple forms of communication. The ability to interpret and com-
bine verbal commands with pointing and hand gestures represents
a significant step forward in creating more intuitive and effective
human-robot interactions. This multimodal approach not only en-
hances the naturalness of interactions but also provides the robot
with richer contextual information, enabling it to perform tasks more
accurately and efficiently.

The paper follows this structure: the subsequent section pro-
vides a concise overview of prior research on gesture recognition
techniques and Natural Language Understanding in Human-Robot
Interaction (HRI) design. We then proceed to elaborate on the
methodology of our work. Subsequent chapters incorporate our
evaluation, including experimental results and observations. Finally,
we summarize our findings in the concluding section of this paper.

2. Related Works

2.1. Natural Language Understanding in HRI

In [1], the author presented a hierarchical recurrent network cou-
pled with a sampling-based planner to enable the comprehension of
sequences of natural language commands within a continuous con-
figuration space. Similarly, in [2], the author devised a system that
interprets natural language directions for robots by extracting spa-
tial description clauses, using a probabilistic graphical model that
grounds landmark phrases, evaluates spatial relations, and models
verb phrases. In [3], the author explored the application of statistical
machine translation techniques to enable mobile robots to interpret
unconstrained natural language directions, effectively mapping them
onto environment maps, leveraging physical constraints to manage
translation complexity and handle uncertainty. Additionally, in [4],
the author demonstrated the robot’s capability to learn action se-
quences’ conditions from natural language, promptly updating its
environment state knowledge and world model to generate consis-
tent new plans, highlighting both specific operational success and
the dialogue module’s scalability and responsiveness to untrained
user commands. In [5], the author explored spatial relationships
to create a natural communication channel between humans and
robots, showcasing in their study how a multimodal robotic interface
integrating linguistic spatial descriptions and data from an evidence
grid map enhances natural human-robot interaction. In addition,
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in [6], the author introduced Generalized Grounding Graphs, a dy-
namic probabilistic graphical model that interprets natural language
commands for autonomous systems navigating and manipulating
objects in semi-structured environments.

While prior research predominantly addressed navigational
tasks, our approach extends this by employing deep learning tech-
niques to extract specific parameters from single instructions perti-
nent to collaborative tasks.

2.2. Gesture Recognition In HRI

In [7], the author proposed a two-stage Hidden Markov Model
(HMM) approach aimed at enhancing Human-Robot Interaction
(HRI) by enabling intuitive robot control via hand gestures. The
first stage identifies primary command-like gestures, while the sec-
ond stage focuses on task recognition, leveraging Mixed Gaussian
distributions within HMM to improve recognition accuracy. In [8],
the author introduced a robust HRI system that continuously per-
forms gesture recognition to facilitate natural human-robot interac-
tion by employing online-trained ad-hoc Hidden Markov Models
to accommodate intra-user variability, evaluated through studies
on hand-formed letters and natural gesture recognition scenarios.
In [9], the author introduced an HRI system using gesture recogni-
tion that incorporates multiple feature fusion, failure verification,
and validation through real-world testing with a mobile manipu-
lator. In [10], the author presented a gesture-based human-robot
interaction framework, utilizing wearable sensors and an artificial
neural network for gesture classification, and introducing a param-
eterization robotic task manager for intuitive robot task selection
and validation in collaborative assembly operations. In [11], the
author introduced a parallel convolutional neural network (CNN)
method optimized for recognizing static hand gestures in complex
environments, particularly suited for space human-robot interaction
tasks, demonstrating superior accuracy over single-channel CNN
approaches and other existing methods.

We have implemented two gesture recognition methods: a
heuristic-based pointing gesture recognition and pointing direction
estimation, and neural network based hand gesture recognition. In
both methods, we leveraged the extracted landmarks from body
skeleton and hands respectively.

3. Methodology

3.1. Extracting information from verbal commands

In a typical human collaboration, shared instructions often encom-
pass specific details like the required action, the target object, navi-
gation directions, and the particular location of interest within the
scene. Additionally, we frequently use descriptive attributes such as
size, relative position, shape, pattern, and color to specify objects,
as seen in phrases like ’bring the green box,” ’the book on the right,”
or ’hold the blue box” [12]. These details outline various aspects
of a task, as depicted in Figure 1, which showcases various task
parameters linked to particular instructions.

In our research, we developed a dataset tailored for collabora-
tive robotic commands, comprising verbal instructions that specify
actions and include details on at least one of the following attributes:
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object name, object color, object location, or object size. This
dataset contains 60,769 samples, each annotated with five labels.
We thoroughly assessed eight different model architectures for train-
ing, ultimately determining that the single-layer Bi-directional Long
Short-Term Memory (Bi-LSTM) model delivered the best perfor-
mance.

- that
- that
-~ ((get) the ((small) ( container )

Figure 1: The task action is denoted by the green box, while the object’s location
in the scene is highlighted by the orange box. The red box indicates the size of the
object, while the yellow and blue boxes respectively highlight the object of interest
and its corresponding attributes.

Figure 2 depicts the model architecture, which comprises three
neural layers. The model starts with an embedding layer, followed
by a Bi-LSTM layer which is connected to a fully connected layer
(FCN). The dataset vocabulary size, denoted as V, is used to one-hot
encode each word, resulting in a vector size W € R™V. The input
sequences, consisting of n words, are processed by an embedding
layer represented as &. The output from Bi-LSTM cells is concate-
nated and then passed through four layers. The resulting outputs
from the FCN layer are subjected to softmax activation for the clas-
sification of five task parameters. Each classifier is evaluated using
Cross Entropy loss L. To update the model, we compute the mean
of these losses as £, = 33| £,.

3.2. Recognition of pointing gestures

We employed AlphaPose [13] to capture the skeletal joint positions
for predicting pointing gestures and their overall direction. For
simplicity, we assumed that the user uses one hand at a time for
pointing. Following the categorization by [14], the authors distin-
guished pointing gestures into two types: extended (large) and bent
arm (small) gestures. Furthermore, we generalized the forearm’s ori-
entation concerning the body into three categories: across, outward,
and straight, as depicted in Figure3(b).

We analyze the forearm angle 6, (Figure 3(a)), comparing it
against a predefined threshold 6, to distinguish between across
and outward pointing gestures. When the user isn’t pointing (Fig-
ure 3(b)), the forearm angle is smaller compared to when they are
pointing. When pointing directly towards the camera (robot’s vi-
sion) (Figure 3(c)), the angle approaches 0. To refine this analysis,
we introduce the forearm length ratio p,. If the user isn’t pointing,
both forearms show similar lengths (Figure 3(b)). Conversely, a
noticeable difference suggests the user is pointing directly (or very
close) towards the camera with that arm (Figure 3(b)). Addition-
ally, we determine the pointing direction d by analyzing the relative
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positions of the wrist and elbow of the pointing arm, enhancing
navigational command interpretation.
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Figure 2: Neural Network (NN) model for parameter extraction from verbal com-
mands.

3.2.1. Deriving 0, from the positions of the wrist and
elbow

We specifically need the locations of certain skeletal joints. These
are locations of the left elbow, left wrist, right elbow, and the right
wrist. This ensures our method remains effective even if some body
parts are obscured, as long as the pointing hand’s joints are detected.
Let (x1,y1) denote the coordinates of the elbow, and (x,, y,) denote
those of the wrist. By defining the 2D vector from the elbow to
the wrist as @ = (xo — x1,y2 — y1) and using vV = (0, 1) as the refer-
ence vertical vector, we can calculate the pointing angle 6, using
Equation 1:

L a-v
iy
If 6, exceeds 6;, the corresponding forearm is identified as per-
forming the pointing gesture. Next, we assess the x coordinates
of the wrist and elbow to determine the overall pointing direction
within the scene—either left or right relative to the body. Addition-
ally, we evaluate the forearm length ratio p, = Leﬁigqggfg;eﬂf:‘;tﬁ;':ﬂm
against a predefined ratio p, to determine if the user is pointing
directly ahead. Specifically, p, is set to 0.8 and 6, to 15°.

ey

6, = cos

3.3. OOl Prediction

For every object identified, we establish its central point as a ref-
erence. Next, the perpendicular distance from the center of each
object to the direction vector is computed.. The object found to have
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the shortest distance is considered the Object of Interest (OOI) is
shown in figure 4.

(©)

Figure 3: (a) Generated angle 6, , (b) length of forearms dj, d-when not pointing, and

(c) pointing straight
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Figure 4: Determining Object of Interest (OOI) from pointing direction.

3.4. Gesture recognition

We have identified four common gestures for instructing robots:
bring, hold, stop, and point gestures (see Figure 5). This capa-
bility enables the robot to navigate toward either an object or a
designated location within the scene. Utilizing Google’s Mediapipe
library [15], we extracted hand landmarks, providing 21 landmark
points for each hand (see Figure 6). These landmarks were captured
for both hands during the aforementioned gestures to compile a
dataset. Subsequently, the dataset underwent training using a 3-
layer fully connected neural network model. Each fully connected
layer’s outputs were subjected to a dropout layer and then acti-
vated by ReLU (Rectified Linear Unit). The model’s architecture is
illustrated in Figure 7.

ORIGINAL QUALITY

(a) Bring (b) Hold

(c) Stop (d) Point

Figure 5: Gesture categories
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Figure 6: Extracted hand landmark [16]

4. Experimental Result

We have combined pointing gestures and hand gesture recognition
systems with the task parameter extraction module and evaluated
them separately.

4.1. Pointing Gesture With Verbal Command

During our experiments, participants were assigned to perform
precise pointing gestures in predefined scenarios. Each scenario
depicted a scene with three distinct objects: two books and a Cheez-
It box. Participants were directed to point to one object at a time.
For instance, in a specific scenario, they were instructed to extend
their right hand and point to the leftmost object. Thus, from this
particular data sample, we could analyze that the participant exe-
cuted a pointing gesture with their right hand, directing it towards
their left, aiming at the object positioned farthest to the right (from
their perspective). This dataset served as the foundation for our
quantitative evaluations.

The experiments involved positioning the user at distances of
1.22, 2.44, 3.66, and 4.88 meters from the camera. Each system
component underwent separate evaluation, encompassing tasks such
as extracting parameters from verbal commands, detecting the ac-
tive hand, estimating pointing direction and predicting the object
of interest. The extracted task parameters were then presented in
tabular format to illustrate the results.

We evaluated each frame’s prediction against its label, assess-
ing accuracy, precision, and recall. For instance, if a frame’s label
specifies “Right hand: pointing; Left hand: not pointing,” a cor-
rect prediction of “Right hand: pointing” counts as a True Positive;
otherwise, it registers as a False Negative. Conversely, predicting
“Left hand: pointing” when the label indicates otherwise is a False
Positive, while accurately predicting ’Left hand: not pointing” is
a True Negative. Table 1 details the accuracy, precision, and recall
metrics across various distances.

Table 2 illustrates various sample scenarios and their corre-
sponding task parameters extracted from data sources. The column
labeled ”’Structured Information” showcases data derived from both
the Pointing State and Verbal Command. Each row pertains to a spe-
cific scenario, beginning with an indication of whether pointing was
involved, followed by the experiment number. Verbal commands,
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typically involving the fixed task action “get,” are listed alongside
extracted information from both verbal commands and simultaneous
pointing states. Predicted Objects of Interest (OOI) that necessitate
action are noted, along with the system’s corresponding response.
Instances of ambiguity are highlighted in bold within the cells.

Table 1: Pointing Gesture Recognition

Distance (m) | Accuracy | Precision | Recall
4.88 1 1 1
3.66 0.995 1 0.99
2.44 0.995 1 0.99
1.22 0.995 1 0.99

Ambiguity occurs when the object of interest (OOI) cannot be
identified solely from the verbal command and pointing gesture
provided. In these situations, the system informs the user with the
message ~’Additional information needed to identify the object,” and
it waits for the user to provide more input, either by repeating the
pointing gesture or by adjusting the command given.

In Table 2, observations indicate that ambiguity arises in dif-
ferent scenarios. When the system is in the ”"Not Pointing” state,
ambiguity occurs due to insufficient object attributes (e.g., Exp# 1,
3), which hinder the unique identification of the OOI, leading the
system to request more information. Conversely, in the ”Pointing”
state, ambiguity arises when the pointing direction does not intersect
with any object boundaries. Verbal commands play a crucial role in
reducing this ambiguity by providing additional information.

4.2. Hand Gesture Recognition With Verbal Command

The system processes verbal commands by identifying and extract-
ing up to five distinct task parameters, which are subsequently stored
for sequential task execution. The transcription of the verbal com-
mands and their corresponding extracted parameters is presented in
Table 3.

If no matches are identified, the respective parameters are de-
noted as None. Each command initiates a task, recorded in the order
of execution. Furthermore, Figure 8 illustrates the performance
comparison among different models. Subfigure a illustrates the over-
all accuracy, while subfigure b highlights the accuracy of Object
of Interest (OOI) prediction tasks. Across both evaluations, the
Bi-LSTM based model consistently outperforms all other models.

Table 4 showcases the accuracy, recall, and f1-score achieved in
recognizing four specific gestures. The model consistently demon-
strates high accuracy in interpreting user gestures. Figure 9 illus-
trates the confusion matrix for these gestures, highlighting occa-
sional misclassifications where the *Bring’ gesture is mistakenly
identified as *Stop.” However, considering users receive feedback
until the correct action is chosen, these rare errors hold minimal
consequence.

55


http://www.astesj.com

S.K. Paul et al., | Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 51-59 (2024)

Dropout
Layer
:'f \", Dropout
L Layer
Fay Y
| A - )
k- 4 \ !
e k“'_'_", oy
T’ L, - |
I'\,_ A ’-.‘ ,.l' N
s -l o Dropout
:f ‘../ \‘l' EY ] Layer
RelLU p—y Ly -
Input } - 0
; . utput
Vector ___' _ - - ’ Layer
42 o P o Sigmoid
| ! » 3 ‘-. |
o d L e
Yy 4 I-"/ -\I
! 4 .:\ " .'\ __/"
- S
|r, \.I -/_1\\
| y » ¥ ReLU
.__/ \\_ A
Fa 1\.| -
L J RelLU
Figure 7: Gesture recognition model architecture.
Table 2: Generated Task Parameters With Pointing State
Pointing State | Exp # | Verbal Cc d Structured information Identified Object Feedback
{action: "get”, pointing_identifier: True, object: "book”, " .
! get that, get me that object_identifiers: {attributes: null, position: null}} book-1 None
ion: "get”, pointing_i ifier: True, object: ” ” »
2 get the red book {actlon' g.et ]?01ntlng lde.nnﬁ er " rmj‘ obj 6.04 book book-2 None
Pointi object_identifiers: {attributes: “red”, position: }}
oming 3 et that red thin {action: "get”, pointing_identifier: True, »cheeziit” None
8 & object: null, object_identifiers: {attributes: "red”, position: }}
{action: ”get”, pointing_identifier: False, . ”’Additional information is needed
! get that, get me that object: null, object_identifiers: {attributes: null, position: null}} None (ambiguous) to identify object”
tion: ”get”, pointing_identifier: Fals
2 get the red book . " {,,m w'n A ¢ ,']7 o ng' en 1ﬁer” u”xe, L. ”book-2" None
. object: "book”, object_identifiers: {attributes: “red”, position: null}}
Not Pointing . 3 ~ 5 o < e
3 ot that red thin {action: ”get”, pointing_identifier: False, None (ambiguous) 'Additional information is needed
g & object: null, object_identifiers: {attributes: "red”, position: “right”}} g to identify object”
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Table 3: Extracted task parameters from various verbal commands

Verbal command: “’bring me the jar”

Object: jar — Action: bring — Attributes: None — Location: None

Verbal command: “’give me that black box”

Object: box — Action: give — Attributes: [black] — Location: None

Verbal command: “’turn right”

Object: None — Action: turn — Attributes: None — Location: right

Verbal command: hold the small white jar on your left”

Object: jar — Action: hold — Attributes: [white, small] — Location: left

Verbal command: “place the box on the shelf”

Object: box — Action: place — Attributes: None — Location: shelf

56


http://www.astesj.com

S.K. Paul et al., | Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 51-59 (2024)

Accuracy (combined) across epochs

o /L
=7

Bccuracy (%)
a

&0 [
50
25 50 7% 100 125 150 175 200
Epoch
— GRU —— RHNN LSTM
— GRU B ANM Bi —— LSTM B
(@)
100 Accuracy for label "ltem (QON" across epochs
BD -4
# 60
=
B
3 40 A
=
20 1
D_
25 5.0 15 o0 125 15.0 17.5 20.0
Epoch
— GRU RMM Bi === GRU Val RNM_Bi_Val
—— GRU Bi LSTM -=- GRU_Bi Val LSTM_Val
— RNN — LSTM Bi  --- RNM_Val --- LSTM Bi Val
(b)

Figure 8: The comparative performance of various models: (a) the aggregate accu-
racy of all five extracted task parameters over epochs, and (b) the accuracy for the
parameter “Item (OOI)” over epochs.

Table 4: Performance metrics

Gesture | precision | recall | fl-score
Bring 0.93 1.00 0.97
Hold 1.00 0.99 0.99
Point 1.00 0.99 0.99
Stop 1.00 0.95 0.98

Subsequently, we explored scenarios where users performed
gestures alongside predefined natural language instructions. Ex-
tracted information was utilized to establish task parameters, with
follow-up responses issued in case of ambiguity. Table 5 delineates
the sequential steps of a sample interaction, wherein gestures assist
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in identifying crucial task elements such as ’action’ and ’object.’
Notably, in step 2, the system requests additional information to
identify the object of interest (OOI). Conversely, in step 4, although
no verbal instructions are provided, the system maintains the pre-
vious OOI and executes the hold’ action accordingly. This table
underscores the utility of combining gesture and verbal cues for
robust task configurations.

Confusion Matrix

Bring

250

-200
=
Q
I
@
3 -150
=
=
=
£ - 100
j=8
2
w

Hold Point
Predicted

Bring Stop

Figure 9: Confusion matrix for the four gestures

4.3. Qualitative Insights and Analysis

The results of our experiments provide significant insights into the
effectiveness of integrating pointing gestures, hand gestures, and
verbal commands for enhancing robotic task configurations. By
evaluating each component separately, we were able to assess the
accuracy, precision, and recall of the system in identifying the oper-
ating hand, estimating pointing direction, and predicting the object
of interest (OOI).

Our findings indicate high accuracy in pointing gesture recog-
nition across various distances, as demonstrated in Table 1. This
suggests that the system can reliably interpret pointing gestures even
from a distance of up to 4.88 meters, which is crucial for practical
applications in diverse environments.

The integration of verbal commands with gestures significantly
improves the system’s ability to disambiguate and infer task param-
eters. As shown in Table 2, the combined use of pointing gestures
and verbal instructions enhances the system’s capability to identify
objects and actions accurately. However, instances of ambiguity
still arise, particularly when the OOI cannot be determined solely
from the given inputs. In such cases, the system effectively prompts
the user for additional information, demonstrating a robust error-
handling mechanism.

Additionally, the hand gesture recognition component, when
paired with verbal commands, consistently achieved high accuracy,
recall, and fl-scores, as illustrated in Table 4 and Figure 9. This
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Table 5: Extracted Task Parameters With Gesture Recognition

Step# Gesture Verbal Instruction Structured Information Feedback
Performed
1 Stop - action: stop, object: None, identifier: None, location: None -
2 Bring give me that action: give, object: None, identifier: None, location: None Addmona.l mf(.)rmatl.o " 1”s needed
to identify object
3 Point bring me that book action: bring, object: book, identifier: pointed direction, location: None -
4 Hold - action: hold, object: jar, identifier: None, location: None -
5 Point bring it here action: bring, object: jar, identifier: None, location: pointed location -
6 Bring that red jar on the shelf action: bring, object: jar, identifier: red, location: shelf -
7 Point put it here action: put, object: None or , identifier: None, location: None -
8 Point go there action: go, object: None, identifier: None, location: pointed location -

indicates the system’s reliability in interpreting user gestures and
extracting relevant task parameters, as further evidenced by the
sequential task execution detailed in Table 5.

Overall, the implications of these results contribute to the overar-
ching goals of the paper by showcasing the potential of multimodal
interaction systems to facilitate natural and efficient human-robot
interactions. The high accuracy and robustness of the system in
various scenarios underline its practicality for real-world applica-
tions, where reliable task configurations are paramount for effective
robotic assistance.

5. Conclusion

This paper presents a Human-Robot Interaction (HRI) framework
tailored for extracting parameters essential for collaborative tasks
between humans and robots. Operating in real-time, the framework
concurrently manages multiple inputs. Verbal communication is
leveraged to capture detailed task information, encompassing action
commands and object attributes, complemented by gesture recogni-
tion. The amalgamation of these inputs yields named parameters,
facilitating subsequent analysis for constructing well-structured
commands. These commands seamlessly communicate task instruc-
tions to robotic entities and streamline the task execution processes.

To detect pointing gestures and infer their directions, we utilized
a third-party library for skeleton landmark extraction. Additionally,
we introduced a hand gesture recognition system capable of iden-
tifying four distinct hand gestures. This involved extracting hand
landmarks and training a model to interpret these gestures. Further-
more, verbal commands captured by sensors are transcribed into text
and processed through a pre-trained model to extract task-specific
parameters. The amalgamation of this information culminates in
the creation of the final task configuration. In instances where re-
quired parameters are lacking or ambiguities arise, the system offers
appropriate feedback.

We evaluated the system’s performance by subjecting it to var-
ious natural language instructions and gestures to generate task
configurations. The extracted task parameters, corresponding to
different verbal commands and gesture states, were arranged in a
table to illustrate the effectiveness of our methodology.

It is important to highlight that our Human-Robot Interaction
(HRI) framework showcases a robust capability to integrate verbal
communication and gesture recognition in real-time, significantly
enhancing the accuracy and efficiency of task parameter extraction.
This integration is crucial for developing more intuitive and natural
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human-robot collaborative environments.

Furthermore, our experimental results validate the system’s re-
liability in interpreting complex task instructions, which under-
scores its potential for practical applications in diverse settings. The
high accuracy achieved in recognizing gestures and extracting task-
specific parameters indicates that our approach can greatly improve
the seamless execution of tasks by robotic entities.

Looking ahead, we see promising future research directions in
exploring more intricate interaction scenarios. Investigating inter-
actions involving multiple users, dynamic and continuous gestures,
and complex dialogues will not only enhance the robustness of our
system but also contribute to the broader evolution of HRI systems.
By addressing these challenges, we aim to develop even more so-
phisticated and meaningful interaction frameworks that can further
bridge the communication gap between humans and robots.
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