
Advances in Science, Technology and Engineering Systems Journal
Vol. 4, No. 6, 328-338 (2019)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

A Method for Mosaicking Aerial Images based on Flight Trajectory and
the Calculation of Symmetric Transfer Error per Inlier

Daniel Arteaga*,1, Guillermo Kemper1, Samuel G. Huamán Bustamante1, Joel Telles1, León Bendayán2, José Sanjurjo2
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In recent years, development of aerial autonomous systems and cameras have allowed
increasing enormously the number of aerial images, and their applications in many research
areas. One of the most common applications is the mosaicking of images to improve the
analysis by getting representations of larger areas with high spatial resolution. This paper
describes a simple method for mosaicking aerial images acquired by unmanned aerial
vehicles during programmed flights. The images were acquired in two scenarios: a city
and a forest in the Peruvian Amazon, for vegetation monitoring purposes. The proposed
method is a modification of the automatic homography estimation method using the RANSAC
algorithm. It is based on flight trajectory and the calculation of symmetric transfer error
per inliers. This method was implemented in scientific language and the performance
was compared with a commercial software with respect to two aspects: processing time
and geolocation errors. We obtained similar results in both aspects with a simple method
using images for natural resources monitoring. In the best case, the proposed method is 6
minutes 48 seconds faster than the compared software and, the root mean squared error of
geolocation in X-axis and Y-axis obtained by proposed method are less than the obtained by
the compared software in 0.5268 and 0.5598 meters respectively.

1 Introduction

During most of the twentieth century, the photogrammetry required
a lot of monetary and time resources. After the technological devel-
opment of electronic systems like the Global Positioning System
(GPS) and the Inertial Measurement Unit (IMU), the design of au-
tonomous vehicles, and the production of digital cameras, time and
cost limitations have been steadily declining. Thus, the rise of the
Unmanned Aerial Vehicles (UAVs) started. Nowadays, there is a
wide range of UAVs with multiple sensors and digital cameras that
are being used in many different areas such as photogrammetry,
agriculture, management of natural resources, mapping and urban
planning, rescue [1], assessment and mitigation of disasters, and
other Remote Sensing applications [2].

One of the most important and common uses given to the aerial
images acquired by UAVs, also known as drones, is the image mo-
saicking, which allows better visualization and assessment of an
event or area of study. For instance, the usage of image mosaicking
in agriculture [3] is beneficial not just because it generates an image
that covers bigger areas of crops with high resolution, in fact, it also

allows control the temporal resolution and the periodical assessment
of the fields to improve decision-making regarding the amounts of
pesticides, irrigation, land usage, and other variables.

Image mosaicking is about the reconstruction of a scene in two
dimensions (2D) by using individual images with overlapping ar-
eas. In order to perform this process, the estimation of geometric
transformations between pairs of images is required to project them
over the others and merge them together with the minimum possi-
ble error. These projective transformations, which are commonly
known as 2D homographies, are estimated from matching points of
two overlapping images.

Multiple mosaicking algorithms have been developed depending
on the requirements of accuracy and time. There are high accuracy
algorithms based on Structure from Motion technique that estimates
the scene information in three dimensions, the orientation and the
localization of the camera, and in this way, it calculates the homo-
graphies [4]; however, these algorithms imply high computational
cost and are difficult to implement. Other algorithms utilize the
information of the GPS and gyroscope of the UAV to obtain ap-
proximations of localization and orientation of the cameras during
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the flight [5] but matching images and gyroscope information by
the acquisition time may not be accurate. In addition, it has been
implemented algorithms that perform feature matching based on
bag of words (BoW) and dictionaries [6, 7] to accelerate this step,
for example, in [8] author compared processing times of different
methods of feature matching. Moreover, other researchers have
modified the Structure from Motion technique and have changed
the Bundle Adjustment by other techniques of global adjustment [9,
10]; nevertheless, these algorithms are difficult to implement.

We present a simple method of mosaicking aerial images with
geographical information acquired by UAV that obtains viable re-
sults for applications in natural resources monitoring, and compet-
itive results in terms of processing time and geolocation error, in
comparison with professional software. This method is based on
the image mosaicking of aerial images acquired in the same line
of flight, and the usage of symmetric transfer error per inlier as an
indicator of acceptable estimation of the homography.

This work is organized as follow: Section 2 develops the pro-
posed mosaicking algorithm and the implementation details. In
section 3, the results are presented and compared with those of one
professional software. Finally, in section 4, we present the conclu-
sions and comment some limitations of the proposed algorithm.

2 Proposed Method

The proposed method is based on a modification of the Random
Sample Consensus (RANSAC) method used to automatically esti-
mate homographies. According to Figure 1, this method first creates
a mosaic of all images acquired in the same line of flight and then
obtains the final mosaic by merging properly the mosaics of flight
lines. Given that our method is based on the flight trajectory, first,
we mention some details related to the acquisition of images via
UAV: the images must be composed of three channels (the most
common case is RGB), and they should be geotagged (latitude
and longitude) in order to obtain flight lines and to perform the
georeferencing step. In this section, we describe and explain the
implementation details regarding the steps of the proposed method.

2.1 Image Reading and Image Preprocessing

The first step is to read geotagged images and obtain the number, the
names, the directory, the size and the geographical information of
the images. Then the images are resized to a maximum resolution of
1500 x 1000 pixels and the geographical information is transformed
to the Universal Transverse Mercator (UTM) coordinate system.

The preprocessing consists of the selection of images that be-
long to the same flight lines, which are almost straight lines as those
of Figure 2. It is important to understand that the geolocation infor-
mation of each image corresponds to the point located in the middle
of the image. To determine which images belong to the same lines
we propose an approach based on the distance between two adjacent
images also known as shooting distance.

If the shooting distance between two images is inside a certain
range of distances, the method will consider those images have
been acquired in the same flight line. The range of distances is

established from the most common values of shooting distances and
it is calculated as follow:

Figure 1: Flow Diagram of the proposed mosaicking method.
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1. All the shooting distances dist are used to generate a his-
togram with equally spaced intervals.

2. The most common shooting distance distmr is calculated as
the mean value of the interval with the larger number of ob-
servations or greater frequency.

3. We define the parameter w as the ninth part of the difference
between the largest and shortest shooting distance, according
to (1). After evaluating the shooting distance for all the geo-
tagged images of different flights, we found that dividing the
difference between the boundaries in nine parts performs a
better selection of images pertaining to the same flight line.

w =
max(dist) − min(dist)

9
(1)

4. The range of distances is fixed by (2). The minimum value of
this range is the most common shooting distance distmr minus
two times the parameter w, while the maximum value is the
most common shooting distance distmr plus five times the
parameter w. This is mainly because the majority of shooting
distances that do not correspond to images of the same flight
line, indicated in the histogram of Figure 3 as red bars, are
smaller than distmr. The choices of the multiplicative factors
2 and 5 were given after evaluating all the available geotagged
images of different flights.

Rangedist = [distmr − 2w; distmr + 5w] (2)

Figure 2: Plot of the geolocation of image centers selected for mosaicking.

Figure 3: Histogram of shooting distances corresponding to six flights.

2.2 Search of the best overlapping images of adjacent
flight lines

In order to perform the mosaicking of individual flight lines mo-
saics, it is required to compute image matching between images
of adjacent lines. The optimal procedure is to search for the best
overlapping images of adjacent lines rather than perform image
matching for all the acquired images due to the time and computa-
tional cost. We utilize Delaunay Triangulation [11] and the UTM
geographical coordinates of each image to search for pairs of images
with enough overlap that belongs to adjacent flight lines. We applied
the Delaunay Triangulation algorithm of Matlab that is basically an
incremental implementation.

The fundamental property of Delaunay Triangulation can be
explain based on the circles circumscribed to a triangle for the 2D
case. Given four points V1, V2, V3 and V4, Delaunay Triangulation is
fulfilled when each circle circumscribed to the triangle drawn from
three points contains no other point inside of it. The importance
of this property is that the majority of the drawn triangles possess
relatively large internal angles. Thus, those triangles are considered
to be “well shaped” (more similar to an equilateral triangle than to
an obtuse one) and for our application, the edges of those triangles
connect points that represent two images with enough overlap be-
cause the larger edges are smaller than the larger edges of triangles
in the non-Delaunay Triangulation.

By applying Delaunay Triangulation, the connections between
images with enough overlap are obtained, and shown in Figure 4a;
nevertheless, those connections between images of adjacent lines
are required to be selected and the rest, to be filtered out. In addi-
tion, all the edges of triangles with any internal angle larger than
90 degrees should be deleted to ensure better overlap and therefore
more accurate matching points or inliers. After this process, the
connections between the images are depicted in Figure 4b.

2.3 Feature Extraction and Feature Description

There are many feature extraction techniques in the literature but
one of the best techniques used for mosaicking are the Scale Invari-
ant Feature Transformation (SIFT) [12] because of the property to
find corresponding points in different scale, rotated and translated
images. Images in different scales are the result of convolution
between an image I(x, y) and 2D Gaussian filters G(x, y, σ) with
different values of standard deviations σ. Equation (3) describes
how images in different scales L(x, y, σ) are produced, while (4)
describes the 2D Gaussian filter.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3)

G(x, y, σ) =
1

2πσ2 e
−

(
x2+y2

2σ2

)
(4)

SIFT features are located in the local maximum in a neighbor-
hood of 3x3x3 (X-axis, Y-axis and the scale) over the result of the
convolution between an image and the difference of the Gaussians
with scales k and kσ, as expressed in (5). In addition, the gradients
and its orientations are calculated in the neighborhood of the feature.

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) (5)
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(a)

(b)

Figure 4: Delaunay Triangulation used to search the best overlapping images of
adjacent flight lines (a) Original Triangulation (b) Filtered Triangulation.

The first step is feature extraction, also known as feature de-
tection. It computes the detection vector, which is composed of
the location in the X-axis and Y-axis, the scale (represented by the
standard deviation σ) and the resultant orientation of the gradients.
Then, feature description computes the description vector, a 128-
vector, from the gradients calculated in the neighborhood of the
feature point.

Both feature extraction and description are computed by using
the implementation of the SIFT algorithm in the open source library
VLFeat [13]. Figure 5 shows some SIFT features computed over
an aerial image acquired by an UAV over a swampy forest of the
Peruvian Jungle in Iquitos, known as Aguajales [14-16].

2.4 Determination of the projection order of one set of
flight line images and Feature Matching of sets of
adjacent flight lines images

Performing image mosaicking over one set of flight line images
requires certain implementation considerations because it implies
the projection of images by the homographies, which estimation is
not error free. Because of this, determining the projection order is a
fundamental step that avoids generating mosaics with visual errors
accumulated in certain direction of the image, as the one shown in
Figure 6a.

The idea is to project all images over a projection plane aligned
with the image located in the middle of the flight line. Therefore,
the first image in the projection order is the image in the middle of
the line. The next images in the projection order are those that are
adjacent to the first one, and then it continues in the same manner
but alternating between the two directions of the flight line. This
criterion is depicted in Figure 6b.

Figure 5: SIFT features computation over an aerial image acquired in a forest.

In this step of the proposed method, the feature matching is
also performed, between images of adjacent flight lines that were
selected in second step of this method. This operation finds two
features, one per image, that possess similar SIFT descriptor vec-
tors. We used the SIFT feature matching algorithm implemented in
VLFeat and we obtained two results: the matches (pair of features)
and the Euclidean distances between them.
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The matches between two images are represented as a group of
points Xc and X′c; each match is represented as the homogeneous
vectors xc and x′c. These homogeneous vectors are 3-vectors com-
posed by the position of the feature in the X-axis and the Y-axis,
and the unity. It is important to mention that the X-axis of the image
refers to the horizontal axis (columns) and the Y-axis refers to the
vertical axis (rows).

To find the best matches between images of adjacent flight lines,
we select the 50 matches with the lowest Euclidean distance for
every pair of image established in the second step of the proposed
method. By doing this, more than 500 matches can be computed,
between images corresponding to two adjacent flight lines that will
be used to perform the calculation of homographies between mo-
saics of flight lines. Any transformation that will be applied to an
image during the generation of mosaics of flight lines should be also
applied to the features of each image corresponding to the matches
between images of adjacent lines because they represent positions
over images that are being modified.

(a)

(b)

Figure 6: Projection order of images: (a) Mosaic generated after projecting the
images respect to an image in the end or beginning of line (b) Projection order
proposed for image mosaicking over images in a flight line.

After several homography estimation tests, we observed that
50 matches should be computed to reduce the processing time and,
at the same time, to ensure that the number of wrong matches or
outliers is very small in comparison with the inliers; thus, the proba-
bility po of choosing a sample free of outlier increases.

2.5 Image Mosaicking over images acquired in the
same flight line

This is the most important step of the proposed method. Both the
homography estimation and the projection of images are performed
following the projection order computed in the previous step (step
4th). To perform homography estimation, the feature matching be-
tween images of the same flight line is required. In this case, we
select the 150 matches with lowest Euclidean distance instead of
50 because these matches are used to estimate the homography
between individual images rather than mosaic images (mosaic of
images acquired in the same flight line).

The homography H is a 3x3 matrix that projects a set of points
Xc belonging to the plane P ∈ R2, as another set of points X′c, belong-
ing to another plane P′ ∈ R2. The projection of a point represented
by a homogeneous vector xc through the homography H is expressed
in (6).

x′c = Hxc (6)

One of the most common methods to perform homography es-
timation is based on the Random Sample Consensus or RANSAC
method, and a posterior optimization which consists in minimizing
a cost function depending on the homography and the inliers. This
method is denoted as RANSAC-OPT in this work, for simplification
purposes. RANSAC performs a robust estimation based on the
calculations for a random sample by iteratively approximating a
model. In each iteration, RANSAC computes not only the estimated
model; in addition, it classifies all the matches. If a match adjusts to
the estimated model with an error less than a threshold t, then it will
be considered an inlier; otherwise, it will be considered an outlier.

We implemented RANSAC-OPT method for homography esti-
mation and we observed that it gives good results with a tolerable
error for images with an overlap of 60 percent or greater. Neverthe-
less, due to factors external to the flight planning, some images could
be acquired with less overlap. In this situation, RANSAC-OPT can
wrongly estimate the homography, producing deformations in mo-
saics, as those shown in Figure 7. Besides, this estimation can take
more iterations to finish, thus increasing the processing time.

Because of these limitations of the RANSAC-OPT method, the
proposed method verifies that the symmetric transfer error per inlier
would be low, ensuring an acceptable homography estimation. The
proposed algorithm of automatic homography estimation, depicted
in Figure 8, is based on two modifications of the RANSAC algo-
rithm followed by the optimization step. These two modifications
are denoted RANSAC-1-OPT and RANSAC-2-OPT. The inputs of
both modifications are the S matches between two images Xc y X′c;
the outputs are the estimated homography He, the percentage of
inliers pinl, and the symmetric transfer error per inlier steinl. The
steps of this method are indicated below.

Figure 7: Deformation during mosaicking produced by the wrong estimation through
RANSAC for two images with low overlap.

1. RANSAC-1-OPT is performed. This is composed of the first
modification of RANSAC (RANSAC-1) and the posterior
optimization (OPT).
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(a) RANSAC-1: The iteration counter cnt1 is initialized
with a value of zero, and the number of required itera-
tions N with a value different from zero. The probability
po of choosing a sample free of outlier is also initial-
ized with a value of 0.99 as described in the original
RANSAC method.

i. s = 4 matched points are randomly selected, from
the sample space of S matches, so that these s
matches are as distant as possible. These s matches
are used to perform the initial estimation of the
homography through the Direct Linear Transfor-
mation (DLT) algorithm. This allows that the esti-
mated homography can project appropriately any
set of points dispersed in the whole image, rather
than just points located in one portion of the image.
In order to find the most distant matched points, the
matches were randomly paired and then the two
most distant pairs of matched points where chosen.
The fact that s = 4 is because it is the number of
matches needed to estimate the homography Ho by
using the DLT method.

ii. Given the S homogeneous vectors xc and x′c (repre-
senting the matches) and the estimated homography
Ho, the solution of the minimization problem of (7)
is a homography HR that minimizes the symmetric
transfer error for all the S matches. The cost func-
tion of this minimization problem is the sum of the
symmetric transfer error per match stec. Equation
(8) is used to calculate stec, where d(.) denotes the
Euclidean distance between two points.

HR = min
Ho

S∑
i=1

steci (7)

steci = d(xci ,H
−1
o x′ci

)
2

+ d(x′ci
,Hoxci )

2 (8)

iii. Using the homography HR, the errors of each match
with respect to the estimated model (the homog-
raphy) are represented by the values of stec, so
they are calculated by using (8). Then the standard
deviation of those errors σc are computed.

iv. The inliers of the model are represented by the
homogeneous vectors xinl and x′inl, and they are
those matches whose values of stec are less than
the threshold t, computed according to (9). Once
the inliers are identified, it is also computed the
number of inliers ninl, the sum of symmetric trans-
fer errors of the inliers S T Einl, and the standard
deviation of the symmetric transfer errors of the
inliers σinl.

t =
√

5.99σc (9)

v. During the first iteration, the estimated homogra-
phy HR, the homogeneous vector of the inliers xinl

and x′inl, the number of inliers ninl, the sum of sym-
metric transfer errors of the inliers S T Einl, and the
standard deviation σinl, are save as reference for

the following iterations. For the rest of iterations,
the following instructions are performed:
• If the calculated S T Einl is less than or equal

to 10 times its reference, the reference will be
updated with the calculated S T Einl, and then
it will proceed with the next item.

• If the computed ninl is greater than its reference,
the reference for the values of HR, ninl, S T Einl,
σinl, xinl and x′inl will be updated with the com-
puted values. Otherwise, it will proceed with
the next item.

• If the computed ninl is equal to its reference,
the standard deviation σinl computed will be
compared with the respective reference. If the
calculated σinl is less than or equal to its refer-
ence, the reference values of HR, ninl, S T Einl,
σinl, xinl and x′inl will be updated with the com-
puted values. Otherwise, it will proceed with
the step 1-(a)-vi.

vi. The iteration finishes and the iteration counter cnt1
increases in 1. Then the number of required it-
erations N is computed adaptively based on the
number of inliers ninl. Equation (10) is used to
make this calculation. The probability of choosing
an outlier ε is calculated using (11).

N =
log(1 − po)

log(1 − (1 − ε s))
(10)

ε = 1 −
ninl

S
(11)

vii. When the iteration counter cnt1 would be greater
than or equal to N, RANSAC-1 finishes and its out-
puts are the reference values for HR, ninl, S T Einl,
σinl, xinl and x′inl.

(b) OPT: The homography obtained after RANSAC-1 HR is
re-estimated utilizing just the ninl homogeneous vectors
representing the inliers xinl and x′inl. The output is the
homography He, which solve the minimization problem
of (12). The cost function is the sum of the symmetric
transfer error of all the inliers, presented in (13).

He = min
HR

ninl∑
i=1

stei (12)

stei =d(xinli ,H
−1
R x′inli )

2
+

d(x′inli ,HRxinli )
2

(13)

(c) Given the estimated homography He and the inliers,
(14) is used to calculate the percentage of inliers pinl,
and (15) is employed to compute the symmetric transfer
error per inlier steinl.

pinl =
ninl

S
(14)

steinl =

∑ninl
i=1 stei

ninl
(15)
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Figure 8: Proposed algorithm for the automatic estimation of homographies.

2. If the steinl obtained in the step 1 is less than 0.5 pixels, it will
proceed with the following item. It is important to mention
that the value of 0.5 pixels was established after several tests
of homography estimation between images with low overlap.

(a) If the steinl is less than 0.2 and the pinl obtained in the
step 1 is greater than 75%, the estimated homography
He will be the solution and the proposed method for au-
tomatic estimation of homography will end. Otherwise,
it will proceed with the next item. The threshold value
for the percentage of inliers pinl was also established

empirically.

(b) RANSAC-1-OPT (described in the step 1) is applied
again until the conditions of the previous item are sat-
isfied, or until RANSAC-1-OPT has been applied 5
times in total. We applied continuously RANSAC-1-
OPT several times and we found that the result of the
homography estimation did not improve after 5 times,
so we established this threshold. If the solution is not
found after applying RANSAC-1-OPT 5 times, it will
proceed with the step 3.

3. RANSAC-2-OPT is performed. This is composed of the sec-
ond modification of RANSAC (RANSAC-2) and the posterior
optimization (OPT).

(a) RANSAC-2: It initializes the same parameters of
RANSAC-1 with the same values: the iteration counter
cnt2, the number of required iterations N, and the proba-
bility po of choosing a sample free of outlier.

i. s = 4 matched points are randomly selected, from
the sample space of S matches, to perform the ini-
tial estimation of the homography through the DLT
algorithm. In this case, the matches are randomly
selected without any other condition.

ii. Given the S homogeneous vectors xc and x′c and the
estimated homography Ho, the symmetric transfer
error per match stec is computed using (8). The
standard deviation of those errors σc is also com-
puted.

iii. In the same manner as for RANSAC-1, the ho-
mogenous vectors of inliers xinl and x′inl, the num-
ber of inliers ninl, and the standard deviation of
the symmetric transfer error of the inliers σinl are
calculated.

iv. During the first iteration, the estimated homogra-
phy Ho, the homogeneous vector of the inliers xinl

and x′inl, the number of inliers ninl, and the stan-
dard deviation σinl, are saved as reference for the
following iterations. For the rest of iterations, the
following instructions are performed:
• If the computed ninl is greater than the refer-

ence value of ninl, the reference values of Ho,
ninl, σinl, xinl and x′inl will be updated. Other-
wise, it will proceed with the next item.
• If the computed ninl is equal to its reference,

the standard deviation σinl computed will be
compared with the respective reference. If the
computed σinl is less than or equal to its ref-
erence, the reference values of Ho, ninl, σinl,
xinl and x′inl will be updated with the computed
values. Otherwise, it will proceed with the step
3-(a)-v.

v. The iteration finishes and the iteration counter cnt2
increases in 1. Then the number of required itera-
tions N is computed adaptively as it was done for
RANSAC-1.
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vi. When the iteration counter cnt2 would be greater
than or equal to N, RANSAC-2 finishes and its out-
puts are the reference values for Ho, ninl, σinl, xinl

and x′inl.

(b) OPT: The homography obtained after RANSAC-2 Ho is
re-estimated utilizing just the ninl homogeneous vectors
representing the inliers xinl and x′inl. This is performed
in the same way as performed in the step 1-(b), and the
result is the homography He.

(c) Given the estimated homography He and the inliers, the
percentage of inliers pinl and the symmetric transfer er-
ror per inlier steinl are computed as it was done in the
step 1-(c).

4. The homography He and the symmetric transfer error per
inlier steinl obtained in the step 3 are saved as references Hre f

e
and stere f

inl . Then, RANSAC-2-OPT is applied again and the
calculated steinl is compared with the reference stere f

inl . If the
calculated value is less than the reference, then the references
Hre f

e and stere f
inl will be updated. This procedure is repeated 4

times.

The Hre f
e obtained after the repetitions is the solution and the

proposed algorithm for the automatic estimation of the homography
finishes.

An important detail of the implementation of RANSAC-1 and
RANSAC-2 is the normalization of the homogeneous vectors of the
matches. Before using these vectors for the homography estimation,
it is required to normalize them; at the same time, denormalization
must be performed after the homography estimation in order to
maintain the original scale. Both normalization and denormaliza-
tion improve the results by avoiding high errors during homography
estimation.

The algorithm to calculate adaptively the number of iterations,
the DLT algorithm, the normalization algorithm, and the original
RANSAC algorithm are well developed in [17].

Once the homographies between two adjacent images in the
same flight line are computed, the homographies between any im-
age of the line and the central image (first image in the projection
order) can be computed by multiplying homographies according to
the sequence established and depicted in Figure 6b.

The homographies allow the computation of the location of im-
ages over the mosaic images, and then, the intensities of pixels are
interpolated for the new positions. Merging all the projected images
implies to find the intensity of pixel over the mosaic by averaging
(or applying another similar procedure) the intensity of the same
pixel in the projected images.

The new position of the images centers, and the position of the
matches points between images of adjacent flight lines should be
computed for each projected images through the homographies.

2.6 Image Mosaicking over mosaics of images ac-
quired in the same flight line

This step of the proposed mosaicking method performs the image
mosaicking of the mosaics obtained from images acquired in the

same flight lines. The homographies between those individual mo-
saics are computed through the matches from images of adjacent
lines. It proceeds as follows:

1. From the new positions of matches from images of adjacent
lines, the matches from two adjacent mosaics Xm and X′m are
computed.

2. The sequence of projection is determined in the same manner
that was done for the images belonging to same flight lines
(step 4th) so the first image in the sequence is the mosaic
image located in the middle.

3. The proposed algorithm for automatic estimation of homogra-
phy (step 5th) is applied to compute the homography between
mosaic images.

4. The positions of the mosaic images in the whole mosaic is
calculated, and the pixels information is interpolated for the
new positions. This procedure is the same performed for
individual images in the previous step (step 5th).

5. The new positions of the images centers are computed by
using the estimated homographies. Georeferencing requires
the calculation of the new position of the images centers.

2.7 Georeferencing

In order to proceed with the georeferencing of the final mosaic, the
position of the images centers as well as the UTM coordinates are
required. The following steps detail this procedure:

1. The orientation of the Y-axis of the image is inverted to make
possible align the image axes with the UTM coordinates axes
through a rotation. Given the number of rows in the image
M and the coordinates in Y-axis y, the new coordinates in the
inverted Y-axis y′ are calculated by (16).

y′ = M + 1 − y (16)

2. The angle between the image axes and the UTM coordinates
axes αrot, shown in Figure 9, is computed. Given the in-
trinsic coordinates (image coordinates) of the images cen-
ters belonging to the first two images in the projection order
(Step 4th) of the central line (xc1, yc′1), and (xc2, yc′2), and
the UTM coordinates of the same images (xutm1, yutm1) and
(xutm2, yutm2); the angle between the line that connect the
centers of these two images and the X-axis of the image αpix

is calculated using (17). Besides, the angle between the line
that connect the centers of these two images and the X-axis of
UTM coordinate system αUT M is computed using (18). The
angle αrot is computed using (19).

αpix = arctan
(

yc′2 − yc′1
xc2 − xc1

)
(17)

αUT M = arctan
(

yutm2 − yutm′1
xutm2 − xutm1

)
(18)

αrot = αpix − αUT M (19)
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3. The image of the final mosaic is rotated −αrot in the clockwise
direction to align the axes of the image and the axes of the
UTM coordinates.

4. After rotating the final mosaic image, the intrinsic coordinates
of images centers will vary. Because of this, it is required
to calculate these new rotated coordinates from the distances
between centers of individual images and the center of the
final mosaic, the rotated coordinates of the center of the final
mosaic, and the rotated angle.

5. Linear regression is performed from the rotated coordinates of
images centers and the UTM coordinates of the centers. Given
the coordinates of images centers (xc, yc′), the UTM coordi-
nates of the centers (xutm, yutm) can be expressed based on
the coefficients of the linear regression a1, a2, a3, a4, a5 and
a6 according to (20) and (21).

xutm = a1xc + a2yc′ + a3 (20)

yutm = a4xc + a5yc′ + a6 (21)

6. The UTM coordinates of the four corners of the im-
age are computed from (20), (21) and the coefficients
a1, a2, a3, a4, a5 and a6.

Figure 9: Angle between the image axes and the axes of the UTM coordinates.

3 Results and Discussion
We describe the results of applying the proposed method over 6
sets of images acquired in 6 different flights regarding two scenar-
ios: a city and a forest in Peruvian Amazon. These images were
acquired with the professional camera Sony NEX-7, which allows
taking images of 24.3MP, at a height of 100 meters from the ground.
Each image possesses a spatial resolution of 6000x4000 pixels; but
their sizes are reduced to a quarter of the original size during the
processing, as it was explained in the first step of the proposed
method.

The proposed method was implemented in MATLAB R2016a,
and for validation purposes, we utilized the professional software
Pix4DMapper Pro version 3.2.10, whose algorithm is based on

Structure from Motion to generate 3D points and then orthorectified
the mosaic as explained in [18]. We compared the processing time
and the geolocation errors obtained in the same computer: HP Z820
Workstation with two processors Intel Xeon E5-2690 2.9GHz and 96
GB RAM. It is important to mention that the software Pix4DMapper
Pro also processed the images resized to a quarter of the original
size.

The processing time required to obtained each mosaic image
is shown in Table 1. Pix4DMapper Pro performs a preprocessing
step to calibrate images and it uses just the calibrated images for the
image mosaicking; therefore, the processing time for this process is
not included in our analysis.

Table 1: Processing Time

Flight
Number

of images
Pix4DMapper

Pro
Proposed
Method

1 73 10 min 29 s 10 min 36 s
2 145 24 min 44 s 21 min 37.2 s
3 148 24 min 20 s 24 min 15 s
4 168 30 min 06 s 23 min 18 s
5 168 28 min 46 s 27 min 13.5 s
6 138 20 min 46 s 27 min 46 s

In addition, the geolocation errors corresponding to the UTM
X-axis and the UTM Y-axis have been computed. From those errors,
we calculate the mean absolute error (MAE) and the root mean
square error (RMS) which are shown in Table 2.

Table 2: Geolocation Errors

Flight Axes
Pix4DMapper

Pro
Proposed
Method

MAE
(m)

RMS
(m)

MAE
(m)

RMS
(m)

1 X 0.9341 1.5209 1.2280 1.5942
Y 3.7711 4.8955 3.4296 4.0248

2 X 1.9233 2.3048 2.5927 3.1386
Y 4.3136 5.4267 4.0290 4.5155

3 X 2.2737 2.6818 3.4259 3.6941
Y 4.6558 5.7388 8.1738 9.1930

4 X 4.2449 4.9988 3.9255 4.4720
Y 3.7049 4.3406 3.1868 3.7808

5 X 3.6335 4.3212 4.4445 4.9658
Y 3.8871 4.6748 2.8436 3.2852

6 X 0.8314 1.3360 1.7022 2.0033
Y 4.6199 5.6286 3.7153 4.1984

From Table 1, we can observe that for flights 2, 3, 4 and 5 (cor-
responding to a forest in Peruvian Amazon), the proposed method
was 6 minutes and 48 seconds faster in the best case, and just 5
seconds faster in the worst case. On the other side, for the flights 1
and 6, Pix4DMapper Pro was 7 minutes faster in the best case, and
just 7 seconds faster in the worst case.
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(a)

(b)

Figure 10: Image mosaics obtained for the flight 1: (a) Pix4DMapper Pro (b) Pro-
posed Method.

(a)

(b)

Figure 11: Image mosaics obtained for the flight 6: (a) Pix4DMapper Pro (b) Pro-
posed Method.
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Regarding the MAE and RMS geolocation errors of the flights
1, 2, 5 and 6, the geolocation errors (both MAE and RMS) in X-axis
computed with the proposed method were greater than those ob-
tained by Pix4DMapper Pro; while, the geolocation errors in Y-axis
computed with the proposed method were less than those obtained
by Pix4DMapper Pro.

In the case of flight 3, MAE and RMS in both axes com-
puted with our method were greater than those computed with
Pix4DMapper Pro; but in flight 4, MAE and RMS in both axes
computed with our method were less than those computed with
Pix4DMapper Pro. For the majority of flights, the difference of both
geolocation errors are low.

We observe that the geolocation errors computed with both meth-
ods in the Y-axis are always greater than the computed in the X-axis
because of the employed GPS has that horizontal error distribution
for all its measurements.

The highest differences in processing time and geolocation er-
rors observed in Table 1 and Table 2 are because the inliers and the
estimated homography for the same pair of images may produce
different errors and different processing time. These differences are
typical of the homography estimation step.

In Figure 10 and Figure 11, we compared the mosaic images
obtained with Pix4DMapper Pro and our method for the flight 1
and 6 respectively. In the mosaic image of flight 1, regarding to a
city, we can observe more clearly the differences between image
mosaics. The image mosaic obtained by Pix4DMapper Pro presents
some small holes in the boundaries of the image (indicated with red
circles and ellipses). Besides, some trimmed edges and other differ-
ences caused by the enhancement of interpolated pixels information
performed by Pix4DMapper Pro are encircled by blue ellipses. The
mosaic image obtained with our method does not present holes
and trimmed edges. For flight 6, the differences are not so clear as
those of Figure 10 because it is difficult to see these differences in a
scenario like a forest. Visible differences in Figure 11 are shown in
the same way that was done for Figure 10.

4 Conclusions
The proposed method requires images acquired when the camera
points the nadir, so an stabilization system or gimbal should be used.
In this way, a mosaicking algorithm without any preprocessing (like
the one performed in the algorithm of Pix4DMapper Pro) can be
utilized to obtain good results. Otherwise, a more complicated al-
gorithm should be used to perform the estimation of position and
orientation of the cameras.

Finally, our mosaicking algorithm based on a simple process
results being viable and reproducible to perform image mosaicking
of aerial images for applications of natural resources monitoring
because it obtains similar geolocation errors and processing time in
comparison with a professional software based in Structure from
Motion; moreover, our results do not present any holes or color
incoherencies.
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