
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 1, 119-127 (2020)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

Performance Portability and Unified Profiling for Finite Element Methods
on Parallel Systems

Vladyslav Kucher*,1, Jens Hunloh2, Sergei Gorlatch2

1National Technical University of Ukraine ”Igor Sikorsky Kyiv Polytechnic Institute”, Prosp. Peremohy 37, Kyiv, 03056, Ukraine
2University of Muenster, Einsteinstr. 62, Muenster, Germany

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 11 November, 2019
Accepted: 20 December, 2019
Online: 24 January, 2020

Keywords:
C++ Compilers
GPU programming
High-performance computing
Performance portability
Finite element methods
Parallel computing
Portable profiling
Unified parallel programming

The currently available variety of modern, highly-parallel universal processors includes
multi-core CPU and many-core GPU (Graphics Processing Units) from different vendors.
Systems composed of such processors enable high-performance execution of demanding
applications like numerical Finite Element Methods. However, today’s application pro-
gramming for parallel systems lacks performance portability: the same program code
cannot achieve stable high performance on different parallel architectures. One of the main
reasons for this is that parallel programs are developed by utilizing system-specific profiling
interfaces of the corresponding hardware vendors. We describe a novel, portable profiling
interface: its design, implementation, and evaluation within the popular framework DUNE
for solving differential equations using finite element methods. Our profiler is built on top of
the PACXX framework for parallel programming in C++, and it supports portable parallel
programming using a single profiling tool on various target hardware platforms.

1 Introduction

Modern universal processors are becoming highly parallel: multi-
core CPU and many-core GPU (Graphics Processing Units) are
produced by different vendors and exemplify a variety of archi-
tecture and hardware solutions. Such processors enable building
high-performance systems for computation-intensive applications
like numerical finite element methods.

The current programming approaches for parallel computing
systems include CUDA [1] that is restricted to GPU produced by
NVIDIA, as well as more universal programming models - OpenCL
[2], SYCL [3], and PACXX [4] - that follow the idea of unified pro-
gramming: the programmer can target different hardware without
changing the source code, thus reducing the development overhead.
However, existing profiling tools are still restricted to the corre-
sponding vendor; therefore, the application programmer usually has
to use several different tools to achieve the ultimate portability.

There have been several research efforts to make profiling tools
more portable and flexible. CUDA Advisor [5] is a profiling in-
terface that collects data about the performance of both CPU and

GPU parts of program code by using the LLVM infrastructure [6].
Experimental approach [7] uses CUDA’s TAU tool for profiling
GPU applications by producing a detailed information on commu-
nications between CPU and GPU, without modifying the source
code. The SASSI instrumentation tool (NVIDIA assembly code
“SASS Instrumentor”) [8] relies on customizable metrics: it enables
to inserting user-defined instrumentation code (e.g., debug hooks
and customized counters) to collect detailed profiling data that are
usually not available. The generic tool integrated in the Score-P in-
frastructure [9] provides an interface for evaluating the performance
of OpenCL code on different parallel architectures.

This paper aims at designing a single, cross-platform profiler
that significantly improves the portability of program development.
We design our profiler by extending the unified programming frame-
work PACXX (Programming Accelerators in C++) [4] with a generic
profiling interface: the interface follows the unified programming
model of PACXX. Our profiler seamlessly extends the PACXX pro-
gramming system and enables collecting profiling information at
different stages of the development process, for different kinds of
the target hardware, thus reducing the development overhead.

*Vladyslav Kucher, Prosp. Peremohy 37, Kyiv, 03056, Ukraine, commastergm@gmail.com

www.astesj.com
https://dx.doi.org/10.25046/aj050116

119

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050116


V. Kucher et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 119-127 (2020)

C++ Source

Application

Compute Kernel

Runtime - Online Compiler

CPU Back-End

GPU Back-End

CPU Profiling Extension

GPU Profiling Extension
Offline Compiler

Compute Kernel

execute

select

Profiling
Results

Figure 1: The PACXX framework, extended with profiling (shaded parts)

The unified parallel programming approach of PACXX enables
programming CPU/GPU systems in the newest standard C++14/17.
PACXX significantly simplifies the development of portable parallel
C++ programs by slightly modifying the source code staying within
C++. The PACXX advantages were demonstrated for application
areas like linear algebra, stencils, and N-Body simulations [10].

We choose Partial Differential Equations (PDE) solving as an
application field to illustrate and evaluate our approach to unified
profiling, because PDE are broadly used in different areas of engi-
neering and science, including simulation [11], finance [12], numer-
ical modeling [13], and biology [14]. Most of practically important
PDE are solved using finite-element (FE) methods. Unfortunately,
these methods’ implementation is often tied to a particular data
structure representing the corresponding computation grid. C++ is
often used for implementing finite-element methods, because of its
high performance and modularity. The Finite Element Computa-
tional Software (FEniCS) [15] is a C++-based framework for FE
variational problems, relying on automatic code generation and the
custom FEniCS Form Compiler [16]: it supports performance porta-
bility by employing a domain-specific language based on Python
[17], and multi-staging optimization. The Firedrake approach [18]
achieves performance portability by using an advanced code genera-
tor: problems are specified in a Python-embedded, domain-specific
language that is lowered to C and then JIT-compiled, so target code
is generated at run time. The object-oriented framework Overture
[19] for solving PDE on various platforms contains C++ classes for
computations in different geometries. The Feel++ framework [20]
uses a C++-based domain-specific language whose implementation
is compatible with third-party libraries.

In order to evaluate our approach to unified profiling, we con-
sider the Distributed and Unified Numerics Environment (DUNE)
[21] as a case study. DUNE offers a unified interface for solving
PDE on parallel systems [22]: the interface combines various meth-
ods in a modular C++ library. DUNE enables using arbitrarily
shaped grids and a large set of particular algorithms. While the de-
sign of DUNE is very flexible, its application performance strongly
depends on the employed C++ compiler and the target hardware.

The goal of this paper is to extend the flexibility of existing
approaches to parallel PDE solving. We achieve performance porta-
bility and cross-platform profiling of the finite-element methods for
solving PDE, by extending the PACXX framework and integrating
it with the existing DUNE framework.

The paper is organized as follows. In Section 2, we describe
the C++-based unified programming approach of PACXX and the

design of our profiling interface. In Section 3, we show how this
interface is used for a portable profiling a simple case on various tar-
get architectures. In Sections 4 and 5, we illustrate how PACXX can
accelerate grid-based FE algorithms for PDE in the extended DUNE.
We demonstrate that the integration of PACXX with DUNE leads
to performance portability over different architectures, significantly
decreasing the development overhead and improving code mainte-
nance. We experimentally evaluate our unified profiling approach
in Section 6, and we summarize our results in Section 7.

2 Programming and profiling

2.1 The PACXX Programming model

We use the PACXX framework [4] that supports a unified, C++-
based model of parallel programming. In analogy with the recent
OpenCL standard [23], PACXX uses the parallelism expressed us-
ing kernels that are executed on devices. The main advantage of
PACXX, however, is that an application is expressed as single-
source C++ code, whereas OpenCL kernels are implemented in a
special kernel language and they need additional host code to be
executable. The performance portability in PACXX is ensured by
means of several pre-implemented back-ends.

Figure 1 shows that the compilation process of PACXX proceeds
in two steps. The first step is the offline compilation that transforms
source code into an executable. Kernel’s code is precompiled, and
the executable is integrated with the particular back-end for the tar-
get CPU or GPU. In the second stage, online compilation is invoked
when the executable is started. The integration of the executable
with back-ends for different architectures allows the user to choose
the target hardware for each execution. The efficient execution on
the chosen target system is handled by PACXX transparently: all
necessary generation steps and optimizations are performed auto-
matically. This brings the portability of PACXX applications on
CPUs and GPUs of different vendors.

2.2 Profiling interface: Design and implementation

Figure 1 shows the design of our unified profiling interface in-
tegrated into PACXX: shaded are our profiling extensions to the
original PACXX back-ends. These extensions comprise hardware-
specific code to collect profiling data. For the user, our profiling
interface can be viewed as a wrapper that can choose the correspond-
ing profiling extension for the particular target architecture.

www.astesj.com 120

http://www.astesj.com


V. Kucher et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 119-127 (2020)

The advantage of our design of profiling is that no changes to
the offline compiler of PACXX are necessary. The modifications are
made only to the PACXX runtime and back-ends: they are extended
with vendor-specific profiling tools: the CPU back-end uses the
PAPI library [24], and the back-end for NVIDIA GPUs relies on the
CUPTI library [25].

2.3 The profiling extension

For different back-ends, the profiling extensions have a unified struc-
ture that includes a changed launch procedure for kernels to manage
collecting performance data. We have to modify the way how a
kernel is launched, because many existing devices cannot record
several profiling metrics simultaneously (e.g., NVIDIA GPUs [25]).
For some metrics, multiple reproducible runs of the same kernel
may be necessary to record that metric. It becomes mandatory to
rebuild the device memory state automatically after each kernel
execution, such that the executions are measured independently.
This reconstruction of the memory state enables multiple profiling
runs for the same program, so that accurate performance data are
produced. Traditionally, this is done using a shadow copy mecha-
nism that stores and restores the device memory state transparently
at each kernel execution. This solution effectively decouples the
profiling from undesirable side effects: eventually this ensures ex-
act performance data and deterministic behavior when measuring
multiple kernel launches.

Application launch

Application terminate

Compile kernel

Launch kernel

No

Profiling enabled? Create shadow copy 

Pending metrics? 

Yes

Select metric Execute kernel 

Restore memory 

Yes

Record results

No

Profiling Extension 

Figure 2: Kernel launch, modified for profiling

Figure 2 shows our modification (in dashed box) to the launch
procedure within a PACXX back-end. The new launch procedure
reflects the control flow of our profiling extension: the processing
steps rely on target-specific code of the concrete back-end. When
profiling is enabled, a kernel launch triggers the profiling extension
to store a shadow copy of the utilized part of device memory. Then
the kernel is executed repeatedly, such that this shadow copy is used
for every recorded performance metric. Eventually, the application
proceeds using the original kernel launch procedure.

3 The profiler usage

We demonstrate the usage of and evaluate our unified profiler on
two application examples - the first is traditional multiplication of
matrices, and the second is a more elaborated PDE solver.

3.1 Example: Matrix multiplication

Figure 3 illustrates how matrix multiplication is expressed in
PACXX [4]: this program is created from the C++ code by trans-
forming nested sequential loops into parallel calls of a kernel. Ar-
rays a and b stand for the input matrices, and array c stores the
resulting matrix. The matrixMultKernel kernel (lines 15-23) is
written as a C++ lambda expression to be computed in parallel
for each element of c. The kernel run requires an upload of the
input data (lines 3-13) and the result fetching (line 26) after the
computation, which is analogous to CUDA and OpenCL kernels.

1 auto& device = Executor::get(0);
2
3 auto& da = device.allocate<double >(matrix_size);
4 auto& db = device.allocate<double >(matrix_size);
5 auto& dc = device.allocate<double >(matrix_size);
6
7 da.upload(a, matrix_size);
8 db.upload(b, matrix_size);
9 dc.upload(c, matrix_size);

10
11 auto pa = da.get();
12 auto pb = db.get();
13 auto pc = dc.get();
14
15 auto matrixMultKernel = [=](auto &config)
16 {
17 auto col = config.get_global(0);
18 auto row = config.get_global(1);

19 double val = 0;

20 for (unsigned i = 0; i < width; ++i)
21 val += pa[row * width + i] *

pb[i * width + col];
22 pc[row * width + col] = val;

23 };
24 exec.launch(matrixMultKernel ,

{{width/threads , width} , {threads , 1} , 0});
25
26 dc.download(c, matrix_size);

Figure 3: PACXX code example: matrix multiplication

Figure 3 shows that the code employs parallelism by dividing
calculations in blocks and threads. Function launch (line 24) in-
vokes the kernel and it partitions work in dimensions (up to three),
thus specifying the structure and degree of parallelism. In the
range, the first component declares how many blocks are started,
while the threads variable in the range declares the threads num-
ber in a block. At run time, each block is assigned to a processor
that runs all threads of the block in the SIMT (Single Instruction,
Multiple Threads) manner, which is a combination of SIMD and
multi-threading paradigms. Function get global retrieves the thread
id in each dimension of the range. The first dimension of the range
in our example corresponds to the row, and the second to the column
in the matrix.

After the invocation of PACXX offline compiler, the executable
is automatically combined with our profiler. Therefore, PACXX
serves effectively as a drop-in for the standard LLVM (Low-Level
Virtual Machine) [6] compilation toolchain.

www.astesj.com 121

http://www.astesj.com


V. Kucher et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 119-127 (2020)

3.2 Workflow of profiling

In Figure 4, the profiling of our example application is invoked
with the runtime environment variable PACXX PROF ENABLE
enabled, which leads to profiling each kernel invocation. At each
kernel run, the runtime system executes the online compilation
transparently for the user and it enables the profiler, such that the
profiling information is collected from the target device. Variable
PACXX DEFAULT RT specifies the target architecture (CPU or
GPU). Profiling data are written in an output file that can be either
explicitly specified as in Figure 4 or sent to the standard output.

> PACXX_DEFAULT_RT=GPU

PACXX_PROF_ENABLE=1

PACXX_PROF_IN=custom_profiling_configuration

PACXX_PROF_OUT=pacxx.json

./matrixMult

Figure 4: Invoking a PACXX program with profiling

Our profiler always reports one metric - runtime duration - by
default. To ask for additional profiling data, the user can specify
a specific configuration. The profiler is able to profile all metrics
that are supported by the system vendor, e.g., memory throughput
and usage, instructions per cycle, etc. All 174 possible metrics for
NVIDIA GPUs are listed in [25].

3.3 Visualization of profiling

Figure 5 illustrates the profiling data collected for the matrix multi-
ply example prepared as shown in Figure 4. The profiler produces
a JSON-format file that comprises all specified metrics for each
started kernel instance. For multiple kernel launches, our profiler
records every launch independently, and the output data are prefixed
by the kernel name. Thus, the user obtains profiling information au-
tomatically: the user does not have to explicitly select the profiling
tool for a kernel and the architecture on which it runs: the appropri-
ate profiling functionality is ensured by the PACXX runtime for the
target architecture.

"matrixMultKernel": [

{ "Metrics": {

"cf_executed": "68157540",

"kernelDuration": "517349264ns" } } ]

Figure 5: Results of profiling in JSON format

The use of the JSON format enables efficient visualization of
the profiling results using Gnuplot or other tools, such that the
code behavior on different target platforms can be conveniently
compared.

Figure 6 compares the execution time of matrix multiplication
on a CPU (Intel Xeon E5-1620 v2) vs. a GPU (NVIDIA Tesla
K20c). The input comprises two 4096x4096 square matrices gen-
erated randomly. The plot demonstrates how the execution time is
dependent of the parallelism amount specified by parameter threads
in the code in Figure 3.

Figure 6: Execution time of matrix multiply on CPU vs. GPU

Figure 7 compares the number of branch statements on CPU vs.
GPU, depending on the number of threads.

Figure 7: Number of branch instructions on CPU vs. GPU

Summarizing, our profiler enables both specifying metrics and
representing profiling results in a uniform manner, such that different
target architectures can be compared with each other conveniently.

4 Integrating DUNE with PACXX
In this section, we show the use of our approach to profiling on
the case study of the DUNE framework. We explain its efficient
integration with the PACXX unified programming framework, by
taking into account the design of DUNE’s grid interface.

Our idea of integration is to employ PACXX as a code generator
for the DUNE interface which is designed by using abstract inter-
faces and template meta-programming to separate data structures
and algorithms. By reusing existing modules, DUNE offers a rich
collection of functionalities.

In our integration with PACXX, we use the fact that DUNE
contains C++ modules that provide abstract interfaces with sev-
eral implementations. The use of generic programming [26] and
C++ template meta-programming [27] enables optimizations to
be applied at compile time: therefore, DUNE is flexible, without
introducing overhead at runtime.

Figure 8 illustrates that our integration comprises two levels.
At the top (abstraction) level, a particular problem is formulated

www.astesj.com 122

http://www.astesj.com


V. Kucher et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 119-127 (2020)

using extensions of a domain-specific language analogous to [28],
and is then implemented as a specific DUNE kernel. At the bottom
(hardware optimization) level, code is generated for a specific tar-
get architecture. This two-level design of the integration toolchain
enables suitable optimizations at every processing level.

High-Level Representation

DUNE Framework - Implementation

Modules Grid Geometry ...
Low-Level C++ Code

Mathematical Abstraction Layer

Hardware Optimization Layer

Performance-Portable Executable

PACXX Framework - Code Generation

Back-ends CPU GPU ...

Figure 8: Integration of PACXX with DUNE

The integrated toolchain is now as follows. The PDE problem
is stated by the domain expert as an expression of a domain-specific
language, which is then implemented by a specific grid-based ker-
nel of DUNE: the framework yields C++ code that contains the
resulting kernel with template arguments and runtime values. This
code is eventually compiled by PACXX, as we explain below.

The PACXX framework employs the popular LLVM compiler
infrastructure and its Intermediate Representation (IR) [6] to obtain
portable executables with hardware-specific optimizations. Kernels
are compiled offline to IR and then the online compiler generates
code and optimizes it for the target architecture [10] transparently
for the user. This toolchain enables portable PACXX applications
over architectures of modern parallel processors. PACXX also sup-
ports C++ template meta-programming which significantly reduces
the runtime overhead, and our unified profiling allows profiling of
the DUNE without further modifications to the code.

The main advantage of using PACXX vs. existing profilers is the
profiling of applications over various platforms, without having to
use different tools. Our profiler improves the flexibility of program-
ming process: the program can be configured regarding requested
profiling data on every supported target architecture. In addition,
due to the use of PACXX for generating code in DUNE we can

apply optimizations based on control-flow linearization [29]. Since
PACXX is fully compatible with the modern C++14/17 standards,
the program developers can use existing C++ code on various target
architectures, which significantly reduces the development effort.

5 Compiling kernels: examples
This section describes the use of our integrated DUNE-PACXX
framework for generating code for two examples of DUNE kernels:
1) Poisson equation solving, and 2) deformation of material calcula-
tion based on the linear elasticity theory. These two examples cover
two scenarios: Poisson calculates with low load on a simple 2D grid,
and linear elasticity is based on a 3D grid with a heavy load. Ex-
ample applications of linear elasticity are in computer-aided design,
and Poisson is applied in physics to calculate fields of potentials.

5.1 PACXX parallelization

We consider example kernels that are simple sequential C++ codes;
they are parallelized according to the PACXX programming ap-
proach. The slight one-time adaptation effort of the kernels leads
to the performance portability of the resulting code. Thereby the
programmer does not have to re-design the program code for each
new parallel architecture.

Our two kernel examples work on a grid refined on two levels:
the computation in a uniform grid of macro-elements uses a coarse-
grained refinement, and each macro-element is further refined to
a grid of micro-elements. We parallelize kernels by two ways: ei-
ther different macro-elements are processed in parallel, or several
micro-elements in a macro-element are processed in parallel.

We compare the micro- vs. macro-parallelization approaches
regarding their performance against an original sequential version.

5.2 The Poisson kernel

1 // iterating over micro-elements
2 for (int el_y=0; el_y<k; ++el_y)
3 for (int el_x=0; el_x<k; ++el_x)
4 {

5 // (1) calculating

6 RF grad_u[2] = {};

7 for (int dim=0; dim<=1; ++dim)
8 {

9 for (int index_y=0; index_y <2; ++index_y)
10 for (int index_x=0; index_x <2; ++index_x)
11 grad_u[dim] += grad[index_x+index_y*2][0][dim]

* x(lfsv, (el_y+index_y)*(k+1) + el_x + index_x);
12 }

13 // (2) accumulating

14 for (int index_y=0; index_y <2; ++index_y)
15 for (int index_x=0; index_x <2; ++index_x)
16 r.accum(lfsv,

(el_y+index_y)*(k+1) + el_x + index_x,
factor*(grad[index_x+index_y*2][0][0]*grad_u[0]

+grad[index_x+index_y*2][0][1]*grad_u[1]));
17 }

Figure 9: Poisson kernel: sequential C++ code

Figure 9 illustrates the C++ code for the Poisson kernel that com-
putes a single macro-element in DUNE. Two nested f or loops in

www.astesj.com 123

http://www.astesj.com


V. Kucher et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 119-127 (2020)

lines 2-3 iterate on the micro-grid. For every element, the compu-
tation comprising the loop body is executed. Local basis functions
l f sv and x in line 11 compute a gradient, and the consequent accu-
mulation phase (line 16) uses the calculated gradient for updating
the computational grid.

Figure 10 shows how the memory is accessed by the kernel in
Figure 5.

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

Figure 10: Poisson: micro-grid and data dependencies

For correct parallelization, we must avoid race conditions.
Therefore, we synchronize accesses to memory by distinguishing be-
tween two kernels - accumulation and computation. We parallelize
the calculation kernel on the micro-grid elements, but temporarily
store the results of the calculation kernel, rather than performing
write operations immediately.

Afterwards, the corresponding vertices are processed in parallel
by the accumulation kernel: it reads the previously stored inter-
mediate results and updates the adjacent vertices by simultaneous
write operations. This described implementation guarantees the
absence of conflicts in the patterns of memory access at the level of
micro-grid.

At a macro-layer, we parallelize computations by executing the
main computation for each instance of the kernel, such that process
in parallel all macro-elements. For this approach, DUNE’s grid
interface must be slightly modified, but the advantage is that the
patterns of memory access are not so complicated.

The parallelization at macro-layer implies that workload is dis-
tributed in a coarse-grained manner; this is advantageous on large-
scale since it greatly reduces the parallelization overhead. How-
ever, it brings a drawback: global memory must be allocated by
all macro-elements simultaneously, so the memory requirement in-
creases. Vice versa, the fine-grained distribution of workload for
micro-layer parallelism allocates little memory for a macro-element

at a time. Therefore, large micro-grids with enough compute load
in a single macro-element especially benefit from the micro-layer
parallelization.

5.3 Kernel for linear elasticity

Figure 11 shows our second example - the linear elasticity kernel
– that consists of three nested f or loops. and is thus significantly
more complex than Poisson. On the one hand, this complicates the
parallelization (while the scheme of parallelization remains similar
to Poisson), but on the other hand, this offers more potential of
parallelism.

1 // iterating over micro-elements
2 for (int el_z = 0; el_z < k; ++el_z)
3 for (int el_y = 0; el_y < k; ++el_y)
4 for (int el_x = 0; el_x < k; ++el_x)
5 {// (1) calculating

6 for (int dim = 0; dim <= 2; ++dim)
7 for (int index_z = 0; index_z <= 1; ++index_z)
8 for (int index_y = 0; index_y <= 1; ++index_y)
9 for (int index_x = 0; index_x <= 1; ++index_x)

10 {// computating the element values ...}

11 // (2) accumulating

12 for (int index_z = 0; index_z <= 1; ++index_z)
13 for (int index_y = 0; index_y <= 1; ++index_y)
14 for (int index_x = 0; index_x <= 1; ++index_x)
15 {// accumulation of node values...}

Figure 11: Linear elasticity: sequential C++ code

6 Experimental evaluation

We conduct our measurements using two parallel processors: an
Intel CPU Xeon E5-1620v2 with 4 cores of frequency 3.70GHz (8
logical cores), and an NVIDIA GPU Tesla K20c with 2496 compute
units. Our CPU contains AVX with vector registers, so we evaluate
both scalar and auto-vectorized versions of our kernels. The number
of (sub)elements (x-axis) corresponds to the subdivision degree of
the grid in each dimension: e.g., 5 sub-elements imply a 5x5x5 grid
in a 3D program for linear elasticity.

Each measurement performs one iteration of the linear elasticity
program which corresponds to 16 executions of the kernel based on
the amount of quadrature points. The following figures compare the
three aforementioned platforms (vectorized CPU, scalar CPU and
GPU) based on various metrics.

Figure 12 and Figure 13 show the memory operations (lower
is better). We observe that read operations can be coalesced quite
well, while write operations less so. The GPU with its 32 memory
controllers sets the target for other hardware platforms which they
struggle to reach.

www.astesj.com 124

http://www.astesj.com


V. Kucher et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 119-127 (2020)

Figure 12: Number of executed memory reads across used platforms

Figure 13: Number of executed memory writes across used platforms

Figure 14: Total completed instructions across used platforms

On the code side, Figure 14 shows the number of executed in-
structions. We see that CPU vectorization suffers from the low data
sizes generating too many scatter-gather instructions (Figure 15
further supports this claim, showing an order of magnitude more
processed control-flow instructions in the vectorized CPU version
of the kernel). The GPU can distribute the load across its numerous
2496 computing units and keep the number of instructions low.

Figure 15: Number of executed control-flow instructions across used platforms

Figure 16: Linear elasticity kernel duration across used platforms

Figure 16 compares the run time of kernel execution. Vectorized
CPU version of the kernel does not show good performance with
low data amounts, but it improves over the scalar CPU version by
element count of 8, matching with the expectation from Figure 14.
Surprisingly, the GPU version lags behind the scalar CPU version,
so we look into the reasons of low performance on the GPU side.

Figure 17: Execution stalls on the GPU causing low performance

Figure 17 shows that the major slowdown reason is memory
throttling caused by the hardware limitation to issue memory in-
structions every 4 cycles. Therefore, memory requests have high
divergence and, thus, cannot be fulfilled in a timely manner.

www.astesj.com 125

http://www.astesj.com


V. Kucher et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 119-127 (2020)

7 Conclusion
We design and implement a novel cross-platform approach to pro-
gramming and profiling parallel applications, which significantly
improves the portability of program development. We extend the
unified programming framework PACXX with a generic profiling
interface that enables collecting profiling information at different
stages of the development process, for different target hardware.
Our approach liberates the program developer from having to use
several proprietary tools when profiling the same application on
different hardware. Therefore, the software development overhead
is significantly reduced.

We choose Partial Differential Equations (PDE) solving to illus-
trate and evaluate our approach of unified profiling, because PDE
are broadly used in different areas of engineering and science. As a
case study, we use the popular DUNE framework, and we experi-
mentally confirm that the integration of our extended PACXX with
DUNE leads to performance portability over different architectures,
significantly decreasing development overhead and improving code
maintenance.

Acknowledgement The authors gratefully acknowledge gener-
ous support from the German Federal Ministry of Education and
Research (BMBF) within the HPC2S E project.

References
[1] J. Nickolls, I. Buck, M. Garland, K. Skadron, “Scalable Parallel Programming

with CUDA,” Queue, vol. 6, pp. 40–53, Mar. 2008.

[2] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, J. Lee, “OpenCL As a Unified Program-
ming Model for Heterogeneous CPU/GPU Clusters,” SIGPLAN Not., vol. 47,
pp. 299–300, Feb. 2012.

[3] R. Keryell, R. Reyes, L. Howes, “Khronos SYCL for OpenCL: A Tutorial,”
in Proceedings of the 3rd International Workshop on OpenCL, IWOCL ’15,
(New York, NY, USA), pp. 24:1–24:1, ACM, 2015.

[4] M. Haidl, M. Steuwer, T. Humernbrum, and S. Gorlatch, “Multi-stage Pro-
gramming for GPUs in C++ Using PACXX,” in Proceedings of the 9th Annual
Workshop on General Purpose Processing Using Graphics Processing Unit,
GPGPU ’16, (New York, NY, USA), pp. 32–41, ACM, 2016.

[5] D. Shen, S. L. Song, A. Li, X. Liu, “CUDAAdvisor: LLVM-based Runtime
Profiling for Modern GPUs,” in Proceedings of the 2018 International Sym-
posium on Code Generation and Optimization, CGO 2018, (New York, NY,
USA), pp. 214–227, ACM, 2018.

[6] C. Lattner, V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation,” in Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-directed and Runtime Op-
timization, CGO ’04, (Washington, DC, USA), pp. 75–, IEEE Computer
Society, 2004.

[7] A. D. Malony, S. Biersdorff, W. Spear, S. Mayanglambam, “An Experimental
Approach to Performance Measurement of Heterogeneous Parallel Applica-
tions Using CUDA,” in Proceedings of the 24th ACM International Conference
on Supercomputing, ICS ’10, (New York, NY, USA), pp. 127–136, ACM,
2010.

[8] M. Stephenson, S. Hari, S. Kumar, Y. Lee, E. Ebrahimi, D. R. Johnson, D. Nel-
lans, M. O’Connor, and S. W. Keckler, “Flexible Software Profiling of GPU
Architectures,” SIGARCH Comput. Archit. News, vol. 43, pp. 185–197, June
2015.

[9] R. Dietrich, R. Tschüter, “A generic infrastructure for OpenCL performance
analysis,” in 2015 IEEE 8th International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), vol. 1, pp. 334–341, Sept 2015.

[10] M. Haidl, B. Hagedorn, S. Gorlatch, “Programming GPUs with C++14 and
Just-In-Time Compilation,” in Parallel Computing: On the Road to Exascale,
Proceedings of the International Conference on Parallel Computing, ParCo
2015, 1-4 September 2015, Edinburgh, Scotland, UK, pp. 247–256, 2015.

[11] F. Feldmann, B. Hagemann, L. Ganzer, M. Panfilov, “Numerical simulation of
hydrodynamic and gas mixing processes in underground hydrogen storages,”
Environmental Earth Sciences, vol. 75, p. 1165, Aug 2016.

[12] Daniel J. Duffy, Finite Difference methods in financial engineering: a Partial
Differential Equation approach. John Wiley & Sons, 2013.

[13] I. Rucker, W. Ressel, “A numerical drainage model to simulate infiltration into
porous pavements for higher road safety,” in 17. Internationales Stuttgarter
Symposium, (Wiesbaden), pp. 1293–1303, Springer Fachmedien Wiesbaden,
2017.

[14] Anthony W. Leung, Systems of nonlinear partial differential equations: ap-
plications to biology and engineering, vol. 49. Springer Science & Business
Media, 2013.

[15] M. S. Alnæs, J. Blechta, J. Hake, et al., “The FEniCS project version 1.5,”
Archive of Numerical Software, vol. 3, no. 100, pp. 9–23, 2015.

[16] A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, “FFC: the FEniCS
form compiler,” in Automated Solution of Differential Equations by the Finite
Element Method, pp. 227–238, Springer, 2012.

[17] G. R. Markall, F. Rathgeber, L. Mitchell, et al., “Performance-Portable Finite
Element Assembly Using PyOP2 and FEniCS,” in Supercomputing, (Berlin,
Heidelberg), pp. 279–289, Springer Berlin Heidelberg, 2013.

[18] F. Rathgeber, D. A. Ham, L. Mitchell, et al., “Firedrake: automating the
finite element method by composing abstractions,” ACM Transactions on
Mathematical Software (TOMS), vol. 43, no. 3, p. 24, 2017.

[19] D. L. Brown, W. D. Henshaw, and D. J. Quinlan, “Overture: An object-
oriented framework for solving partial differential equations,” in International
Conference on Computing in Object-Oriented Parallel Environments, pp. 177–
184, Springer, 1997.

[20] C. Prud’Homme, V. Chabannes, V. Doyeux, et al., “Advances in Feel++: a
domain specific embedded language in C++ for partial differential equations,”
in Eccomas’ 12-European Congress on Computational Methods in Applied
Sciences and Engineering, 2012.

[21] P. Bastian, M. Blatt, C. Engwer, et al., “The distributed and unified numer-
ics environment (DUNE),” in Proc. of the 19th Symposium on Simulation
Technique in Hannover, vol. 123, 2006.

[22] P. Bastian, M. Blatt, A. Dedner, et al., “A generic grid interface for parallel
and adaptive scientific computing. Part I: abstract framework,” Computing,
vol. 82, no. 2-3, pp. 103–119, 2008.

[23] J. E. Stone, D. Gohara and G. Shi, “OpenCL: A Parallel Programming Stan-
dard for Heterogeneous Computing Systems,” IEEE Des. Test, vol. 12, pp. 66–
73, May 2010.

[24] J. Dongarra, K. London, S. Moore, P. Mucci and D. Terpstra, “Using PAPI for
Hardware Performance Monitoring on Linux Systems,” 08 2009.

[25] “CUPTI API.” https://docs.nvidia.com/cuda/cupti/r main.html. Accessed:
2018-07-14.

[26] P. Bastian, F. Heimann, and S. Marnach, “Generic implementation of finite el-
ement methods in the distributed and unified numerics environment (DUNE),”
Kybernetika, vol. 46, no. 2, pp. 294–315, 2010.

[27] M. Blatt and P. Bastian, “The iterative solver template library,” in International
Workshop on Applied Parallel Computing, pp. 666–675, Springer, 2006.

www.astesj.com 126

http://www.astesj.com


V. Kucher et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 119-127 (2020)

[28] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. Wells, “Unified
Form Language: A Domain-specific Language for Weak Formulations of Par-
tial Differential Equations,” ACM Trans. Math. Softw., vol. 40, pp. 9:1–9:37,
Mar. 2014.

[29] M. Haidl, S. Moll, L. Klein, H. Sun, S. Hack, and S. Gorlatch,
“PACXXv2+RV: An LLVM-based Portable High-Performance Programming
Model,” in Proceedings of the Fourth Workshop on the LLVM Compiler Infras-
tructure in HPC, LLVM-HPC, (New York, NY, USA), pp. 7:1–7:12, ACM,
2017.

www.astesj.com 127

http://www.astesj.com

	Introduction
	Programming and profiling
	The PACXX Programming model
	Profiling interface: Design and implementation
	The profiling extension

	The profiler usage
	Example: Matrix multiplication
	Workflow of profiling
	Visualization of profiling

	Integrating DUNE with PACXX
	Compiling kernels: examples
	PACXX parallelization
	The Poisson kernel
	Kernel for linear elasticity

	Experimental evaluation
	Conclusion

