

www.astesj.com 220

SCMS: Tool for Assessing a Novel Taxonomy of Complexity Metrics for any Java Project at the Class

and Method Levels based on Statement Level Metrics

Issar Arab1,2,*, Bouchaib Falah3, Kenneth Magel4

1Department of Informatics, Technical University of Munich, 80333, Germany

2Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 8613, Canada

3School of Science and Engineering, Al Akhawayn University in Ifrane, 53000, Morocco

4Faculty of Computer Science, North Dakota State University, ND 58108-6050, USA

A R T I C L E I N F O A B S T R A C T

Article history:

Received: 20 September, 2019

Accepted: 14 November, 2019

Online: 05 December, 2019

 Software is the primary and indispensable entity in our technologically driven world.

Therefore, quality assurance, and in particular software testing, represents a vital

component in the software development cycle. Throughout the years, many tools have been

developed to collect metrics of software that had been implemented. These tools have some

differences but continue to play an important role in improving the quality of software

products. This paper introduces a newly developed tool, named Spectra Complexity Metrics

System (SCMS), which compiles a novel taxonomy of complexity metrics of any given

software written in the Java programming language. Our suggested metrics have been

invented to identify and evaluate the characteristics of Java computer programs. They aim

at increasing the efficiency of the testing process by significantly reducing the number of

test cases without having a significant drop in test effectiveness. We assess our proposed

taxonomy of different complexity metrics based on the product levels (statement, method,

and class) and their characteristics. For further evaluation, our software metrics coverage

is compared to other existing software metric tools. The results show the novelty of our

taxonomy of complexity metrics and the capability of our tool to compute these

measurements based on all three of the product level categories. We have published our

tool at https://github.com/issararab/SCMS under an open-source license.

Keywords:

Software Testing

Complexity Metrics

Software Metrics Tool

Effectiveness

Data Flow

Data Usage

Taxonomy

JAVA

1. Introduction

Over the current decade, concerns over present and future

software quality have grown, as have the range and complexity of

software and its applications. Increasingly, developers,

researchers, and users are dissatisfied with the quality of available

software. Hence, we have seen a growing focus on software

testing, where the engineers’ main job is to assess and quantify the

quality of a given product. The key challenge in this field is to

reduce costs and maximize benefits. Those challenges have

motivated software engineers to develop metrics or rules for

quantifying given characteristics and attributes of software

entities. For good quality software, these characteristics should be

understandable and measurable [1]. These metrics aim to validate

and verify the quality and the assurance of software. As it is

extremely time-consuming and requires a great deal of time and

effort, the overall testing process needs to be automated for testing

practices [2].

This article is an extension of a paper previously presented in

the International Conference on Software Engineering Research

and Practice (SERP 2015), in Las Vegas, NV, USA [3]. Our

contribution in this paper consists of explaining the theory behind

our suggested taxonomy and presenting the first tool, SCMS, that

compiles this introduced set of metrics. Furthermore, we are

benchmarking the software metrics coverage against state-of-the-

art tools. Our SCMS tool will be used to evaluate the complexity

metrics, primarily following a static analysis, of any program

written in Java language. The strength of this tool is that it is

implemented to compute metrics at three different levels

(statement, method, class). The tool outputs a CSV file of either

ASTESJ

ISSN: 2415-6698

*Issar Arab & Email: issar.arab@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 220-228 (2019)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj040629

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040629

I. Arab et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 220-228 (2019)

www.astesj.com 221

the 20 metrics of all classes or the 9 metrics of all methods of a

given Java project, based on statement level metrics. The set of

metrics is discussed in later sections.

2. Related Work

Numerous tools have been implemented to compute metrics

from a program's source code. These tools are very important

factors in the reliability of the metrics, as their rules are well

defined formulas producing after each run the same value on a

similar input. There are numerous commercial, non-commercial

and open source metric tools that are available for measuring code

complexity.

One commonly used metric tool is an Eclipse plug-in for Java

programming language maintained by IBM, which calculates

numerous metrics for the source code during build cycles and

warns the tester, via the problem view of ‘range violations’ for

each metric [4]. These violations are derived from rules built in the

tool which can be modified to fit local conditions. This allows the

user to stay continuously aware of the program’s source code’s

health. One of the advantages of using this Eclipse plug-in tool is

the possibility of exporting the metrics in HTML, CSV or XML

format.

VizzAnalyzer Framework [5] is another software tool that

measures the quality of a Java implemented software system. In

the VizzAnalyzer implementation, Welf et al. [5] rely on the

RECODER meta-programming library [6], providing a compiler

front-end for Java programs and an API for accessing AST and

semantic analysis results. The software computes a set of metrics

that are well established in the literature, such as metrics from the

C&K metric suite as well as newly developed metrics including

Data Abstraction Coupling (DAC), Package Data Abstract

Coupling (PDAC), Edge Size, Tight Class Cohesion (TCC), Tight

Package Cohesion (TPC), and Lack of Documentation (LOD) [5].

In what concerns other programing languages, Pymetrics is a

famous open source complexity metrics measurement tool

implemented by Charney [7]. It is a tool that compiles metrics for

Python source code only. Metrics include McCabe’s Cyclomatic

Complexity [1, 8], LOC, etc. One of the main features of this tool

is the output format. It allows users to customize their own reports

as well as the option to output either to stdout, SQL files, or CSV

files.

According to the article in [9], test tools can be divided into

seven groups: design, implementation, evaluation, load,

performance, GUI, dynamic and static analysis. In our study, we

focus only on the last category, that deals with static and dynamic

complexity metric tools. In this category, the most famous and

widely used assessment metrics by far are the LOC (lines of code)

and Cyclomatic Complexity [1, 8, 3]. However, the use of Object-

Oriented (OO) languages has pushed researchers to come up with

novel taxonomies of complexity metrics to evaluate OO solutions.

The metrics introduced in [10] are very popular in dealing with

Object-Oriented design and are used in the coding phase. The

approach presented is based on mathematical formula that describe

the relationships between the different variables. Moreover, the

metrics proposed are designed to determine quantitative measures

by studying the operators and operands used in the code. These

metrics are referred to as ‘Software Science’ and are used in the

development stage in order to assess the code. Another set of

metrics is presented by Chidamber et al. in [11]. These metrics deal

with many principles related to Object-Oriented development for

the sake of enhancing software maintenance.

Numerous metrics have been introduced, discussed,

scrutinized, and published. Those measurements were

implemented in multiple commercial and open source tools, which

raises one important question: do these metric tools produce the

same values for the same metrics on the same input? This has been

investigated by Lincke et al. in [12]. The authors conducted an

experiment with ten commercial and free metrics tools. Using

these tools, a set of nine complexity metrics were computed on the

same software systems. Their investigation showed that, given the

same input, metrics tools deliver different results. One reason for

the disparity is the looseness of the definition of most metrics.

Different tools may interpret even a simple metric such as LOC

differently (e.g. are blank lines counted or not).

3. Novel Taxonomy of Complexity Metrics

In general, a metric is defined as a measurement and any

measurement can be a useful metric. Software engineers use

measurement throughout the entire development cycle by

measuring the characteristics of software to get some notion of

whether the software fulfills the requirements consistently and

completely. Additionally, metrics measure the design quality and

whether the software is ready for testing. Project Managers

measure attributes of the product to be able to tell when the

software will be ready for delivery and whether the budget will be

exceeded. Customers measure aspects of the final product to

determine if it meets their requirements and if its quality is

sufficient. FInally, maintainers must be able to assess and evaluate

the product to see what should be upgraded and improved [3].

Software metrics can be clustered into four main categories

[1]:

● Product

● Process

● People

● Value of the Customer

In this paper, our focus was on the product metrics as being

the main selectors for test cases. As opposed to the previous work

done in the domain, we focus on the development of a

comprehensive taxonomy based on two main criteria:

1. Which product level is the metric applied on?

2. And which feature does the metric measures at a given

product complexity level?

The suggested taxonomy of metrics can be projected into a 2-

dimensional space where each axis represents one criterion as

shown in Figure 1 [3]. Each datapoint in the graph represents the

metric computed by SCMS tool given its coordinates, where x-

axis (kind) represents the type of metrics measured and the y-axis

(scope) represents the product level at which the metric is applied.

The grouping of data points in the graph visualizes the number of

metrics under a similar type compiled at a given product level. For

instance, the top right cluster of points shows that 4 metrics under

data usage type are computed at the class level.

http://www.astesj.com/

I. Arab et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 220-228 (2019)

www.astesj.com 222

Figure 1: Our suggested taxonomy dimensions compiled by SCMS tool where y-

axis (scope) represents the product level at which the metric is applied and the x-

axis (kind) represents the type of metrics measured. The small clusters of

datapoints in the graph shows the number of metrics under a similar type compiled

at a given product level

4. Metrics at Statement Level

4.1. Data Complexity

Data complexity metrics are studied in our work by two

different means, data flow and data usage. Data flow measures

how the data behaves taking into consideration its interactions

within the system [3, 13, 14]. It is defined as the number of

‘formal parameters of activities and the mappings between

activities’ data. It tracks the flow of the data through the system

in order to detect errors related to the usage and interactions of

variables between each other. Data flow has been the choice of

many testers due to its close relationship with the Object-Oriented

principle of cohesion. On the other hand, data usage for a

statement is defined to be the number of variable values used in

that statement plus one if the computed equation is being assigned

to a variable in that statement. It is based on the number of data

defined in the unit being considered or the number of data related

to that unit. From a software testing point of view, the data usage

metric is simply the sum of uses (p-uses and c-uses) plus

definition variables in a given statement.

4.2. Control Flow Complexity

McCabe’s Cyclomatic complexity metric [a, h, c] is a widely

and well-established measurement in the literature used in this

category. It has been implemented by many software complexity

tools for different programming languages and especially for

Object-Oriented ones. Basically, the idea behind Thomas

McCabe’s metric is that software complexity increases with the

number of control paths generated by its code [8]. A control path

is determined by the existence of a control block, also named

scope, that includes predicates as a condition to fork a flow in a

path. From these observations, we chose the scope level metric of

a given statement as the measurement of choice for this category.

This method requires counting how many control constructs (do-

while, if-else, while, for, etc.) are present in the source code [15].

4.3. Size Complexity

Size Complexity is one of the oldest measures in software

engineering to quantify the length, functionality, and complexity

of software [16]. One of the most widely used and easiest to

compute measures in this category is the number of Lines of Code

(LOC). However, many other size metrics are based on Halstead

Software Science Definition [10]. It is a traditional measurement

of complexity metrics tackling the issue from one single view,

which is the number of operators.

Halstead measure counts all the types of operators including

traditional operators (ex. +, /, and ||) and punctuations (ex. ; and

()), where one opening and closing pair of parenthesis is counted

as one. From our point of view, the most important metric to

identify the complexity of a statement is just the number of

traditional operators. While, you can blow up Halstead metric by

adding as many parentheses as one wants without altering the

complexity of the system. Hence, for simplicity, we suggest using

a subset of Halstead measurement dealing only with traditional

operators, by counting the number of operators used in each

statement.

4.4. Statement Level Metrics Summary

Table 1 represents the four metrics compiled by SCMS tool at the

statement level of a Java code.

Table 1: Statement level spectrum of metrics computed by SCMS tool

Metric Short Name Short Description

NumOp Number of Operators

NumLev Number of Levels

DF Data Flow

DU Data Usage

5. Metrics at Method Level

A method consists of a set of statements performing a specific

functionality. Therefore, metrics at this granularity can be derived

from previously computed statement metrics. For method level

measurements, we suggest two strategies: the first is to calculate

the sum of the same precomputed measurement of all statements

in the method, and the second is to compute the maximum value

of the same metric among all statements constructing the method

[3, 17, 18]. This adds up to eight metrics at the method level

derived from the statement level metrics. Additionally, we added

a 9th metric, InMetCall, which counts the number of methods

within the same class calling the method being studied.

Table 2 represents and defines the nine metrics compiled by

SCMS tool at the method level of a Java code. The output is in

CSV format including the class path to the method as well as its

type.

http://www.astesj.com/

I. Arab et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 220-228 (2019)

www.astesj.com 223

Table 2: Method level spectrum of metrics computed by SCMS tool

Metric Short Name Short Description

MaxOp Maximum number of operators of

each statement in the method. Metric

based on the statements results

TotOp Total number of operators of each

statement in the method. Metric

based on the statements results

MaxLev Maximum number levels at each

statement in the method. Metric

based on the statements results

TotLev Total number of levels at each

statement in the method. Metric

based on the statements results

MaxDF Maximum number of data flow of

each statement in the method. Metric

based on the statements results

TotDF Total number of data flow of each

statement in the method. Metric

based on the statements results

MaxDU Maximum number of data usage of

each statement in the method. Metric

based on the statements results

TotDU Total number of data usage of each

statement in the method. Metric

based on the statements results

InMetCall Number of within class method calls

of the method in question

6. Metrics at Class Level

The main entity in Object-Oriented design is the class. A class

is a combination of attributes and methods. From this definition,

we can derive the class level metrics given precomputed

measurements at method level. Following the same approach

applied to compute method level metrics, we again compute the

total and the maximum of each measurement of the methods in a

class [3, 17, 18].

We then add two additional metrics: the in-out degree of that

class, which is the number of methods outside of that class that are

called by at least one method in that class, and the number of public

members within the class, i.e. attributes and methods in a class [c].

The public members within a class are defined as the public fields

and the public methods declared in that class. Table 3 and Figure

2 depict the 20 metrics compiled by SCMS tool at the class level

of a Java program as outputted in the CSV file by SCMS tool.

Figure 2 shows how the 18 class level metrics, blue, are derived

from the 9 method level ones, green, adding on top the In-Out

Degree and the Number of Public Members.

7. Spectra Complexity Metric System (SCMS)

Spectra Complexity Metric System (SCMS), is a software

that allows any Java software engineer to assess the complexity

of a Java program using the above described metrics.

The tool is implemented using the Java 1.8 and Maven 3

framework. It makes use of the ASTParser pre-built Java library

that allows you to convert a given Java class into an Abstract

Syntax Tree for evaluation.

Table 3: Class level spectrum of metrics computed by SCMS tool

Metric Short Name Short Description

Tot2Op Counts the total number of operators.

(method output based)

TotMaxOp

Counts the total of the max operators.

(method output based)

Max2Op Counts the max of max operators.

(method output based)

MaxTotOp Counts the max of the total number of

operators. (method output based)

Tot2Lev

Counts the total number of levels in

the whole class code. (method output

based)

TotMaxLev

Counts the sum of the maximum

level in each method.

MaxTotLev

Counts the max of the total number of

levels in each method.

Max2Lev

Counts the max level in the whole

class, i.e. the deepest branch.

(method output based)

Tot2DU Counts the total number of data usage

in the class. (method output based)

TotMaxDU

Counts the total number of the max

data usage in the class. (method

output based)

MaxTotDU Counts the max of the total number of

data usage in each method. (method

output based)

Max2DU Counts the max of max data usage.

(method output based)

Tot2DF

Counts the total number of data flows

in a class. (method output based)

TotMaxDF

Counts the total of the max data flows

in each method of the class. (method

output based)

Max2DF

Counts the max of max data flows in

each method of the class. (method

output based)

MaxTotDF

Counts the max of the total data flows

in each method of the class. (method

output based)

TotInMetCall

Counts the total number of within

class method calls. (method output

based)

MaxInMetCall

Counts the max number of within

class method calls. (method output

based)

inOutDeg Counts the number of in class call of

external methods. Similar to out

degrees of a dynamic call graph.

pubMembers Counts the number of members in a

class.

Figure 3 shows the UML class diagram of our tool, where

CMSRunner class represents the main entry point of the software.

The main class uses FileUtils functionalities to extract all the java

files in the project to be assessed; then, it translates each file into

an abstract syntax tree via the class Parser. This parse tree is then

traversed, using AstClassExplorer and AstStatementExplorer, to

retrieve the relevant information to our suggested taxonomy in

http://www.astesj.com/

I. Arab et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 220-228 (2019)

www.astesj.com 224

Figure 2: Taxonomy of class level complexity metrics derived from the method level ones as they are compiled by SCMS tool

order to populate the metrics fields. The metrics are organized by

Scope (product level) as fields in the classes Statement, Method,

and Class shown in the UML diagram.

8. SCMS Tool Evaluation and Benchmarking

In this evaluation, we focus on the product metrics category

to compare existing software tools with our suggested taxonomy.

As a first step, we want to showcase the importance of automated

tools to calculate complexity metrics. Then provide a detailed

description of the selected tools in order to make the comparison

with our software. And finally, we compared our SCMS tool with

the different tools based on three main levels, namely statement,

method, and class level.

8.1. Manual vs. Automated Metric Evaluation

Software quality assessment has been researched by

engineers and pioneers in the field to express quality attributes of

a software. Therefore, solid numbers and measures should be

generated for a program to better assess its complexity. Many

tools have been developed to collect metrics from a system that

has been implemented. Moreover, these tools have differences in

myriad aspects.

The two questions that might be asked here are: why do we

need tools? And why can’t we measure the complexity of a

program manually or only by reading through the program’s code?

The answer to these questions is that the complexity of a software

has increased tremendously [16]. A system now may contain

thousands of lines of code which makes measuring its complexity

manually not viable.

Therefore, there is a need for tools that analyze files and

components of a system rapidly and generate reports. The results

will then be used to optimize the process of test case generation.

These measurements can give a software developer a deep view

of the different non-functional requirements such as

maintainability and performance. Furthermore, a tool follows

repeatable and consistent calculation procedures in assessing a

Max of

Operators

Max of

Max

Operators

Max of

Levels

Max of

Max Levels

Max of

Data Flow

Max of

Max Data

Flow

Max of

Data

Usage

Max of

max

Data

Usage

Max of

Methods

Call

Total of

Operators

Total of

Max

Operators

Total of

Levels
Total of

Max Levels

Total of

Data

Flow

Total of

Max of

Data

Flow

Total of

Data

Usage

Total of

Max

Data

Usage

Total of

Methods

Call

Max of

Operators

Number

of Data

Flow

Number

of Levels

Max of

Data

Flow

Number

of

Operators

Max of

Levels
Number

of Data

Usage

Max of

data

Usage

Number of

Within Class

Method

Calls

In-Out Degree

Number of

Public

Members

Method Level

Class Level

http://www.astesj.com/

I. Arab et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 220-228 (2019)

www.astesj.com 225

program. Therefore, compiled information can be easily

interpreted and analyzed via graphical and data visualization

techniques. On the other hand, calculating metrics manually adds

an overhead to the software testers, which may lengthen the

testing phase,usually taking much more time than the

development period. The manual process is very tedious,

especially when it comes to complex software that contains a very

large number of units [16]. Therefore, complexity metrics tools

are essential in assessing the quality of a program.

Figure 3: Simplified UML class diagram of SCMS tool

8.2. Selection Process of Tools

An investigation through the available tools online showed

that most of the tools provide process and product quality

attributes. In order to make a reliable benchmarking of our

software, we only picked tools computing product quality metrics

based on three criteria. The first criterion was to select tools that

have a large set of product metrics. Second, the focus was only on

tools calculating complexity metrics for object-oriented

programming languages. Third, the selection was based on the

ease and regularity of how tools are deployed and used. Usability

of the tools was a key selection criterion in our study.

8.3. Selected Tools Summary

8.3.1 JHawk Tool

The first software tool we examined is called JHawk. JHawk

was developed to compute complexity metrics for Java programs.

The tool is described mainly as a static code analysis tool since it

takes as input the program code to compute metrics. The

computed metrics are based on several aspects ranging from

relationships between components, volume, and complexity. The

JHawk tool delivers both the process and the product quality

metrics. We retrieved only the list of product metrics. JHawk

calculates complexity metrics on all levels. The system level is

the container or the upper layer as it wraps all the remaining levels

which are method, class, and package level. Table 4 shows a

sample set of metrics calculated by the JHawk tool at the method

and class levels [19].

Table 4: Class and method level metrics measured by JHawk

Level Metric Name Metric Description

Method Number of

Arguments

The number of arguments per method

Variable

Declaration

The number of variables declared in the

method

Number of

Statements

The number of statements in the method

Number of

Loops

The number of loops (for, while…) in

the method

Number of

Operators

The total number of operators in the

method

Number of

Operands

The total number of operands in the

method

Class Number of

Statements

The number of statements in the class

External

Method Calls

The external methods called by the class

and methods in the class

Lines of Code The number of lines of code in the class

and its methods

Modifiers The modifiers (public, protected, etc)

applied to the declaration of the class

Local

Methods Calls

The local methods called by the class

and by methods in the class that are

defined in the hierarchy of the class

Instance

variable

The instance variables defined by the

class

8.3.2 Analyst4J

Analyst4J was developed both as a plugin for Eclipse

Integrated Development Environment, and as an application that

can be installed and executed independently [12]. Analyst4J was

designed to provide several functionalities of a Java program

including:

● Computing metrics
● Analysing source code

● Generating reports containing information about a Java

program

Analyst4j V1.5.0 version supports regression testing by

analyzing code before and after being changed. It provides an easy

to read report about the design and maintainability of the system

to be used. Moreover, code quality can be easily analyzed by the

tool. Analyst4J can be integrated with bug finding tools in order

to maintain Java programs. It also provides several complexity

metrics for java programs including complex classes and methods.

http://www.astesj.com/

I. Arab et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 220-228 (2019)

www.astesj.com 226

8.3.3 CCCC Tool

CCCC is a software tool designed mainly to measure

Cyclomatic Complexity of code in a program. It is generally used

for two main programming languages which are C and C++. The

generated output from this tool is a web page containing detailed

information of all the program source code. This tool is freely

available for download and use [20].

CCCC generates the following information about a given

program:

● The number of lines for each module in a program

● McCabe Cyclomatic Complexity metric

● Coupling between different components
● Object-oriented metrics as depth of inheritance tree
● Chidamber and Kemerer complexity suite

8.3.4 JMetric Tool

This tool was created by Cain and Vasa [21] for a project at

COTAR in Australia. It calculates object-oriented metrics for the

Java code. JMetric was installed to retrieve the product metrics it

calculates. This tool computes complexity metrics at five different

levels: project, package, class, method, and variable level. Table

5 shows a sample set of the computed metrics by JMetric at the

method and class levels relevant to our product measurements

comparison study.

Table 5: Class and method level metrics measured by JMetric

Level Metric Name Metric Description

Method Number of

Statements

The number of statements in the

method

Collaboration Collaboration with other methods or

units

Cyclomatic

Complexity

Cyclomatic complexity of the method

Lines of Code

The total number of lines of code in

the method

Class Number of

Statements

The number of statements in the class

Number of

Methods

The number of methods in the class

Lines of Code The number of lines of code in the

class and its methods

Public Methods Count the number of public methods

in the class

Local Methods

Calls

The local methods called by the class

and by methods in the class that are

defined in the hierarchy of the class

Instance

variable

The instance variables defined by the

class

8.3.5 NDepend Tool

 NDepend was designed to analyze code developed in .NET

technology. This tool has a large support for code metrics since it

analyzes the program code at six different levels:

● Metrics on application
● Metrics on assemblies

● Metrics on namespaces

● Metrics on types

● Metrics on methods

● And metrics on fields

Table 6 shows a partial list of metrics calculated by the

NDepend tool [22].

Table 6: Sample of complexity metrics computed by NDepend

Level Metric Name Metric Description

Application NbLinesOfCode Computing the number of

logical lines of code of the

application

NbLinesOf

Comment

Number of lines of comment

that can be found in the

application

NbMethods Number of methods for the

whole application/program

NbFields The number of fields. The

field can be either regular,

enumeration value, or other

types.

Method NbLinesOfCode Number of lines of code inside

a method

NbOverloads The number of overloads of a

method

NbLinesOf

Comment

Number of comments within a

method

NbParameters, Number of methods inside a

method

NbVariables Number of variables in a

method

Field Size of Instance The size in bytes of instances

Afferent coupling at

field level

(FieldCa)

The number of methods

that directly use a field

8.3.6 Chidamber and Kemerer Java Metrics (CKJM) Tool

 The Chidamber and Kemerer metrics were among the first

introduced metrics in the history of software metrics.

CK metrics objectives are [23]:

● To measure unique aspects of OO approach
● To measure complexity of the design
● To improve the development of the software

Diomidis Spinellis developed a tool named CKJM [24] to

compute the Chidamber and Kemeres suite of metrics. This tool

measures these metrics by processing the bytecode of compiled

Java files. Java files are compiled prior to be given as input to the

CKJM. For each class of the program or project, CKJM provides

as output the six well known metrics of Chidamber and Kemerer.

The six metrics that are calculated by the CKJM are:

● WMC: Weighted methods per class
● DIT: Depth of Inheritance Tree

● NOC: Number of Children

● CBO: Coupling between object classes

● RFC: Response for a Class
● LCOM: Lack of cohesion in methods

http://www.astesj.com/
http://www.ndepend.com/docs/code-metrics#NbLinesOfCode
http://www.ndepend.com/docs/code-metrics#NbLinesOfComment
http://www.ndepend.com/docs/code-metrics#NbLinesOfComment
http://www.ndepend.com/docs/code-metrics#NbMethods
http://www.ndepend.com/docs/code-metrics#NbFields
http://www.ndepend.com/docs/code-metrics#NbLinesOfCode
http://www.ndepend.com/docs/code-metrics#NbLinesOfComment
http://www.ndepend.com/docs/code-metrics#NbLinesOfComment
http://www.ndepend.com/docs/code-metrics#NbParameters
http://www.ndepend.com/docs/code-metrics#NbVariables
http://www.ndepend.com/docs/code-metrics#SizeOfInst
http://www.ndepend.com/docs/code-metrics#FieldCa
http://www.ndepend.com/docs/code-metrics#FieldCa
http://www.ndepend.com/docs/code-metrics#FieldCa

I. Arab et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 220-228 (2019)

www.astesj.com 227

8.4. Comparison to SCMS tool

In our benchmarking, we considered only similar metrics to

our presented novel taxonomy computed by CSMS and discarded

the rest. The four stated metrics at the level of a statement will be

used as the basis to derive other high-level complexity metrics,

namely for the method and class level.

Table 7: Statement level comparison

Tools Metrics

Name Level

Number

Data

Flow

Data

Usage

Number of

Operators

SCMS x x x x

Analyst4j x

JMetric x

CCCC x

CKJM x

JHawk x

NDepend x

Table 8: Method level comparison

Tools Metrics

Name

T
o

ta
l

#
 o

f
le

v
el

s

M
ax

 #
 o

f
le

v
el

s

T
o

ta
l

#
 o

f
o

p
er

at
o

rs

M
ax

 #
 o

f
o

p
er

at
o

rs

T
o

ta
l

#
 o

f
D

F

M
ax

 #
 o

f
D

F

T
o

t
#

 o
f

D
U

M
ax

 #
 o

f
D

U

#
 I

n
 M

et
h
o

d
 C

al
ls

SCMS x x x x x x x x x

NDepend x x x x x

Analyst4j x x x x x

JMetric x x x x

CCCC x x x

CKJM x x x

JHawk x x x

As illustrated in Table 7, the only metric that is measured at

the statement level by all the selected tools is the data flow (DF)

metric. This shows the uniqueness and the added value of our tool.

Likewise, at the method level in Table 8, we see that the closest

tools to our software are NDepend and Analyst4j with a coverage

of 55% of our suggested taxonomy. Also, three metrics in our

suggested set is covered by all of the selected tools. Those are the

total number of operators, the total number of DF and the

maximum DF. Furthermore, since the class level metrics are

derived from the method level ones by computing the sum and the

maximum, we can conclude that only six metrics from a total of

18 metrics are covered at the class level by all those selected tools.

Therefore, we show the novelty and the added value of our

suggested taxonomy and Spectra Complexity Metric System.

9. Conclusion and Future Work

This paper presents a tool, SCMS, which evaluates and

assesses a novel comprehensive taxonomy of complexity metrics,

following a bottom-up approach, of any given software written in

Java language. These measurements can then be used to optimize

the process of test case generation by targeting the complex units

in the system. The taxonomy tackles the issue from two

dimensions. The first being the scope/product dimension and it

covers the metrics at three granularity levels: statement, method,

and class level. The second being the type of evaluation, which

covers three types of metrics measurements: the size focusing on

the number of units/operators, the control flow focusing on the

number of decisions, and the data type focusing on both the data

flow and the data usage. Those metrics have as a goal to increase

the efficiency of the testing process by significantly reducing the

number of test cases without having a significant drop in test

effectiveness. The paper also covers the design and technology

used to implement SCMS tool by providing a UML class diagram

of the software which can offer insights for a starting point of any

future development of new complexity metric tools. Finally, we

have compared our tool with the major existing Java related tools

that cover a large set of product level metrics in the market. We

showed the novelty of our taxonomy of complexity metrics and

the capability of our tool to compute these measurements based

on the three different product categories. The tool is available as

an open source at https://github.com/issararab/SCMS .

In the future, we will investigate the usability of this tool as

well as other tools with their potential in software diagnosability

and fault detection. Our aim is to gather a large set of

features/metrics and combining them with machine learning

algorithms to artificially predict the faulty units in a software. Our

unit level of interest as of now is the class level.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

The authors would like to thank reviewers for their exceptionally

constructive reviews to improve this work and inspire future work.

The authors would like also to thank their sponsor, Al Akhawayn

University in Ifrane, for funding this project.

References

[1] T. J. McCabe, C. W. Butler, “Design complexity measurement and testing”,

in 1989 ACM 32, 12, 1415-1425. DOI:

http://dx.doi.org/10.1145/76380.76382

[2] I. Arab, S. Bourhnane, Reducing the cost of mutation operators through a

novel taxonomy: application on scripting languages, in 2018 Proceedings of

the International Conference on Geoinformatics and Data Analysis (ICGDA

'18). ACM, New York, NY, USA, 47-56. DOI:

https://doi.org/10.1145/3220228.3220264

[3] F. Bouchaib and K. Magel. (2015). “Taxonomy Dimensions of Complexity

Metrics” Int'l Conf. Software Eng. Research and Practice , pp. 96-102: Las

Vegas, Nevada, USA. Available:

https://www.researchgate.net/publication/281858313_Taxonomy_Dimensi

ons_of_Complexity_Metrics

[4] https://marketplace.eclipse.org/content/eclipse-metrics (accessed on May

2019)

[5] L. Welf, E. Morgan, L. Jonas, P. Thomas, P. Niklas, VizzAnalyzer- A

Software Comprehension Framework, 2003 Available:

https://www.researchgate.net/publication/241753972_VizzAnalyzer-

_A_Software_Comprehension_Framework

[6] A. Ludwig, RECODER Homepage, http://recoder.sf.net, 2001.

[7] R. Charney, Programming Tools: Code Complexity Metrics, Jan 2005,

Available: https://www.linuxjournal.com/article/8035

http://www.astesj.com/
https://github.com/issararab/SPECTRA

I. Arab et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 220-228 (2019)

www.astesj.com 228

[8] T. J. McCabe, “A Complexity Measure”, in July 1976 IEEE Trans. Softw.

Eng. 2, 4, 308-320. DOI: https://doi.org/10.1109/TSE.1976.233837

[9] P. Pohjolainen, Software Testing Tools, Department of Computer Science

and Applied Mathematics, 2002. Available:

http://cs.uef.fi/uku/tutkimus/Teho/SoftwareTestingTools.pdf

[10] M. H. Halstead. "Elements of Software Science (Operating and

Programming Systems Series)". Elsevier Science Inc., New York, NY, USA,

1977

[11] S. R. Chidamber, C. F. Kemerer, "A Metrics Suite for Object Oriented

Design". in June 1994 IEEE Trans. Softw. Eng. 20, 6, 476-493.

DOI=http://dx.doi.org/10.1109/32.295895

[12] R. Lincke, J. Lundberg, W. Löwe,"Comparing software metrics tools". in

2008 In Proceedings of the 2008 international symposium on Software

testing and analysis (ISSTA '08). ACM, New York, NY, USA, 131-142. DOI:

https://doi.org/10.1145/1390630.1390648

[13] J. Cardoso, “Control-Flow Complexity Measurement of Processes and

Weyuker’s Properties,” Word Academy of Science, Engineering and

Technology, August 2005.

[14] J. Cardoso, “Control-flow Complexity Measurement of Processes and

Weyuker's Properties.” in 2007 International Journal of Mathematical and

Computational Sciences Vol:1, No:8, 2007.

doi.org/10.5281/zenodo.1076476

[15] J. Cardoso, How to Measure the Control-flow Complexity of Web processes

and Workflows, Workflow Handbook, Future Strategies Inc., pp.199-212,

2005

[16] A. Arenas, J. Duch, A. Fernandez, S. Gomez, “Size Reduction of Complex

Networks Preserving Modularity”, in 2007 New Journal of Physics 9, P. 176,

iopscience.iop.org/article/10.1088/1367-2630/9/6/176

[17] Y. Shin, A. Meneely, L. Williams, J. A. Osborne, "Evaluating complexity

code churn and developer activity metrics as indicators of software

vulnerabilities", in 2011 IEEE Transactions on Software Engineering, vol.

37, no. 6, pp. 772-787

[18] B. Falah, K. Magel. (2013) “Test Case Selection Based on a Spectrum of

Complexity Metrics”. Proceedings of 2012 on International Conference on

Information Technology and Software Engineering (ITSE), Lecture Notes in

Electrical Engineering , Volume 212, pp. 223-235, DOI: 10.1007/978-3-642-

34531-9_24

[19] Virtual Machinery, "Download JHawk Trial Version", Virtual Machinery,

2017. [on ligne]. Available:

http://www.virtualmachinery.com/jhdownload.htm

[20] B. Wicht, (August 2011) “How to Compute Metrics of C++ project using

CCCC”. [on ligne]. Available: https://baptiste-

wicht.com/posts/2011/08/compute-metrics-of-c-project-using-cccc.html

[21] A. Cain, R. Vasa, and D. Franek, Source Forge.(accessed. 20.05.2019)

Available: https://sourceforge.net/p/jmetric/wiki/Home/

[22] P. Smacchia, “Partitioning Your Code Base Through .NET Assemblies and

Visual Studio Projects,” Redgate Hub, accessed. 10.06.2019 Available:

https://www.red-gate.com/simple-talk/dotnet/net-framework/partitioning-

your-code-base-through-net-assemblies-and-visual-studio-projects/.

[23] S. R. Chidamber and C. F. Kemerer , “Towards a Metrics Suite for Object

Oriented Design”, in October 1991 C onference proceedings on Object-

oriented programming systems, languages, and applications (OOPSLA '91),

Andreas Paepcke (Ed.). ACM, New York, NY, USA, 197-211.

DOI=http://dx.doi.org/10.1145/117954.117970

[24] Diomidis Spinellis. Tool writing: A forgotten art? IEEE Software, 22(4):9–

11, July/August 2005. (doi:10.1109/MS.2005.111).

http://www.astesj.com/

	2. Related Work
	3. Novel Taxonomy of Complexity Metrics
	4. Metrics at Statement Level
	4.1. Data Complexity
	4.2. Control Flow Complexity
	4.3. Size Complexity
	4.4. Statement Level Metrics Summary

	5. Metrics at Method Level
	6. Metrics at Class Level
	7. Spectra Complexity Metric System (SCMS)
	8. SCMS Tool Evaluation and Benchmarking
	8.1. Manual vs. Automated Metric Evaluation
	8.2. Selection Process of Tools
	8.3. Selected Tools Summary
	8.3.1 JHawk Tool
	8.3.2 Analyst4J
	8.3.3 CCCC Tool

	8.4. Comparison to SCMS tool
	Conflict of Interest
	Acknowledgment
	References

	Word Bookmarks
	3znysh7

