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 This work discuss two different intelligent controllers: Online Neuro Fuzzy Controller 
(ONFC) and Proportional-Integral-Derivative Neural Network (PID-NN). They were 
applied to maintain the equilibrium and to control the position of a two-wheeled robot 
prototype. Experiments were carried out to investigate the equilibrium control and 
movement of the two-wheeled robot first on flat terrain, then in other situations, where 
terrain may not be flat, horizontal surface. The effectiveness of each controller was 
verified by experimental results, and the performance was compared with conventional 
PID control scheme applied for the prototype. 
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1. Introduction  

Two-wheeled robots have some advantages over other types 
of mobile robots. The wheel configuration makes them highly 
maneuverable and still easier to control than legged robots. 
Having no more than two wheels means more room for larger 
wheels, potentially allowing them to traverse rougher terrain. In 
the last decade, auto-balance two-wheeled robots have been 
intensively discussed [1], [2], [3].  

The dynamics of two-wheeled robots have some particular 
features which complicate their control. Specifically, they are 
non-minimum phase, under-actuated and also unstable in open 
loop. Therefore, robust mechanisms of auto-balance are very 
important to these dynamics systems, requiring proper control 
based techniques based on suitable sensing.  

Many controller designs have been investigated for the auto-
balance two-wheeled robot [4]. Proportional-Integral-Derivative 
(PID) controllers are widely used in many areas in industry, 
because no model of the plant is required, with tuning of just three 
gains [5]. However the purpose of an intelligent control method is 
to minimize the stress of control applied for complex plants.  

The hybrid systems based on fuzzy logic have demonstrated 
their capacity of resolve several types of problems in many 

applications, as in robotic. Using one algorithm based on the 
gradient descent method, with a cost function using only the error 
signal, is possible to obtain one controller with good performance, 
[6], [7]. An important example is the ONFC controller (Online 
Neuro Fuzzy Controller) [8], which represents one structure with 
three synaptic weights.  

Also, artificial neural networks (ANN) are commonly used as 
a strategy of adaptive control for auto-balance two-wheeled 
robots. The algorithm executes the learning process of neural 
network, where the synaptic weights are adjusted, during the 
execution of the network as the goal to reach the desired result [9]. 
The equilibrium will be improved during the neural network 
learning process. 

Moreover, for outdoor applications the robot should also be 
able to stabilize on inclined or uneven terrain. This invites 
researchers to design controllers for the control of the stability of 
two-wheeled robots on inclined terrain at the desired speeds and 
implemented in real time. 

The proposal of this work is to implement intelligent 
algorithms to control an auto-balance two-wheeled robotic system 
that can be able to move in terrains with some irregularity.  

 

2. System Formulation 
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2.1. Two-Wheeled Robot Dynamic Model 

Figure 1 shows the structure of an two-wheeled robot where m1 
[kg] is the mass of each wheel; m2 [kg] is the mass of the body; Ι1 
[kgm2] is the inertial moment of the wheel in relation to the gravity 
center; Ι2 [kgm2] is the inertial moment of the body in relation to 
the gravity center; r [m] is the wheel radius; L [m] is the distance 
of the mass center of body to axis rotation of wheel; τ1 [Nm] is the 
wheel torque and τ2 [Nm] is the body torque; θ1 is the rotation 
angle of each wheel in degrees; θ2 is the inclination angle of the 
body in degrees.   

 
Figure 1: Autobalance diagram of a two-wheeled robot [10] 

 

Based on Newton’s equations of motion, the dynamic 
modeling of the robot is described by  
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and 

𝜏𝜏1 = −𝜏𝜏2  (3) 

3. Controller Design 

The primary objective in the control of two-wheeled robots is 
always to remain balanced and avoid toppling. Secondary 
objectives may include tracking a certain speed or trajectory. 

In the prototype, there were implemented the balance and 
position control. For the balance control all variables are 
subtracted of the desired reference value. Therefore, null vector is 
the condition of auto-balance:  

�𝜃𝜃, 𝜃𝜃,̇ 𝑦𝑦, �̇�𝑦� = [0,0,0,0] (4) 

For the position control, the variable of the encoder, y, is 
feedback and subtracted of the reference value. The position 
control uses the proportional controller gain, Kpos. The complete 
strategy of control is showed on the diagram of Figure 2.   

 
Figure 2: Autobalance control diagram 

 

3.1. Online Neuro Fuzzy Control 

Reference [3] presents the Online Neuro Fuzzy Control 
(ONFC) to the implementation of the online algorithm. Figure 3 
shows one block diagram of the generic system using the ONFC 
control and its internal structure. The ONFC control uses only 
three membership functions (triangular and complementary) as it 
can be seen in Figure 4. For all values in the universe of discourse, 
the sum of the three membership functions μp, μz and μn should be 
equal to (5). 

𝜇𝜇𝑝𝑝 + 𝜇𝜇𝑧𝑧 + 𝜇𝜇𝑛𝑛 = 1  (5) 

The control output, u, is defined based on Sugeno model of 
zero order. Since the membership functions are complements, the 
output can be written as: 

𝑢𝑢(𝑟𝑟) = 𝜇𝜇𝑝𝑝(𝑟𝑟)𝑤𝑤𝑝𝑝(𝑟𝑟) + 𝜇𝜇𝑧𝑧(𝑟𝑟)𝑤𝑤𝑧𝑧(𝑟𝑟) + 𝜇𝜇𝑛𝑛(𝑟𝑟)𝑤𝑤𝑛𝑛(𝑟𝑟) (6) 

If the error is limited and zero average, the weight wz will be 
limited through of cost function. The same is not valid to the 
weights wn and wp, that could be unlimited for any disturbance 
signal in the error or for intermittent variations of the reference.  

The update of weights is realized by gradient descent defined 
by the following cost function, J, described by (7) 

𝐽𝐽 =
𝑒𝑒(𝑟𝑟)2 + 𝛾𝛾𝑤𝑤𝑝𝑝(𝑟𝑟)2 − 𝛾𝛾𝑤𝑤𝑛𝑛(𝑟𝑟)2

2
 (7) 

where n is the discrete time, e is the error between the desired and 
obtained signal of the system and γ is one factor between 0 and 1 
and will determine the decay rate of the weights adjusted 
according to the plant used.   

Through this cost function, it´s possible to obtain the 
equations (8) to perform the update of the weights in order to 
minimize 

𝑤𝑤𝑝𝑝(𝑟𝑟) = 𝑤𝑤𝑝𝑝(𝑟𝑟 − 1) − 𝛼𝛼𝛼𝛼𝑒𝑒(𝑟𝑟)𝜇𝜇𝑝𝑝(𝑟𝑟) + 𝛾𝛾𝑤𝑤𝑝𝑝(𝑟𝑟 − 1) 

𝑤𝑤𝑛𝑛(𝑟𝑟) = 𝑤𝑤𝑛𝑛(𝑟𝑟 − 1) − 𝛼𝛼𝛼𝛼𝑒𝑒(𝑟𝑟)𝜇𝜇𝑛𝑛(𝑟𝑟) + 𝛾𝛾𝑤𝑤𝑛𝑛(𝑟𝑟 − 1) 
(8) 

 

where β is one parameter dependent of the plant and unknown. 
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Figure 3: Structure of ONFC controller with three weights 

 

Figure 4: Complementary membership functions used in the ONFC control. 

 
Figure 5: ONFC Control block diagram. 

3.2. Artificial Neural-Networks Control 

The Proportional-Integral-Derivative Neural-Networks (PID-
NN) controller [4] is based on the discrete equation model of the 
transfer function of the PID control.  

First, the PID-NN is trained off-line and the data are generated 
by one simulated PID system and used for training the neural 
network. The learning is supervised and the desired goal is to 
minimize the sum of the squared errors, Esq, of the trained data.  

Combining the equations of the discrete time PID controller, 
we can obtain one recurrent neural network (Figure 6). The input 
of network is the error signal e(n) and the output of the control 
signal is u(n). Activation functions of the neurons are linear. The 
Figure 6 also shows the gains Kp, Ki and Kd of the neural network 
control structure. They are the weights, which can be adjusted. 
The rest of the weights present constant values. Considering 
O1(n), O2(n) and O3(n) the outputs of neurons of hidden layer, the 
output of the network could be computed by the equations: 

𝑒𝑒(𝑟𝑟) = 𝑂𝑂1(𝑟𝑟) (9) 

𝑣𝑣(𝑟𝑟) = 𝑂𝑂2(𝑟𝑟) = 𝑂𝑂2(𝑟𝑟 − 1) + ∆𝑡𝑡 ∗ 𝑒𝑒(𝑟𝑟) (10) 

𝑤𝑤(𝑟𝑟) = 𝑂𝑂3(𝑟𝑟) =
1
∆𝑡𝑡

[𝑒𝑒(𝑟𝑟) − 𝑒𝑒(𝑟𝑟 − 1)] (11) 

 

 
Figure 6: Structure of the PID-NN control. 

The equation of control in discrete time can be seen in (12) 

𝑢𝑢(𝑟𝑟) = 𝐾𝐾´𝑝𝑝𝑒𝑒(𝑟𝑟) + 𝐾𝐾´𝑖𝑖𝑣𝑣(𝑟𝑟) + 𝐾𝐾´𝑑𝑑𝑤𝑤(𝑟𝑟) (12) 

      and:  
𝑣𝑣(𝑟𝑟) = 𝑣𝑣(𝑟𝑟 − 1) + 𝑟𝑟𝑒𝑒(𝑟𝑟) (13) 

𝑤𝑤(𝑟𝑟) =
1
∆𝑟𝑟

[𝑒𝑒(𝑟𝑟) − 𝑒𝑒(𝑟𝑟 − 1)] (14) 

 

After the off-line training, the PID-NN is combined in series 
with the system for online tuning, as observed in Figure 7. In this 
form of learning, the update of the weights is done before the 
presentation of each example of training. The difference between 
the response of the output of the plant and the reference signal 
generates the error e1 that will be the input signal of the controller. 
The error e2 is generated by difference between the response of 
the output of the plant and the response of the reference of the 
model. This signal is directly related with the update of the online 
weights.  

According to the method of gradient descent, the weights 
update follows the equations: 

𝐾𝐾´𝑝𝑝(𝑟𝑟 + 1) = 𝐾𝐾´𝑝𝑝(𝑟𝑟) + 𝛼𝛼𝑒𝑒(𝑟𝑟)𝑂𝑂1(𝑟𝑟) (15) 

𝐾𝐾´𝑖𝑖(𝑟𝑟 + 1) = 𝐾𝐾´𝑖𝑖(𝑟𝑟) + 𝛼𝛼𝑒𝑒(𝑟𝑟)𝑂𝑂2(𝑟𝑟) (16) 

𝐾𝐾´𝑑𝑑(𝑟𝑟 + 1) = 𝐾𝐾´𝑑𝑑(𝑟𝑟) + 𝛼𝛼𝑒𝑒(𝑟𝑟)𝑂𝑂3(𝑟𝑟) (17) 

  

 
Figure 7: PID-NN Control diagram of online tuning [9]. 
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4. Experimental Study 

4.1. Hardware Implementation 

Figure 8 shows the robot system used in the experiments. The 
hardware of whole system includes a microcontroller 
(AT91SAM7S256), gyro sensor (NGY1044), ultrasonic sensor, 
servomotors and structural support parts. Although the system has 
ultrasonic sensor it was not used in these experiments at this 
moment.  

4.2. PID Control 

Table 1 shows the gains of the Proportional-Integral-
Derivative (PID) control of the two-wheeled robot based on the 
Ziegler-Nichols method. These results will be necessary to 
compare the performance of the other controllers.  

The experimental tests have shown   that Kd gain needs to be 
reduced to 0.000504 to ensure system stability. The proportional 
gain Kpos to position control was obtained by trial and error. The 
best value found was Kpos = 0.495.  

4.3. Computational Model 

The simulation platform of the two-wheeled robot was developed 
in the MatLab-Simulink software. The computational model was 
validated to reproduce the same response of the auto-balance two-
wheeled robot during its operation in the real world. The 
correlations between the simulated and experimental results were 
satisfactory considering the nonlinearity of the system. 

Table 1: Initial PID gain based on Ziegler-Nichols method 

PID Gain Control 
PID 

Kp 0.03360 
Ki 0.26888 
Kd 0.00105 

Figure 8: Autobalance two-wheeled robot NXT (a) front view (b) right view. 

 

4.4. ONFC Control Implementation 

To evaluate the effectiveness of the proposed architecture, the 
proposed ONFC controller is implemented and equipped in the 
two-wheeled robot. The proposed control laws are represented in 
equations (5-8). To tune the ONFC control, several real 
experiments in the two-wheeled robot NXT was realized to 

evaluate the effect of the following parameters: learning rate α, 
regularization rate γ, and the universe of discourse of the 
membership functions. The best parameter values found were: 
α=0.05 and γ=0.005. The best universe of discourse of the 
membership functions was -100 to +100. In Figure 9 it is possible 
to observe the update of the weights through time for these 
parameters. The addition of regularization ensures a satisfactory 
performance. 

 
Figure 9: Real time weight update of the ONFC control and comparison with 

simulated data. 

 

4.5. PID-NN Control Implementation 

In order to evaluate the proposed algorithm, it was simulated 
on the Simulink. In this simulation platform several experiments 
were realized to obtain the best parameter values. The proposed 
control laws are represented in equations (9-17). Considering the 
learning rate value α1=1.0*10-7, the average weight of the gains 
obtained to the online and off-line training could be defined in 
Table 2. The implementation of the online training was developed 
in Simulink software.  

 
Table 2: Weights of PID-NN off-line training 

PID-NN Gain Average weight 
Off-line training Online training 

K’p 0.0364 0.0360 
K’i 0.1998 0.1998 
K’d 0.0150 0.00036 

 

4.6. Controllers Performance 

The performance of each controlled system was observed for 
its  

1. Stationary balancing on a horizontal flat surface, 

2. Balancing during motion at a desired speed on a horizontal flat 
surface, and  

(a) 

 

(b) 
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3. Balancing during motion at a desired speed on inclined surface, 
10 degrees.  

 

The initial valures of inclination angle were assumed zero and 
the desired speed were set to be 10% of the maximum velocity. 
The results indicate that the increase in speed and terrain 
inclination unfavourably affects the performance of the speed 
control. Figure 10 shows the range of the oscillation of the 
inclination angle of figure 10 (a) is smaller than plot 10 (b) and 10 
(c). Then the error stays close to null value (θ2=0o). To quantify the 
analysis of controllers some comparisons among the integral of 
plots in Figure 10 is showed in Table 3.   

Through this calculus get the error between the function of 
curve and the zero value (equilibrium point). If the value is 
smaller so the error is smaller. In the case of ONFC, the mean 
square error in 1200 seconds of the test was of the 0.0172 while 
for the same interval the PID controller means square error was of 
the 0.276. Therefore the ONFC control is more stable and it has a 
better performance for the two-wheeled robot.  

 
Table 3: Comparative performance of tilt control in different scenarios 

Controller Error 
Flat Terrain Inclined 

Terrain 

Stationary Run Run 

ONFC 
MSE 0.0241 0.0302 0.0172 
RMS 0.1562 0.1718 0.0887 

PID 
MSE 0.0279 0.0276 0.0306 
RMS 0.1663 0.1644 0.1502 

PIDNN 
MSE 0.0351 0.0266 0.0613 
RMS 0.1883 0.1610 0.2663 

 

 
Figure 10: Balance control results of tilt control of the two-wheeled robot 

prototype by employing ONFC, PID, and PID-NN control strategies in inclined 
terrain. 

5. Conclusion 

The ONFC and PID-NN controllers are developed for a two-
wheeled robot prototype and they are successfully applied to 
control the equilibrium of the two-wheeled robot. Compared with 
conventional PID control schemes, the intelligent controls present 
better performance, which was verified by experiments. It was 
verified the effects of terrain inclination in real experiment. The 
design of such controllers shows versatility, simplicity, improved 
performance and robustness.  
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