

www.astesj.com 76

Frame Filtering and Skipping for Point Cloud Data Video Transmission

Carlos Moreno, Ming Li

Department of Computer Science, California State University, Fresno, 93740, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 18 December, 2016
Accepted: 19 January, 2017
Online: 28 January, 2017

 Sensors for collecting 3D spatial data from the real world are becoming more important.
They are a prime research area topic and have applications in consumer markets, such as
medical, entertainment, and robotics. However, a primary concern with collecting this data
is the vast amount of information being generated, and thus, needing to be processed before
being transmitted. To address the issue, we propose the use of filtering methods and frame
skipping. To collect the 3D spatial data, called point clouds, we used the Microsoft Kinect
sensor. In addition, we utilized the Point Cloud Library to process and filter the data being
generated by the Kinect. Two different computers were used: a client which collects, filters,
and transmits the point clouds; and a server that receives and visualizes the point clouds.
The client is also checking for similarity in consecutive frames, skipping those that reach a
similarity threshold. In order to compare the filtering methods and test the effectiveness of
the frame skipping technique, quality of service (QoS) metrics such as frame rate and
percentage of filter were introduced. These metrics indicate how well a certain combination
of filtering method and frame skipping accomplishes the goal of transmitting point clouds
from one location to another. We found that the pass through filter in conjunction with
frame skipping provides the best relative QoS. However, results also show that there is still
too much data for a satisfactory QoS. For a real-time system to provide reasonable end-to-
end quality, dynamic compression and progressive transmission need to be utilized.

Keywords:
Filtering
Frame Skipping
Point Clouds

1. Introduction

This paper is an extension of work originally presented in the
International Conference on Internet and Multimedia
Technologies 2016 as part of the World Congress on Engineering
& Computer Science 2016 [1]. We extend our work by
implementing an additional technique to achieve a better quality of
service (QoS). Originally, we relied on filtering methods to lower
the cost of network transmission for point cloud data (PCD). In this
work, we explore the use of a frame skipping technique in addition
to filtering to improve the frame rate and other QoS metrics.

The collection of 3D spatial data from the real world for video
streaming is a method of communication that has experienced
growth in recent years. This area provides research challenges and
contains applications in consumer markets, such as medical,
entertainment, and robotics [2]. Providing good efficiency and
high quality for video streaming requires:

(i) a hardware sensor that is able to capture spatial
information in all three dimensions;

(ii) encoding and decoding algorithms; and

(iii) data quality assurance mechanisms that meet
application needs.

Hardware sensors have been in development for the past
decade to allow for 3D image acquisition from a real world
environment. A variety of techniques can be used to develop these
sensors, such as time-of-light (TOF), stereo, lasers, infrared light,
and structured light [3]. Due to their different approaches in
acquiring depth data, there is a varying cost and size for these
sensors. For example, the Velodyne spinning LiDAR system is
expensive, costing thousands of dollars, making it, and sensors
similar to it, impractical for many projects [4]. In contrast, there
has been a rise in low cost solutions to collect RGB-D data, such
as Microsoft’s Kinect sensor [5]. For this study, we used the Kinect
sensor to collect the 3D spatial data and the Point Cloud Library
(PCL) to process them.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Carlos Moreno, Department of Computer Science,
California State University, Fresno, 93740, USA
Email: mmxzbnl@mail.fresnostate.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 76-83 (2017)

www.astesj.com

Special Issue on Computer Systems, Information Technology, Electrical and Electronics
Engineering

https://dx.doi.org/10.25046/aj020109

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020109

C. Moreno et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 76-83 (2017)

www.astesj.com 77

The primary concern with these hardware sensors is the rate
and volume of information that is being generated. Depending on
the quality of the sensor and the physical environment being
sensed, a single capture can range from thousands to millions of
points. The Kinect sensor, specifically, generates 307,200 points
per frame (ppf), which leads to a data rate of about 45 megabytes
per second (MBps) [6]. Such a data rate is impractical to achieve
over a network for real-time video streaming, especially when
juxtaposed with the average American household bandwidth of
12.6 megabits per second (Mbps) [7].

Therefore, in order to overcome the network bandwidth
bottleneck, the use of filtering methods is considered a viable
solution. Filtering allows us to modify or remove data from a
dataset according to certain criteria. Numerous methods for
filtering data have been developed over the past years, originating
from different services and application needs. Given the variation
in filtering algorithms, a comparative study is necessary that is able
to compare and contrast different filters for use in PCD video
streaming.

While filtering the PCD does significantly reduce the data rate
for video transmission, it is still impractical for any real world
application. Therefore, in addition to studying the effects of
different filtering methods, we require the use of a frame skipping
technique. While traditional frame skipping is used when buffer
overflow occurs, we propose a different use of the scheme [8].
Rather than transmitting every frame that the hardware sensor
generates, we check for how similar the frame is to the previously
transmitted one. Frames that are deemed too similar are skipped.
Using such a technique allows the application to send only the
PCD that is significantly different visually for the user, thereby
saving transmission costs. Furthermore, as explored in [9], the use
of frame skipping techniques is beneficial from the end-user’s
perspective.

In this paper, we have implemented and conducted
experiments to evaluate four filters: pass through filter, voxel grid
filter, approximate voxel grid filter, and bilateral filter. In addition,
we tested the frame skipping technique both in isolation and with
the use of filtering. Results show that, overall, the pass through
filter with frame skipping provides the best QoS relative to the
other options. Yet, despite the reduction in the number of points
being transmitted, the data rate is still too high. We conclude that,
in conjunction with filtering methods, a PCD video streaming
service will require further techniques such as dynamic
compression and progressive transmission.

The rest of this paper is organized as follows. Section 2
discusses the works related to this paper, including a discussion on
other uses of the Microsoft Kinect, PCL, and frame skipping.
Section 3 reviews the architecture behind the Kinect and PCL, as
well as introducing the octree data structure. Section 4 explores the
different filtering methods used in the paper. Section 5 discusses
the frame skipping technique in the context of our work. Section 6
explains the experiment setup while section 7 details the QoS
metrics developed for evaluation purposes. Section 8 provides an
analysis of the experiment results. Lastly, sections 9 and 10
summarize the work in this paper and offer a conclusion.

2. Related Works

Microsoft’s Kinect was originally meant for entertainment
purposes, but since its inception, it has been integrated in many
other fields. For example, [10] has integrated the Kinect with

Simulink to allow for real-time object tracking. Reference [11]
shows that the hardware sensor is applicable to the medical field
through its use in a virtual rehabilitation system to help stroke
victims regain balance. The Kinect’s inherit issues, as described in
[12], can be transformed into useful information for use in creating
automatic foreground segmentation. Lastly, [13] shows a unique
example of utilizing the Kinect in the music field.

PCL has also experienced multiple uses. Reference [14] uses it
to develop efficient facial registration processes, encompassed into
the Digital Face-Inspection (DFI) system, to help in the dental
field. Reference [15] explains how indoor robots also benefit from
PCL by allowing for real-time, general object recognition. An
important data structure used in PCL is the octree, and it too has
implications in other fields, as shown in [16] and [17].

Frame skipping as a technique has seen considerable use in
video encoders. For example, [8] proposes a dynamic frame
skipping scheme coupled with an adaptive sliding window that is
able to reduce the frame rate to better match the available
bandwidth in live video streaming. The work in [18] takes this idea
further by calculating the optimum frame allocation for the sliding
window. A different approach is proposed in [19] by utilizing
motion information, buffer state information and changes in the
video scene. Lastly, [20] tackles the problem of real-time mobile
application in a stereo video setting, and proposes the use of frame
skipping as a hybrid approach.

3. System Architecture

Microsoft’s Kinect is a peripheral hardware sensor originally
developed for the interactive use of Microsoft’s Xbox 360 video
game console. The RGB-D sensor was developed with three main
functions in mind: 3D image detection, human skeleton tracing,
and audio processing. This functionality, in addition to its
relatively inexpensive price, has drawn researchers and developers
to utilize the Kinect for other purposes, such as robot vision and
healthcare systems. The sensor itself consists of an RGB camera,
an infrared (IR) emitter, an IR camera, and an array of
microphones. The Kinect can achieve a maximum frame rate of 30
frames per second (fps) with a resolution of 640 x 480. Each color
channel uses 8 bits while the depth data is represented in 16 bits
[21]. Therefore, for a single frame consisting of 307,200 points,
this Kinect raw data is represented in about 1.46 MB.

The Kinect raw data can be converted to point clouds. To
process these point clouds, we require the use of an external

Fig. 1. A visual representation of a voxel (left) and its corresponding octree
(right).

http://www.astesj.com/

C. Moreno et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 76-83 (2017)

www.astesj.com 78

library. One such library is PCL, an open-source, fully templated
C++ library. It incorporates many algorithms for point clouds and
3D geometry, such as filtering, feature estimation, visualization,
segmentation, and more [22]. The PCD for the Kinect is about 10
MB in size; much larger than the raw RGB-D data. If we aimed for
a target frame rate of 30 fps, this would result in a data rate of 300
MBps for PCL, compared to the 45 MBps of raw Kinect data.
Processing and transmitting at either data rate is impractical.

In PCL, one of the fundamental data structures used to
represent a point cloud is the octree. An octree recursively divides
a point cloud into eight smaller sections, called voxels (see figure
1). These voxels are 3D cubes that encapsulate a subset of points
from the point cloud. The resolution of the frame is determined by
the depth level of the octree, i.e. a higher resolution translates to
more voxels and a deeper octree.

Hardware and software aside, what makes reliable video
streaming particularly challenging is finding the balance between
the data rate and the network bandwidth. Having a high-quality
hardware sensor and efficient software for processing is wasted if
the network bandwidth is unable to deliver the data in real-time.
Therefore, for this paper, we assume that the network is in such a
state: the bandwidth is much less than the data rate. Moreover, we
are using the following configurations for two computers: (i) a
wired desktop PC with an Intel i7-6700 processor, GTX 745 GPU,
and 16GB DDR3 RAM; and (ii) a wireless laptop with an Intel i7-
2630QM processor and 8GB DDR3 RAM.

4. Filtering Methods

The filters used for this comparative study come from PCL.
There is an extensive list of available filters; however, not all of
these are practical or suited for data transmission in real-time.
Narrowing down this list, we determined that the following four
filters seem most applicable to real-time video streaming: pass
through, voxel grid, approximate voxel grid, and bilateral. These
filters each take a point cloud as input and will output a new,
filtered point cloud.

4.1. Pass Through

The pass through filter passes the input points through
constraints based on a particular field. It iterates through the entire
point cloud once, performing two different operations. First, it
removes non-finite points. Second, it removes any points that lie
outside the specified interval for the specified field. For example,
a programmer is able to set the field as the z-dimension (depth) and
set the limit so that the filter removes any points that are half a
meter away from the sensor.

4.2. Voxel Grid

The voxel grid filter assembles a 3D voxel grid over the entire
input point cloud. Visually, this can be represented as a set of cubes
being placed over the entire point cloud. For each individual voxel,
the points that lie within it are down-sampled with respect to their
centroid. This approach has a few drawbacks: (i) it requires a
slightly longer processing time as opposed to using the voxel
center; (ii) it is sensitive to noisy input spaces; and (iii) it does not
represent the underlying surface accurately [23].

4.3. Approximate Voxel Grid

The approximate voxel grid filter attempts to achieve the same
output as the voxel grid filter. However, rather than using the

method described above, it sacrifices accuracy for speed. Rather
than carefully determining the centroid and down-sampling the
points, this filter makes a quick approximation of the centroid
through the use of a hashing function.

4.4. Bilateral

The bilateral filter preserves the edges in a frame and reduces
the noise of a point cloud. This is performed by replacing the
intensity value for each point in the frame by the weighted average
of intensity values from nearby points, based on a Gaussian
distribution. These weights depend on the Euclidean distance and
the differences in ranges (such as color and depth). For further
information and a detailed explanation of the bilateral filter, see
[24].

5. Frame Skipping

In general, frame skipping refers to the process of selecting a
key reference frame to interpolate other frames. Rather than
transmitting all video frames, the technique is able to skip certain
frames that share a large number of similar data. By selecting a
reference frame that is transmitted, the decoder is able to
interpolate and fill in the skipped frames. The aim for frame
skipping algorithms is to minimally affect the video quality and to
significantly reduce the transmission size [25].

Frame skipping is typically caused by buffer overflow. This
phenomenon frequently occurs after the encoding of an I-frame.
As discussed in [26], this is due to the relatively large number of
bits entering the buffer in contrast to the bits moving out.
Interestingly, as noted in [25], frame skipped videos tend to be
nearly as tolerable to packet loss as their raw video stream
counterparts.

In this paper, we use frame skipping to refer to a simpler
process. Rather than using interpolation, or some other method of
estimation, our experiment simply displays the same frame once
more. This keeps our system relatively complex-free and allows us
to focus on the way the frame skipping algorithm selects which
frames to skip. It does so by comparing the octrees of the two point
cloud frames. Using PCL’s octree change detector data structure,
we are able to compare the voxels of the two octrees recursively.
This will return a vector containing the indices of the voxels that
differ. To calculate a similarity percentage (SP), we use:

𝑆𝑆𝑆𝑆 = # 𝑜𝑜𝑜𝑜 𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−# 𝑜𝑜𝑜𝑜 𝑑𝑑𝑝𝑝𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑜𝑜𝑜𝑜 𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗ 100 (1)

Frames that have a SP exceeding our similarity threshold are
deemed too similar and therefore skipped.

6. Experiment Setup

In order to conduct a survey of different filtering algorithms,
we needed to setup an experiment that is able to measure certain
characteristics and compare these measurements. Because this is
in the context of video streaming, we developed a threaded
client/server application (see figure 2) that tests each filter and the
possible benefits of frame skipping.

The client program is designed for generating, skipping,
filtering, and transmitting the point clouds. It is connected to the
Kinect hardware sensor to capture the RGB-D data from the real
world environment. The responsibilities of the client program are
divided into four threads:

http://www.astesj.com/

C. Moreno et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 76-83 (2017)

www.astesj.com 79

(i) convert the raw RGB-D data from the Kinect sensor into PCD
using PCL and store this into buffer A;

(ii) access the PCD from buffer A, calculate the similarity
percentage against the most recently transmitted PCD, skip
the frame if the percentage exceeds the threshold, otherwise
store the PCD in buffer B;

(iii) access the PCD from buffer B, filter it, and store the filtered
PCD in buffer C; and

(iv) access the PCD from buffer C, fragmentize it, and transmit the
datagrams to the server program using UDP.

The server program is designed for receiving the point clouds
from the client and visualizing them to the monitor for display.
Similar to the client, the server disperses its responsibilities to
threads:

(i) receive datagrams containing PCD from the client
program, defragmentize, and store the PCD in a
buffer; and

(ii) access the PCD from the buffer and visualize it using
PCL’s visualization functionality.

We ran a total of ten tests: a base case which used no filter nor
frame skipping, each of the filters, frame skipping, and each filter
with frame skipping. These tests were all conducted in a wired-to
using a wired connection to the Internet, while the server is
receiving data through a wireless connection.

To test the relative effectiveness of each filter and the possible
benefits of using a frame skipping technique in this experiment, we
had to develop ways of measuring the QoS. We therefore created
a set of QoS metrics that captured information for each test. This
allows us to compare them in a quantitative fashion.

Table 1 (Summary of QoS Metrics)

Filter Filter
Percentage

Branch
Similarity

Point
Similarity

Color
Similarity

No Filter 0.00% 100.00% 100.00% 100.00%

Pass Through 88.07% 13.26% 99.77% 98.81%

Voxel Grid 79.82% 62.46% 78.20% 99.42%

Approximate
Voxel Grid

73.27% 74.96% 75.33% 99.19%

Table 2 (Summary of Frame Similarity metric)

Filter Without frame
skipping

With frame
skipping

No Filter 98.85% 92.01%

Pass Through 96.32% 87.74%

Voxel Grid 97.92% 92.26%

Approximate Voxel Grid 97.15% 90.93%

Fig. 2. The experiment flowchart of the threaded client/server applications. The client program (left) consists of four threads. The server program (right) consists of
two threads.

http://www.astesj.com/

C. Moreno et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 76-83 (2017)

www.astesj.com 80

wireless network environment, meaning that the client program is
QoS Metrics

QoS is critical for the success of live video streaming. The
quality of a video stream is, in part, determined by its fps. Video
streams with a high fps usually result in a smooth visual experience
for the users; low fps, on the other hand, tends to result in a
“choppy” stream and poor user experience.

Another important characteristic of video streaming is the
overall processing time required for each frame. To measure the
QoS for this aspect, we used a processing time metric, which is the
overall summation of the individual phases. This means, it adds up
the time it takes for:

(i) determining if the point cloud should be skipped;

(ii) point cloud filtering;

(iii) point cloud transmission;

(iv) receiving point clouds; and

(v) point cloud visualization.

While the above two metrics work well in determining the QoS
for video streaming in general, they do not take into account how
well the filters are performing. Therefore, we also developed a
filter percentage metric, meaning how many of the points in the
original point cloud were filtered out. To calculate this, we found
the difference in the number of points in the filtered point cloud
from the original point cloud, and divided that by the original
number of points.

Despite these three metrics, there is still a lack of measurement
of how well the video stream performs visually. For that, we
developed a set of three additional metrics:

(i) branch similarity, which compares the two branch
structures of the octrees against each other;

(ii) point similarity, which measures how well two point
values match up; and

(iii) color similarity, which calculates the similarity in the
color values.

These visual QoS metrics are calculated by comparing the
filtered PCD against the raw PCD.

In addition to the above three, we also required an additional
visual QoS metric:

(iv) frame similarity, which compares how similar the
current frame appears against the previous frame.

This allows us to quantitatively measure the video stream in
terms of its visual differences.

7. Results

The tests that used the bilateral filter were disregarded due to
the large processing time required. A single point cloud required
over half an hour to filter, making it impractical for any live video
streaming application.

Using the pass through filter provided the highest frame rate
compared to the other filters (see figure 3). Moreover, it also
achieved the lowest processing time. These can be explained due

Fig. 3. A scatter plot that compares the frame rate for different filters in a wired-to-wireless network environment. The pass through filter maintains the highest
fps of the four cases. This data was collected over a period of 500 frames.

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

Fr
am

es
 p

er
 S

ec
on

d

Time (Seconds)

Frame Rate
without Frame Skipping

No Filter Pass Through Voxel Grid Approximate Voxel Grid

http://www.astesj.com/

C. Moreno et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 76-83 (2017)

www.astesj.com 81

to the pass through filter filtering the most points relative to the
others (see table 1). With fewer points, the filtered point clouds
from the pass through filter are smaller in data size, which allows
for a higher frame rate and lower overall processing time.

In terms of the visual QoS metrics, the pass through filter
appears to have a relatively low branch similarity. However, this
is due to the nature of the filter. It effectively removes a large
portion of the original point cloud, which drastically changes the
underlying octree data structure. While the octree might be
different, the pass through filter still maintains the highest
similarity for the points (excluding the control case which uses no
filter). See figure 5 for a visual depiction of the filter effects.

In regards to frame skipping, the results show that using a
frame skipping technique provides a better end-to-end QoS.
Comparing the five tests that did not use this scheme against the
five that did shows that the benefits of the using the frame skipping
technique. In terms of the fps, we found that the addition of frame
skipping increased the frame rate for all filters (see figure 4).
Specifically, the best combination arose from the pass through
filter and frame skipping technique, which also achieved the
lowest processing time. Moreover, by utilizing this technique, we
found that the resulting PCD video stream was more responsive to
changes (see table 2).

8. Summary

Among the four filtering methods allowed by PCL, the pass
through filter results in the best scores for the QoS metrics. It
removes the unnecessary background data, which reduces the point
cloud data size and allows for a better experience in PCD video

streaming. If the whole frame is required, however, the best filter
is the approximate voxel grid, which outperforms the (normal)
voxel grid filter in all QoS metrics. The addition of a frame
skipping scheme had positive benefits overall. The frame rate
increased for all filter options, although at the cost of a slight
increase in processing time.

Although the use of filters and frame skipping reduces the
original PCD size, the highest average frame rate that was achieved
is merely 6.41 fps. Such a low frame rate cannot be considered to
provide excellent end-to-end QoS. Therefore, while filtering and
frame skipping improve the QoS additional techniques will be
required.

For that purpose, we propose three additional techniques. First,
compression, which will allow the data size to become even
smaller, translating to a higher frame rate. Second, because of the
network behavior that causes bandwidth fluctuation, a static
compression ratio might work at certain bandwidth rates, but not
all; instead, we need a dynamic compression algorithm that adjusts
the compression ratio as a response to the bandwidth. Third, a
progressive transmission scheme allows us to transmit the PCD
layer-by-layer, in which each additional layer provides more
details for the frame; the number of layers sent depends on the
bandwidth and dynamically adjusts as the network changes.

9. Conclusion

Collecting 3D spatial data for PCD video streaming provides
research challenges due to the high volume and high velocity data
rate from the hardware sensors. Using Microsoft’s Kinect sensor
to collect the RGB-D data and PCL to process them, we were able

Fig. 4. A scatter plot that compares the frame rate for different filters using the frame skipping technique. The pass through filter maintains the highest fps of the
four cases. This data was collected over a period of 500 frames.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

Fr
am

es
 p

er
 S

ec
on

d

Time (Seconds)

Frame Rate
with Frame Skipping

No Filter Pass Through Voxel Grid Approximate Voxel Grid

http://www.astesj.com/

C. Moreno et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 76-83 (2017)

www.astesj.com 82

to compare and contrast different filtering methods to be used with
the PCD. Filtering is a requirement due to the high data rate
compared to the low bandwidth (300 MBps vs. 12.6 Mbps). In
addition, we explored the use of a frame skipping technique that
provides a better QoS experience for the end-user.

Using a threaded client/server application, we were able to
survey the different filtering algorithms and the use of the frame
skipping scheme by measuring a set of QoS metrics. Our results
show that, in a live network environment, the pass through filter in
conjunction with frame skipping achieves the highest scores in
these metrics. Yet, utilizing only filters will not achieve a desirable
video streaming experience. To do so, we propose the use of three
additional techniques: octree compression, dynamic compression,
and a progressive transmission scheme. Using these techniques
provide further improvements by:

• compressing the octree data structure on the client-side to
reduce the data rate

• dynamically adjusting the compression ratio in response
to network bandwidth to support a reliable end-to-end
QoS

• selectively transmitting high importance layers of the
octree to lower the data rate

Conflict of Interest

The authors declare no conflict of interest.

References

[1] C. Moreno, M. Li, “A comparative study of filtering methods for point clouds
in real-time video streaming,” Proceedings of the World Congress on
Engineering and Computer Science, San Francisco, CA, 2016.

[2] M. Miknis, R. Davies, P. Plassmann, A. Ware, “Near real-time point cloud
processing using the PCL,” 2015 International Conference on Systems,
Signals and Image Processing, London, 2015.

[3] J. Fu, D. Miao, W. Yu, S. Wang, Y. Lu, S. Li, “Kinect-Like Depth Data
Compression,” in IEEE Transactions on Multimedia, 15(6), 1340-1352, 2013.

[4] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, E. Steinbach,
"Real-time compression of point cloud streams," 2012 IEEE International
Conference on Robotics and Automation, Saint Paul, MN, 2012.

[5] R. B. Rusu, Z. Marton, N. Blodow, M. Dolha, M. Beetz, "Towards 3D point
cloud based object maps for household environments," Robotics and
Autonomous Systems, 56(11), 927-941, 2008.

[6] F. Nenci, L. Spinello, C. Stachniss, “Effective compression of range data
streams for remote robot operations using H.264,” 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Chicago, IL,
2014.

[7] D. Belson, J. Thompson, J. Sun, R. Möller, M. Sintorn, G. Huston, "The state
of the Internet," Akamai, Cambridge, MA, Tech. Rep., 2015.

[8] Z. Zhang, H. Shi, S. Wan, “Dynamic frame-skipping scheme for live video
encoders,” 2010 International Conference on Multimedia Technology,
Ningbo, 2010.

[9] Y. Qi, M. Dai, “The effect of frame freezing and frame skipping on video
quality,” 2006 International Conference on Intelligent Information Hiding and
Multimedia, Pasadena, CA, 2006.

[10] J. Fabian, T. Young, J. C. P. Jones, G. M. Clayton, “Integrating the Microsoft
Kinect with Simulink: real-time object tracking example,” in IEEE/ASME
Transactions on Mechatronics, 19(1), 249-257, 2014.

[11] C. L. Lai, Y. L. Huang, T. K. Liao, C. M. Tseng, Y. F. Chen, D. Erdenetsogt,
“A Microsoft Kinect-based virtual rehabilitation system to train balance
ability for stroke patients,” 2015 International Conference on Cyberworlds,
Visby, 2015.

[12] T. Deng, H. Li, J. Cai, T. J. Cham, H. Fuchs, “Kinect shadow detection and
classification,” 2013 IEEE International Conference on Computer Vision
Workshops, Sydney, NSW, 2013.

(a) no filter

(b) pass through filter

(c) voxel grid filter

(d) approximate voxel grid filter

Fig. 5. A visual comparison of the four filter cases used in the experiment.

http://www.astesj.com/

C. Moreno et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 76-83 (2017)

www.astesj.com 83

[13] M. F. Lu, J. S. Chiang, T. K. Shih, S. Wu, “3D sphere virtual instrument with
Kinect and MIDI,” 2015 8th International Conference on Ubi-Media
Computing, Colombo, 2015.

[14] C. T. Hsieh, “An efficient development of 3D surface registration by Point
Cloud Library (PCL),” 2012 International Symposium on Intelligent Signal
Processing and Communications Systems, New Taipei, 2012.

[15] Q. Zhang, L. Kong, J. Zhao, “Real-time general object recognition for indoor
robot based on PCL,” 2013 IEEE International Conference on Robotics and
Biomimetics, Shenzhen, 2013.

[16] F. Ouyan, T. Zhang, “Octree-based spherical hierarchical model for collision
detection,” 2012 10th World Congress on Intelligent Control and Automation,
Beijing, 2012.

[17] J. He, M. Zhu, C. Gu, “3D sound rendering for virtual environments with
octree,” IET International Conference on Smart and Sustainable City 2013,
Shanghai, 2013.

[18] Y. Zhou, H. Ma, Y. Chen, “A frame skipping transcoding method based on
optimum frame allocation in sliding window,” 2010 2nd International
Conference on Signal Processing Systems, Dalian, 2010.

[19] S. Bhattacharyya, E. Piccinelli, “A novel frame skipping method in
transcoder, with motion information, buffer fullness and scene change
consideration,” 2009 17th European Signal Processing Conference, Glasgow,
2009.

[20] I. L. Jung, T. Chung, K. Song, C. S. Kim, “Efficient stereo video coding based
on frame skipping for real-time mobile applications,” IEEE Transactions on
Consumer Electronics, 54(3), 1259-1266, 2008.

[21] A. Jana, Kinect for Windows SDK Programming Guide, Packt, 2012.

[22] R. B. Rusu, S. Cousins, "3D is here: Point Cloud Library (PCL)," 2011 IEEE
International Conference on Robotics and Automation, Shanghai, 2011.

[23] S. Orts-Escolano, V. Morell, J. García-Rodríguez, M. Cazorla, "Point cloud
data filtering and downsampling using growing neural gas," The 2013
International Joint Conference on Neural Networks, Dallas, TX, 2013.

[24] C. Tomasi, R. Manduchi, "Bilateral filtering for gray and color images," 6th
International Conference on Computer Vision 1998, Bombay, 1998.

[25] K. W. Lim, J. Ha, P. Bae, J. Ko, Y. B. Ko, “Adaptive frame skipping with
screen dynamics for mobile screen sharing applications,” IEEE Systems
Journal, PP(99), 1-12, 2016.

[26] P. Feng, Z. G. Li, L. Keng Pang, G. N. Feng, “Reducing frame skipping in
MPEG-4 rate control scheme,” 2002 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Orlando, FL, 2002.

http://www.astesj.com/

	2. Related Works
	3. System Architecture
	4. Filtering Methods
	4.1. Pass Through
	4.2. Voxel Grid
	4.3. Approximate Voxel Grid
	4.4. Bilateral

	5. Frame Skipping
	6. Experiment Setup
	Table 1 (Summary of QoS Metrics)
	Table 2 (Summary of Frame Similarity metric)
	7. Results
	8. Summary
	9. Conclusion
	Conflict of Interest
	References

