

www.astesj.com 58

The Financial Services Authority of Indonesia E-Reporting System Development Based on Metadata
XBRL Taxonomy

Rachmad Farizd*,1, Suharjito2
1Computer Science Department, Binus Graduate Program - Master of Computer Science, Bina Nusantara University, Jakarta,
Indonesia 11480,
2Computer Science Department, Binus Online Learning, Bina Nusantara University, Jakarta, Indonesia 11480

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 19 October, 2019
Accepted: 08 January, 2020
Online: 15 January, 2020

 The XBRL taxonomy has been proven to be able to restore various forms of redundancies
and ambiguities in making financial reports from financial service institutions. However,
the nature of XBRL which is oriented towards documents and based on XML makes the
XBRL taxonomy difficult to use because the information cannot be directly read by ordinary
users. The same obstacle was felt by the Financial Services Authority of Indonesia
(Indonesian: Otoritas Jasa Keuangan or OJK) as financial regulator in utilizing the XBRL
taxonomy, therefore a web-based application system called E-Reporting was developed to
input financial statements conducted from financial service institutions to the regulator.
The core of the application system is the XBRL taxonomy reading and mapping function,
utilizing the Java library for reading XML and the Spring Java framework as a system
backend, the Zkoss framework as the system frontend, and the database for storing data
and specifically developed for the needs of the OJK. The purpose of this paper is to show
other ways of implementing XBRL taxonomy, one of which is to present XBRL into a
dynamic user interface according to the dynamic and flexible nature of XBRL. The results
of the system evaluation indicate that the system is quite good at presenting the taxonomy
into a user interface that suits the needs and can ease the burden of data validation, as well
as providing convenience in forming the instance document, which is needed as the final
result of the reporting process carried out by financial service institutions. Therefore, this
system has been proven to provide added value in the use of XBRL taxonomy in financial
reporting activities.

Keywords:
XBRL Taxonomy
Accounting Information System
Otoritas Jasa Keuangan (OJK)

1. Introduction

The Financial Services Authority of Indonesia (Indonesian:
Otoritas Jasa Keuangan or OJK) has the main duties governed by
the law, namely in the field of supervision, monitoring, and
decision-making. OJK establishes a one-stop integrated financial
reporting policy as an accountability report for the financial
services sector (SJK) so that a single point of contact can be
realized for financial reporting from all financial services
institutions (LJK). This reporting is based on metadata using the
eXtensible Business Reporting Language (XBRL) taxonomy
methodology so that the definition and reporting format for data
uniformity is achieved, see [1]. The goal is to be able to reduce all
forms of ambiguity and redundancy and facilitate the exchange and

analysis of data that can have an impact on the quality of data that
is useful in the decision-making process, see [2]. Although it is
possible that the tag in the XBRL taxonomy is given incorrectly in
financial terms, and allows the use of inconsistent standards, see
[3].

OJK also has special attention to the weaknesses of document-
oriented and XML-based XBRL. Making it difficult to exploit,
process, adjust, search and retrieve data from a large set of XBRL
files, even for tools that provide XML-based functionality, see [4]
and [5]. Also, the process of manually retrieving and tagging data
will spend hours and increase costs related to XBRL utilization,
see [6, 7]. To overcome this weakness and facilitate the
implementation of metadata-based reporting, a system was built as
a pilot project in the reporting of the Financing Company
(Indonesian: Perusahaan Pembiayaan or PP) called the SIPP client
tool. This system is a substitute for taxonomy so that the process

ASTESJ

ISSN: 2415-6698

*Corresponding Author Rachmad Farizd, Computer Science Department, Binus
Graduate Program - Master of Computer Science, Bina Nusantara University,
Jakarta, 11530, Indonesia, Email: rachmad.farizd@gmail.co.id

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com

https://dx.doi.org/10.25046/aj050108

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050108

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 59

of data retrieval and tagging can be done automatically then create
XBRL instance documents that will be sent by LJK to OJK, so the
taxonomy itself is only used as a reference as the formation of
XBRL instances. This system has the following weaknesses and
disadvantages:

• The system cannot follow the extensible nature of XBRL's
taxonomy, which can be expanded and adapted to various
variations and report requirements, see [8]. When there is a new
version or an update from an existing version of the XBRL
taxonomy owned by OJK, the system must be rebuilt and then
distributed to LJK because the system is a standalone
application.

• The input data validation process in the OJK client application
is now in the form of a separate small application so that the
input data must be re-validated on the client application in the
LJK and the server in the OJK, so it is ineffective and
inefficient.

• Large instance documents cannot be accommodated using a
client application so that it can hamper the reporting process
because it must be sent directly to OJK.

• Having the risk of financial information from the reporter being
stolen because documents are sent through the internet
network.

The implementation of the XBRL taxonomy in the SIPP client
tool system is not optimal with these weaknesses and makes the
vision and mission of the OJK unreachable in terms of reporting.
The purpose of this research is to obtain and develop a replacement
system to overcome the various weaknesses of the XBRL
taxonomy mentioned earlier so that this metadata-based financial
reporting can be applied throughout the FSS in the future. It is
hoped that this new system can add value in the use of XBRL in
terms of flexibility, efficiency, and security in the use of XBRL
taxonomy in financial reporting from LJK to OJK.

2. Literature Review

All accounting information must be able to be issued clearly
and effectively in digital form so that it can leave the traditional
processes that are heavily exposed to human intervention. This is
one of the obstacles and shortcomings of the use of XBRL for
ordinary people because of the XBRL nature which is oriented
towards documents and is based on XML, see [4]. The low level
of understanding and knowledge of XBRL among accountants
and other relevant stakeholders is also a significant problem as in
[9]. The fact is that some respondents found refusing to use this
new technology and the lack of application technology related
software development to accommodate the use of XBRL, besides
that the government also had to produce more training courses for
entrepreneurs, see [10, 11].

There are several studies conducted to overcome the
weaknesses in XBRL, thereby maximizing the implementation
and adoption of XBRL. One of them is research by translating the
XBRL format into Ontology Web Language (OWL) with the
semantic web, the aim is to eliminate the possibility of
redundancy and improve consistency so that conclusions can be
drawn quickly and useful for business decisions of companies or
organizations, see [5, 12]. Charles Hoffman also considers the

semantic web to have many logical possibilities for the
development of information technology so that it can produce
more value, see [13]. The results are considered better in providing
semantic data for XBRL, compared to previous research conducted by
Garcia and Gil which presents a mapping based on structural
transformation from XML to RDF (Resource Description
Framework) and OWL, see [14]. However, OWL is not a
language that can be directly used by business and financial
people and not even for IT staff, besides OWL is designed only
for special purposes so that the support of tools and expertise is
minimal, see [15]. Table 1 is an example of the XBRL element
transformation with the monetaryItemType data type to OWL.

Table 1 : Transformation of XBRL into OWL

Language Transformation

XBRL

<element
id="currentLoans"
name ="currentLoans"
type =
xbrli:monetaryItemType
xbrli:balance ="credit"
substitutionGroup =
"xbrli:item">

</ element >

OWL

Declaration (Class
(ex:currentLoans))
SubClassOf (ex:currentAssets
xbrlo:monetaryItemType)
SubClassOf (ex:currentAssets
xbrlo:credit)

Other research related to the development of portable open-
source software, named Arelle to facilitate the reading of XBRL
instances. The initial goal is to meet the need for devices that can
parse and validate XBRL instance documents and support
document versions. Arelle is an independent platform, developed
entirely from scratch in Python. Using the MVC (Model-View-
Controller) architecture, where the Model as a representation of
XBRL objects, the Controller as a representation of interaction
from users and program control from outside, and the View
representation of the API interactions that were defined earlier
with the Model to display the interface, see [16].

There is patent related to the development of systems and
methods for processing, presenting, and mapping XBRL data to a
set of flat tables, where each table represents a single hypercube
projection. The aim is to maintain the very flexible nature of
XBRL, and almost every entity that uses XBRL for reporting can
extend the standard taxonomy to adjust its use to suit the needs of
a particular entity. Because, this flexibility and adjustments can
make it difficult to see data encapsulated in XBRL instance
documents. The concept is to map XBRL data so that it can be
mapped automatically back and forth between XBRL instances,
by generating a set of flat tables automatically, where each table
represents a single hypercube projection, see [17].

Other research related to the discussion and evaluation of the
development of “XBRL-Passport” (Pilot Athens stock exchange's
Statements Source Portal). This prototype was built as a smart

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 60

solution for clients, because of the long process and various
formats of collecting and analyzing financial data from various
sources, thus making companies have to spend more consistency
costs, see [18]. The prototype architecture consists of 3 simple
layers, namely: the database layer with MySQL, the logic layer
with PHP, and the application layer using the web. Because
XBRL data is embedded in various types of files such as XBRL,
HTML, Excel, XML, or text, and the limitations of web
applications for parsing the XBRL format, makes the information
displayed in HTML format uses XBRL schemes rather than
XBRL based. The initial targets of developing this prototype are:

• Provision of financial data storage locations from companies
listed on the ASE (Athens Stock Exchange), by first being
converted to XBRL.

• Make data relevant and ready to be analyzed.
• For companies with the same sector, comparisons can be made.

XBRL will not change the current operational standards and
financial conditions or also significantly improve the quality of
the company's financial statements. Companies may not get many
benefits from implementing XBRL, even companies can spend
more money to implement XBRL. But with XBRL it is possible
to exchange financial information from a variety of different
software platforms, see [7]. The requirements of a successful
XBRL application are: (1) the specifications and taxonomies
must be suitable for many companies, (2) application programs
are similar to software that is currently widely used by accounting
within companies, (3) can transfer information to specific forms
were required by users. In [7], there are several reasons for
implementing XBRL that can make companies spend more
money:

• During the process of collecting, processing, and transferring,
and investigating information requires a lot of money, see [19].

• Incomplete and misleading information releases can result in
latency litigation costs (AICPA, 1976).

• By releasing information, the company can lose its
competitive advantage, see [20].

• Companies can spend large funds to comply with regulations
issued by the relevant government, and to ensure that
information can be released or not, the company can re-issue
costs, see [20].

3. Method

This study adopted the design science research (DSR) schema
to describe the research design. The DSR framework can
contribute to new knowledge when new solutions are proposed
for known problems as seen in previous researches [21, 22]. The
contribution of this study is the method of reading from the related
XBRL taxonomy, then displaying it in another form of GUI that
is flexible following the nature of XBRL. This research presents
the development of a prototype system in the following steps: (1)
gathering information related to the application of XBRL on an
existing system; (2) uses information related to application to
develop a process for reading taxonomies systematically; (3)
changing the results of the XBRL taxonomy reading into a dataset
that is ready to be transformed into an input form; (4) creating a
dataset of links between data and tags from the related taxonomic

schemes; and (5) output in the form of instance documents
according to rules and needs.

System development will be carried out with the Agile
methodology, which is a development methodology based on
iterative development where requirements and solutions develop
through collaboration between teams as in [23], to speed up the
process and intensely involve stakeholders. The initial
development was to create a function to reading and mapping the
XBRL dictionary as the core system, and then save them into a
function in the Java class. Facilitate the process of reading
taxonomies and presenting taxonomy in the form of a GUI
without having to make a special transformation into another form.
Furthermore, the collection of information related to the system is
done by observing the reporting process in OJK and conducting
interviews with stakeholders in OJK. The data and information
obtained will then be used as a reference and as input for the
analysis process of the business needs and information expected
by the OJK and the result will be a user and system specification
document.

The design will use the help of UML (Unified Modeling
Language) as a modeling tool commonly used to determine or
describe a software system with objects, see [24]. The
development of this system uses a web-based application
architecture consisting of 3 simple layers: (1) the database layer,
(2) the logic layer, (3) the presentation layer. Web application
design will use the MVC (Model-View-Controller) pattern,
making it easier for teamwork and workloads, because it separates
the code into layers of presentation, logic, and data access.
Separating the program code into 3 categories will make it easier
to manage and read when there are parts of the code that need to
be tested, improved, and modified, see [25].

After the system has been developed, it will then be tested
using the User Acceptance Test (UAT), which is considered
important and suitable for testing agile-developed software that
allows visibility and improves communication and feedback to
developers from end-user perspective or other stakeholder, see
[26, 27]. This acceptance test can be sure whether these functions
are acceptable to each other correctly, and the end of the test is
carried out at the point between the completion of the
development and the release system [28]. The UAT type used is
Black Box Testing [29], by dividing it into 2 parts, first on the
authorization side and the other on functional.

Figure 1: SIPP Client Current Process

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 61

4. Analysis and Results

4.1. OJK E-Reporting System

Figure 1 shows the implementation of the XBRL taxonomy in
the SIPP client tool system which is not optimal as mentioned in
the introduction. After the SIPP client system generates instance
documents, LJK needs to send or upload the instance documents
to OJK's Integrated Reporting System (SILARAS) for later
validation. If the report passes the validation process, the
document will be saved to the OJK file server, and if it is invalid
then it will be rejected. The process of SILARAS can be seen in
Figure 2.

Figure 2: SILARAS Current Process

OJK's E-Reporting System is a web-based application system
that has the main function is to read and map OJK's XBRL
taxonomy for financial reporting conducted by LJK to OJK. The
results of this taxonomy reading and mapping will be converted
into GUI input forms that will be easier for reporters to use, even
for users who are not familiar with XML and XBRL because they
will no longer deal with XBRL taxonomy or XML formats. The
system makes the validation process more efficient from the client
side because the form that is displayed already has validation
related to the input limits of each item that is converted into a
component in the GUI form. Also, automation of creating report
documents (instances) as output following general XBRL rules.

Figure 3: OJK E-Reporting system architecture

The focus of the discussion is how the system can read and
map the taxonomy then present it into an input form for reporting
and create an instance document as the result of the system. Also,
the role of the validation process will be divided between LJK
(client) and OJK (server) so that the validation process does not
become redundant and more efficient in time and resources.
Another plus is that all data inputted and instance documents have
been stored on the OJK server so that the LJK does not need to

upload instance documents which are usually quite large and take
a long time and can increase the security aspects of financial
information of LJK as the reporter as shown in Figure 3.

With instance documents already contained in the OJK file
server, LJK does not need to send them to the SILARAS
application. OJK only needs to select the instance documents that
need validation, and the validation is only related to formulas as
shown in Figure 4.

Figure 4: Architectural design application SILARAS OJK

The system architecture will consist of 3 simple layers: the
database layer will use the MSSQL Server 2012 database, the
logic layer uses the Java programming language with the Spring
framework, and the presentation or user interface layer uses the
Zkoss framework. Java was chosen because it has a complete
library that can be used for reading XBRL taxonomies based on
XML, although not specifically for XBRL taxonomies, so there is
no need to convert to OWL or RDF as in existing research on
semantic web [5, 12, 13]. Zkoss was chosen because it has been
proven from several application system developments conducted
by the author, it can present and support dynamic user interfaces
according to system requirements. Also, Java and Zkoss have
been used by OJK in developing application systems as well. The
XBRL taxonomy architecture used is existing and standard used
by the OJK with a folder hierarchy and the naming of the
taxonomies determined by the OJK according to their needs.

Figure 5: The folder and file structure of the OJK XBRL taxonomy

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 62

4.2. Root XBRL Taxonomy of OJK

The root (aloc) is the prefix of the address or location of the
XBRL file, even though the file is actually in a local folder on the
server computer commonly referred to as a rewrite URL. Aloc
contained within the taxonomy framework used by OJK in each
file are: http://xbrl.ojk.go.id/taxonomy/.

4.3. OJK Taxonomy Folder and File Structure

OJK has established a folder structure and component
framework to facilitate the design and grouping of taxonomies
used in financial reporting by LJK to OJK. Under the root folder,
there are 2 main folders, namely 'dict' and 'view' as shown in
Figure 5.

• The 'dict' folder, also known as a dictionary, contains all the
entities, dimensions/axes, and domains needed for all groups
of information. The modeling uses Data Point Model (s) (DPM)
published by The European Banking Authority (EBA). In the
dictionary there are metrics (met), dimensions (dim), and
domain (dom) which are grouped into the release date folder
as shown in Figure 5.

• The 'view' folder contains the main schema file that was first
read, and there are several folder hierarchies intended to help
classify the report. In the OJK, the classification or report
categories are divided into reporters, publication date, period,
and scope for each report as shown in Figure 6, with reading
patterns:

{root URL}/view/{reporter}/{publication
date}/{period}/{scope}/{report code}/{file name}

Figure 6: The structure of the view folder on OJK's taxonomy

4.4. Core Process in OJK's E-Reporting System

Figure 7: Use case in OJK's E-Reporting system

In the E-Reporting system there are 3 main entities that users
(LJK) do to the system related to the XBRL taxonomy as shown
in Figure 7.

• Creating a report template.
• Fill out the report.
• Creating instance documents.

Furthermore, all these entities will become the core processes in
the OJK E-Reporting system related to the XBRL taxonomy as
shown in Figure 8.

Figure 8: The core process in the OJK E-Reporting system

4.5. Taxonomy Reading and Presentation Process

Figure 9: Taxonomy reading and transformation process in the OJK E-Reporting

system

In Figure 9, the components of the taxonomy are divided into
two, namely the schema and linkbase. Schema is part of the
taxonomy that defines the items that will be used in reporting,
along with the type, and data structure of information. Whereas
linkbase is a logical expression of the relationships and
relationships between items and the standards that govern it and
information specifically related to the scheme. In the reading
process, the schema which is the main structure of the taxonomy
is stored in a file with the xsd extension. The schema in the view
folder is the first file to read, with the pattern as explained before.
The naming of this schema file has a naming pattern:

{Report Code}-{Date Version}.xsd.

Schema file contains metadata elements related to the report, the
element is part of the taxonomy that contains items and other data
related to the items that are linked by linkbase as shown in Figure
10.

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 63

Figure 10: The results of reading the taxonomy elements in the OJK E-Reporting

system

In the process of reading and mapping taxonomy XBRL, the
system will read directly the elements of the taxonomy selected,
but not converted into OWL or RDF as previous research. In the
system already available Java class to accommodate the results of
taxonomic readings, the reading and mapping process can be
faster than having to convert it first into other forms. In general,
the reading of the taxonomy carried out by the system for the
relationship between documents can be seen in Figure 11.

{Report Code}-{Version}

{Report Code}-{Version}.xsd {Report Code}-frm-{Version}.xml

{Report Code}-pre-{Version}.xml

{Report Code}-cal-{Version}.xml

{Report Code}-labID-{Version}.xml

{Report Code}-labEN-{Version}.xml

generic-link.xsd

xbrl-instance-2003-12-31.xsd

met-{Version}.xsd

{Domain}-{Version}.xsd

{Domain}-def-{Version}.xsd

{Domain}-labEN-{Version}.xsd

{Domain}-labEN-{Version}.xsd

met-labID-{Version}.xml

met-labEN-{Version}.xml

met-ref-{Version}.xml

numeric-2009-12-16.xsd

nonNumeric-2009-12-16.xsd

xbrldt-2005.xsd

ref-2006-02-27.xsd

dim-{Version}.xsd

extensible-enumerations.xsd

xbrl-linkbase-2003-12-31.xsd

dim-labID-{Version}.xml

dim-labEN-{Version}.xml

xl-2003-12-31.xsd xlink-2003-12-31.xsd

Figure 11: Relationships between files in taxonomy in general

To support the process of reading taxonomies and storing
report template data, a data model was made to support the
implementation of taxonomies in the OJK as shown in Figure 12.
Information stored in XBRL documents cannot be accessed easily
for safe and scalable queries and analyzes. So sometimes
companies make two copies of data that have the same
information, and one of them is stored in a relational database
other than the XBRL document itself [30].

Figure 12: Data model for OJK E-Reporting system

The user must first create a report template based on the
taxonomy associated with the report. The reports in OJK are
grouped into several criteria and become a folder structure within
the taxonomic storage folder as explained in the folder structure
points above. This is intended to facilitate the user in viewing the
report history or create adjustments to the data if needed. The draft
input form of the report template as shown in Figure 13, will then
be displayed entirely in the report template list module in the
system as shown in Figure 12.

Figure 13: Design input forms for report templates in the OJK E-Reporting
system

Figure 14: Design list of report templates in the OJK E-Reporting system

In the first part of the schema reading, you will find a
namespace with a prefix representing it. The namespace in XBRL
is no different from what is understood in XML, namely the
naming mechanism that uniquely groups elements and attributes.
In the system, the namespace will always be carried as a reference

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 64

in the creation of an output report document (instance). In Table
2, you can see a list of common namespaces used in the XBRL
taxonomy at OJK.

Table 2: The namespace contained in OJK's XBRL taxonomy

Prefix Namespace
Xsd http://www.w3.org/2001/XMLSchema
Gen http://xbrl.org/2008/generic
Ref http://www.xbrl.org/2006/ref
Xbrldt http://xbrl.org/2005/xbrldt
Nomnum http://www.xbrl.org/dtr/type/non-numeric
Xl http://www.xbrl.org/2003/XLink
Link http://www.xbrl.org/2003/linkbase
Num http://www.xbrl.org/dtr/type/numeric
Xlink http://www.w3.org/1999/xlink

Enum http://xbrl.org/PR/2014-03-26/extensible-
enumerations

Xbrli http://www.xbrl.org/2003/instance

Xsi http://www.w3.org/2001/XMLSchema-
instance

iso4217 http://www.xbrl.org/2003/iso4217
variable http://xbrl.org/2008/variable
F{Kode_Lapora
n}

http://xbrl.ojk.go.id/taxonomy/F{Kode_La
poran}

Besides that, in the scheme there are also public elements,
which are other concepts of the model represented by codes that
are within a certain scope and can provide additional information
from key elements such as readable label information, the
definition of elements, and references other legal in languages that
might be different. Information regarding this resource is
generally marked as XLink and represented as an XBRL item, as
shown in Figure 15.

Figure 15: Examples of public elements in the OJK XBRL taxonomy

All resources will have their respective roles following the
reference linkbase, also can have their own rules. Besides, the
different roles make it possible to apply the Codification itself to
present the resource, for example for label resources, the code is
'lab', while for the resource definition is 'def', and for the
presentation is 'pre'. More complete coding of the linkbase in the
OJK taxonomy can be seen in Table 3.

Table 3: Naming on linkbase in the OJK XBRL taxonomy

Linkbase Name
Label [report code]-lab[lang]-[version date].xml
Presentation [report code]-pre-[version date].xml
Reference [report code]-ref-[version date].xml
Calculation [report code]-cal-[version date].xml
Formula [report code]-frm-[version date].xml

Reading the schema will produce elements along with
additional information contained in the schema. Then the author
tries to simplify the reading of elements, and compile them into a
hierarchy with the key in the form of the unique identity of the
elements so that it is easy to read and transformed into an input
form in the system, henceforth the authors refer to a set of data
from these elements into node elements. Examples of node
element hierarchies for reading taxonomy schema can be seen in
Figure 16.

Figure 16: Examples of tree elements from taxonomic reading

Figure 17: Example of element node results on the OJK E-Reporting system

As shown in Figure 17, at each node the element will have the
same attribute property but with different values according to the
role. In the reading of the scheme will be divided into 2 (two)
types, namely items and tuples. Items do not have nodes
underneath, whereas tuples can have one or more items
underneath. For example, abs1 is an absolute element that
indicates that this node is a tuple and has other derived elements
in it. Properties inside the node can be seen in Table 4.

Table 4: Attributes on element nodes

Attribute Description
Children List of nodes that are 1 level below
Element The XBRL metadata is specific to the node
MapInfo Summary of information from element that

are often read and used in the presentation
process

Parent Summary of information from nodes that are
1 level above

In this presentation process, only the 'Children' and 'MapInfo'
attributes are read because these 2 attributes are sufficient to have
the information needed to transform the taxonomy schema that
has been read into an input user interface in the system. If an
element has a derivative or is an absolute node, then it can be
certain that it is an information group or tuple. The process will
sort elements that do not have children and are not tuples to be
transformed into input components in the form to be displayed.

http://www.astesj.com/
http://www.w3.org/2001/XMLSchema
http://xbrl.org/2008/generic
http://www.xbrl.org/2006/ref
http://xbrl.org/2005/xbrldt
http://www.xbrl.org/dtr/type/non-numeric
http://www.xbrl.org/2003/XLink
http://www.xbrl.org/2003/linkbase
http://www.xbrl.org/dtr/type/numeric
http://www.w3.org/1999/xlink
http://xbrl.org/PR/2014-03-26/extensible-enumerations
http://xbrl.org/PR/2014-03-26/extensible-enumerations
http://www.xbrl.org/2003/instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.xbrl.org/2003/iso4217
http://xbrl.org/2008/variable
http://xbrl.ojk.go.id/taxonomy/F%7bKode

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 65

The type of input will be different according to the type of the
element, and the different and need special treatment is the type
of enumeration element, because this type of element will look to
a related domain. The types of elements and components used can
be seen in Table 5, while the conversion process is shown in
Figure 18.

Figure 18: Flow conversion of elements into GUI components on the OJK E-
Reporting system

Table 5: Conversion of elements into GUI components

Type Data Component Input Type
monetary Integerbox
decimal Integerbox
integer Integerbox
date Datebox
time Timebox
string Textbox
enumeration Combobox

Figure 19: Flat type input form on OJK E-Reporting

For the user interface on the input form, the appearance is
different for each type of form (flat, tuple, and nested tuple). Flat
type will display a form like most simple input forms where there
are labels and component inputs that accommodate data input
such as text, date, number, and others. Example of the results of
converting taxonomy items with flat type into a user interface
component that will be displayed, it can be seen as shown in
Figure 19.

For other types of input forms, they will be presented as data
tables as shown in Figure 20. The form details will appear as
popups if data is added or changed, and the shape is the same as
flat types.

Figure 20: Tuple and nested tuple data input form types on the OJK E-Reporting
system

Inside ‘MapInfo’ there is some information such as identity,
label, and constraints such as maximum length, format, and what
can be input into the component. All this information is in the
XBRL results from the reading. With this limitation already
embedded in the input form component so that the validation
process becomes lighter, for example in the input component with
a numeric type, the characters that can be inputted only in the form
of digits with a digit length are following the taxonomy reading
results. So that this presentation process has fulfilled the dynamic
requirements of the user interface and validation of input
components.

Figure 21: Data model for the results of data tagging on the OJK E-Reporting
system

4.6. Data tagging process

The tagging process only stores the values of the input
components on the form with the element id. The difficulty is to

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 66

provide a data model that can accommodate all types of forms and
support any changes that exist, both the addition and subtraction
of elements from the taxonomy. For this reason, a data model
design has been made that can accommodate existing needs, from
the flat, tuple, and nested tuple form types having the data model
scheme as shown in Figure 21.

The database table is contained in the transaction table data
schema and will be created automatically for each report template
created when the taxonomy for the template is read, making it
easier and faster to query data tagging because data queries go
directly to specific tables for data- data related to the financial
statement template created. The table name will have a pattern:
transactions.eriReportData<Report_Code><Report_Tmpl_ID>

Although the taxonomy will change in the future, this data model
will not be affected because the system will only synchronize the
tagging data only because the main orientation of the data tagging
is still based on the results of the XBRL taxonomy reading.

4.7. Creating instance documents

An instance document is a file containing data reported based
on the XBRL taxonomy consisting of a schema and linkbase file,
which has been created by OJK. In this OJK E-Reporting system,
instance document files will automatically be formed after the
taxonomy presentation process and the data tagging process have
been carried out. The instance creation process uses the data
stream method so that it does not require large memory. The
process of forming documents has been based on XBRL instance
document provisions in general and stored on the file server
repository. The instance document file in OJK has the form shown
in Figure 22.

Figure 22: Example contents of instance document content generated by the OJK

E-Reporting system

The following is an explanation of each part of the instance
document:

• The header consists of XML Header and XBRL Header. In the
XBRL header, the namespace and schema location is listed for

the namespace used that is used in the document instance and
is usually the same as the taxonomy (A).

• Schema location as described previously outside the instance
document informs about the taxonomic reference used (B).

• The context consists of elements that contain information
about the reporter and contain information about the reporting
period. Also, scenarios can be added, namely specific
conditions obtained from the intersection of values of the
dimensions involved (C).

• Primary items are items that contain reported data that has
been tagged with references that are needed. For primary items
that are empty, the ‘xsi:nil="true"’ attribute is added (D).

5. Experimental Result

. The test only uses a
representative of 1 report with flat type, not on all reports in PP.
The focus of the experiment is how the system presents reports
from the reading of taxonomy schema, until instance documents
are formed. Experiments carried out from the user to log in, until
the formation of report documents known as document instances.
The login module in Figure 23, is the login standard that exists in
all OJK systems. Login can use system validation by checking the
master user table, and using LDAP validation. To add to the safety
factor, a caption check is added, to ensure that no other system is
attempting to enter the OJK E-Reporting system.

Figure 23: Login module on the OJK E-Reporting system

Figure 24 at record
number 1. Input form to add report templates as shown in Figure
25, which has been adjusted to the needs of financial statements
and taxonomy structure to the OJK. The input form for the list
report template is also adjusted to the architecture of OJK's
taxonomy, according to the design of the previous system.

Figure 24: List of report templates module on the OJK E-Reporting system

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 67

Figure 25: Report template input form module in the OJK E-Reporting system

Figure 26 shows the folder structure and the files associated
with the selected report template. The folder presents the
taxonomic grouping structure applied in OJK and becomes the
parameter setting of the report template. The first schema file to
read is a file with XSD extension, as explained at the taxonomy
reading process point.

Figure 26: The folder structure and the files associated with the selected report
template

In the schema file, the system will read all namespaces and
linkbases associated with this scheme. Most of the main files
needed are in this folder, except for the metadata associated with
the dictionary (dict) as explained in the previous taxonomy
reading point. In this experiment, we used samples for absolute
elements (abs1 and abs2) as shown in Figure 27, to minimize the
scope of the experiment. As seen in Figure 11, to see the child
elements of these items, the system will read the presentation file
form the folder that is read in Figure 26.

Figure 27: Example schema file that was read in this experiment

In the presentation file that is read, we can see that the abs2
item is the child of abs1 item. And abs2 has several derived items
in it as seen in the presentation file in Figure 28. From here, the
system can read the required data set and will read other related
metadata from items that will be displayed such as labels,
dictionaries related to boundaries, and the association of data with
other dimensions. The system will process the taxonomy reading
result of the metadata, then display it in the form of a user
interface. That way XBRL users don't need to deal with taxonomy

in XML anymore, but already in the GUI format as shown in
Figure 29.

Figure 28: Example presentation file that was read in this experiment

Figure 29: Report input module for flat type in OJK E-Reporting system

The experiment is continued by making changes to the
taxonomy, for example by removing items or changing labels and
input limits related to the selected report. In the presentation file
in Figure 28, items with identity sd42 are subtracted. Then the
label of item sd30 is changed, and the input given a restriction
must be filled. Figure 30 shows an experiment related to change
as mentioned before. Items with the identity sd42 are no longer
found in the form. Whereas for items with sd30 there are changes
to the label, and the input has a different data validation from
before which is not allowed to be blank as shown in Figure 30.
Validation of input components includes checking the blank data,
allowed characters, and the length of characters inputted.
Experiments show system boundaries related to this validation,
the system cannot display data that has been covered if changes
are made in the taxonomy related to this limit, so the data does not
pass the validation. As a result, the system is well adapted to
changes in both the data and taxonomy structure. If there are items
that are omitted in the taxonomy, then the data that has been
inputted cannot be maintained in the database.

Figure 30: Report input module after taxonomy modification

After the user input data, the next task of the system is to tag
data. The goal is that data can be added into a dataset that will be
ready to be written into an instance document as shown in Figure
31, as result of the process. Experiments show the system can
properly produce instance documents even though the taxonomy

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 68

has changed, both structurally and in the dictionary associated
with the items contained in the taxonomic structure. Regarding
the experiment mentioned earlier, when an element with identity
sd42 is removed from the presentation an instance document will
be formed as shown in Figure 32. It is important to understand,
only changes in presentation and data types will affect document
instances.

Figure 31: Document instance generated before taxonomy modification

Figure 32: Document instance generated after taxonomy modification

Table 6: UAT scenario on authorization

Date Title Description
 Login Testing the login module

Case-Id Description
LOG-01 Log in by filling in the username column
LOG-02 Log in by filling in the password field
LOG-03 Log in by filling in the captcha column

Table 7: Potential errors on the UAT authorization

Case-
Id

Scenario Screen Sub-
Screen

Problem

AU-
01

Log in to
the
application

Login

01 Username,
password and
captcha are left
blank

02 Incorrect
username,
password and
captcha

6. Testing and Evaluation

OJK E-Reporting System is tested and evaluated using the
User Acceptance Test (UAT) at the Directorate of Statistics and
Information IKNB (DSIN) and the OJK Financing Company
Supervisor. Acceptance testing performs validation on the
software product, and UAT is one of the classified of acceptance
tests. The UAT will focus on the requirements of the system design
based on the system use case scenario to consider the usability of

the system and ensure that the process is carried out in the right
way [27-29]. Testing goes on by dividing it into 2 parts, namely:
authorization and functionality. For UAT authorization only
focuses on access rights to report templates that are owned only.
Test scenarios for authorization testing can be seen in Table 6, and
error potential in Table 7.

After doing the UAT on the authorization side, no errors were
found in user authentication, but there was an error in the list of
report templates that were displayed not in accordance with their
rights. Furthermore, in functional testing, test scenarios can be seen
in Table 8 and potential errors in Table 9.

Table 8: Skenario UAT on functionality

Date Title Description
 Form Tests for testing taxonomy

transformations into input
forms for data reporting

Case-Id Description
FRM-01 Select a report template to display as an

input form
FRM-02 Entry data and then saved

Table 9: Potential error UAT on functionality

Case-
Id

Scenario Screen Sub-
Screen

Problem

UI-
01

Data
reporting Form

01 Displays report
forms that have
no taxonomy

02 Entry
 data with
incorrect data

After conducting the UAT on the fictional presentation of XBRL
taxonomy and input data, no errors were found. It needs to be re-
validated if there are report templates for which there are no
taxonomic guidelines, then they don't need to be displayed. The
process of presenting taxonomies into input forms also takes a
little time, but the forms already have input limitations so the
process of making instance document reports becomes faster.
Finally, an evaluation of the system readiness carried out by the
stakeholders to ensure the system is ready can be seen in Table 10.

Table 10: OJK E-Reporting system readiness checklist

Items Description Values
Scope of
development

The scope of development
consists of re-engineering a
system of existing systems
that are live and used.

 Good
 Enough
 Not good

Unit test by
developer

A unit test has been carried
out by the developer.

 Good
 Enough
 Not good

User
Acceptance
Test

• User Acceptance Tests
are carried out in the
main functions of the
system as a whole
because the system was

 Good
 Enough
 Not good

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 69

developed from scratch,
with reference to the
existing system using the
Application Making
Request Form.

• Testing has been carried
out both by the
Directorate of Statistics
and Information of the
IKJB (DSIN) of the OJK
and the OJK Financing
Company Supervisor
(May 19, 2019) with
good results and all
features running
smoothly.

Primary &
secondary DC
locations

Main server location: DC
colocation at Sentul Bogor,
Indonesia

 Good
 Enough
 Not good

Hardware
specifications

• 3 Web Servers
• 1 Database Server
Server virtual with high
availability

 Good
 Enough
 Not good

7. Conclusion

From the results of discussions that have been obtained in the
development and testing of the OJK E-Reporting system, it can be
concluded as follows:

• The system has been able to properly present the XBRL
taxonomy flexibility adopted by XBRL, although it cannot yet
be used for complex financial reporting of LJK.

• Separation of validation has a big impact on processing time
because there is validation on the client-side that has been
done when data is inputted. This has an impact on the
processing of overall validation at OJK so that it becomes
faster and more effective.

• Automated creation and storage of XBRL instance documents
performed by the OJK E-Reporting system does not overload
the client-side (LJK), because it is directly created and stored
on the server-side (OJK).

OJK's E-Reporting System can cover weaknesses and
deficiencies in the existing system (SIPP client tool), in terms of
flexibility, validation efficiency, and convenience. The system
still has great potential to be developed because it cannot yet
support the reading of complex taxonomies with the
implementation of interrelationships between existing reports.
Validation placement based on formulas will no longer be needed
if the input component in the taxonomy transformation form can
be checked directly when the user fills into input data. Also, it is
necessary to add varieties of input data types (e.g. xls file), so that
users can provide data in other forms and do not need to manually
input data.

References

[1] J. W. Kim, J.-H. Lim and W. G. No, "The effect of first wave mandatory

XBRL reporting across the financial information environment.," Journal of
Information Systems, vol. 26, no. 1, pp. 127-153, 2012.

[2] R. Chowdhuri, V. Y. Yoon, R. T. Richard and U. O. Etudo, "Ontology based
integration of XBRL filings for financial decision making," Decision
Support Systems, vol. 68, pp. 64-76, 2014.

[3] A. Bahri, "Pros and Cons of XBRL (A New Era In The Field of
Commerce)," International Journal of Business Management and
Scientific, vol. 30, June 2017.

[4] J. Bao, G. Rong, X. Li and L. Ding, "Representing Financial Reports on the
Semantic Web," Semantic Web Rules Lecture Notes in Computer Science,
pp. 144-152, 2010.

[5] R. García and R. Gil, "Publishing XBRL as linked open data," In CEUR
Workshop Proceedings, vol. 538, 2009.

[6] M. Vasarhelyi, D. Chan and J. Krahel, "XBRL consequences to financial
reporting, data analysis, decision support, and others," Rutgers University,
2010.

[7] H. Chen and W. Sun, "Study on Rational Application of eXtensible
Business Reporting Language," JSW, vol. 6, no. 2, pp. 257-264, 2011.

[8] M. Willis, "Improving investor communications and analysis via
standardization," The International Journal of Digital Accounting
Research, vol. 7, pp. 153-165, 2007.

[9] S. A. A. Azhar and U. Subramanian, "Impact of XBRL in Emerging
Countries," Available at SSRN 3462951, 2019.

[10] S. R. Abed, "The Perception of XBRL Technology in the Jordanian
Context: An Exploratory Study," Research Journal of Applied Sciences,
vol. 13, no. 1, pp. 1-4, 2019.

[11] C. E. L. Ceballos, "The International Language of Information Xbrl, in the
Tuluá SMES," International Journal of Economics and Management
Systems, vol. 3, 2018.

[12] C. Hoffman and M. M. Rodríguez, "Digitizing Financial Reports – Issues
and Insights: A Viewpoint," The International Journal of Digital
Accounting Research, vol. 13, 2013.

[13] C. Hoffman, "Financial Reporting Using XBRL, IFRS and US GAAP
Edition," UBMatrix, 2006.

[14] R. García and R. Gil, "Triplificating and linking XBRL financial data,"
Proceedings of the 6th International Conference on Semantic Systems,
September 2010.

[15] J. Cardoso, M. Hepp and M. D. Lytras, The semantic web: real-world
applications from industry, vol. 6, Springer Science & Business Media,
2007.

[16] H. Fischer and D. Mueller, "Open Source & XBRL: the Arelle® Project,"
In 2011 Kansas University XBRL Conference, pp. 29-30, 2011.

[17] C. Binstock and B. Milnes, "XBRL flat table mapping system and method".
Patent U.S. Patent No. 9,292,544, 22 Mar. 2016.

[18] E. Stergiaki, A. Vazakidis and A. Stavropoulos, "Development and
Evaluation of a Prototype web XBRL-Enabled Financial Platform for the
Generation and Presentation of Financial Statements according to IFRS,"
International Journal of Accounting and Taxation, vol. 3, no. 1, pp. 74-101,
2015.

[19] R. K. Elliott and P. D. Jacobson, "Costs and benefits of business
information," Accounting horizons, vol. 8, no. 4, pp. 80-96, 1994.

[20] R. L. Watts and J. L. Zimmerman, "Positive accounting theory: a ten year
perspective," Accounting review, pp. 131-156, 1990.

[21] S. Gregor and A. R. Hevner, "Positioning and presenting design science
research for maximum impact," MIS quarterly, pp. 337-355, 2013.

[22] C. C. Chou, C. J. Chang and J. Peng, "Integrating XBRL data with textual
information in Chinese: A semantic web approach," International Journal
of Accounting Information Systems, vol. 6, pp. 32-46, 2016.

http://www.astesj.com/

R. Farizd et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 58-70 (2020)

www.astesj.com 70

[23] R. S. Pressman, Software engineering: a practitioners approach, Boston:
McGraw-Hill Education, 2015.

[24] L. D. Bentley, K. C. Dittman and J. L. Whitten, System analysis and design
methods, Boston: McGraw Hill, 2000.

[25] L. Forte, "Building a Modern Web Application Using an MVC
Framework," 2016.

[26] B. Haugset and G. K. Hanssen, "Automated acceptance testing: A literature
review and an industrial case study," In Agile, 2008. AGILE'08. Conference,
pp. 27-38, August 2008.

[27] P. Pandit and S. Tahiliani, "AgileUAT: A framework for user acceptance
testing based on user stories and acceptance criteria," International Journal
of Computer Applications, vol. 120, no. 10, 2015.

[28] J. A. Shim, H. J. Kwon, H. J. Jung and M. S. Hwang, "Design of acceptance
test process with the application of agile development methodology,"
International Journal of Control and Automation, vol. 9, no. 2, pp. 343-352,
2016.

[29] M. E. Khan, "Different Software Testing Levels for Detecting Errors,"
International Journal of Software Engineering (IJSE), vol. 2, no. 4, pp. 70-
80, 2011.

[30] I. Belev, "Alternatives for Storing and Validating XBRL Data," American
Scientific Research Journal for Engineering, Technology, and Sciences
(ASRJETS), vol. 60, no. 1, pp. 191-201, 2019.

http://www.astesj.com/

	2. Literature Review
	3. Method
	4. Analysis and Results
	4.1. OJK E-Reporting System
	4.2. Root XBRL Taxonomy of OJK
	4.3. OJK Taxonomy Folder and File Structure
	4.4. Core Process in OJK's E-Reporting System
	4.5. Taxonomy Reading and Presentation Process
	4.6. Data tagging process
	4.7. Creating instance documents

	5. Experimental Result
	6. Testing and Evaluation
	After conducting the UAT on the fictional presentation of XBRL taxonomy and input data, no errors were found. It needs to be re-validated if there are report templates for which there are no taxonomic guidelines, then they don't need to be displayed. ...
	7. Conclusion
	References

