

www.astesj.com 36

A Derived Metrics as a Measurement to Support Efficient Requirements Analysis and Release
Management

Indranil Nath*

Chartered Fellow, BCS, The Chartered Institute for IT, United Kingdom

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 11 March, 2017
Accepted: 27 March, 2017
Online: 04 April, 2017

 This paper presents a Release Management model to support requirements management.
Requirements development and management can be integrated with a release-planning
approach to achieve lesser Requirements spillover problems which is an innovative way to
capture, control and evolve the user requirements based on integer linear programming.
 Keywords:

Software Requirements
Management
Software Engineering
Software Development Process
Requirements Specification
Lifecycle Model
Release Planning, Analysis
Metrics

1. Introduction

The Capability Maturity Model (CMM) and its successor
Capability Maturity Model Integration (CMMI) have been widely
accepted as a process model to steer software process
improvement (SPI) activities [1]. In some parts of the software
industry, like the defense industry, software suppliers are obliged
to have their software processes at least at CMM [2] level 4 or 5
in order to get any contracts. In many organizations, software has
become such a critical part of the product portfolio, that senior
management at the strategic level has defined objectives and
allocated budgets for improvements. Despite these successes to
realize sustainable improvements, the percentage of failures is
however probably still higher. It is true of any system that there
are several Critical Success Factors [3]. They include both
performance requirements (such as serviceability, reliability,
portability, and usability) and limited resource requirements (such
as people, time and money) In my experience, they either failed

because of poor estimation or poor change management or even
poor requirements including release plan.

Although modeling activities [4] like Data Flow Diagram,

Entity Relationship Diagram, State Charts, Object Oriented
Method and Unified Modeling Language helped to better
understand the Requirements and to represent them in clear and
comprehensive manner, it still failed to adapt to an evolutionary
approach for incremental software release and an opportunity for
prioritizing requirements. This paper presents a Release
Management model to support requirements management.
Requirements development and management can be integrated
with a release-planning approach to achieve lesser Requirements
spillover problems that are an innovative way to capture, control
and evolve the user requirements. A metric coupled with the
incremental software release that offers organizations an
opportunity for prioritizing requirements, an optimization
technique, based on integer linear programming, to support
software vendors in determining the next release of a software
product developed and demonstrated in Section 3. The technique
is based on the assumption that a release’s best set of requirements

ASTESJ
ISSN: 2415-6698

*Corresponding Author: Indranil Nath, Chartered Fellow, BCS, The Chartered
Institute for IT, United Kingdom
Email: indranil.nath@bcs.org.uk

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 36-40 (2017)

www.astesj.com

Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj020306

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020306

Indranil Nath / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 36-40 (2017)

www.astesj.com 37

is the set that results in maximum projected revenue against
available resources in a given time period.

2. General Process Metrics

Today measuring processes and products, objective,
quantified information can be gathered to support decision-
making at all levels. The objective measurements provided allow
management and software product engineers to:

1. Identify inefficient processes that need improvement.
2. Reengineer ineffective processes that do not add quality to

products.
3. Evaluate process changes to measure process improvement.
4. Utilize historic measurements of productivity, complexity,

size, effort, and cost during project planning.
5. Monitor a current project plan's risk by measuring the

schedule, cost, size, and effort of the products under
development and comparing them to the assumptions and
estimates used as the basis for the plan.

6. Monitor product development by measuring current cost,
effort, and schedule data to determine if corrective action,
such as re-planning, is needed.

A typical Process Flow of the Software Process is shown in

Fig1 that is based on Humphrey [4] with only minor changes. In
the first phase Analysis the Requirements are studied, where after
estimates are made for the size of the resulting program, the
productivity, the effort distribution over the subsequent phases,
and other product and process metrics. These estimates are
recorded on the Project Plan Summary.

During the subsequent phases, the actual defect and time data

are logged on the Defect Log Form and the Time Log Form. The
Design Review Checklist and the Code Review Checklist are used
to structure the review process during the Design Review phase
and the Code Review phase. When the program has been tested
and is ready to be released as a Finished Product, all recorded data
is summarized in the Project Plan Summary, enabling the software
engineer to make an analysis in the Post Mortem phase prior to
the program release.

Fig 1: Process flow of the Software Process (based on [HUM 1997]).

The purpose of this analysis is to investigate how the process

used can be further improved. The result may be that the Process

Script, the Design Review Checklist and/or the Code Review
Checklist are adjusted. Further, the data from the Project Plan
Summary can be used to calculate accumulated values for
productivity, time or effort distribution, and so on. This
information can be stored in a Repository to support the
estimation process for future programming assignments.

By following the Process Flow of the Software Process [5]

Humphrey proved that valuable product and process data could be
obtained and the analysis of the data would enable a software
engineer to calculate for instance the following metrics for better
decision making in software engineering:

2.1. Estimation Accuracy

Estimates are collected for the size of the program to be
developed and the process to be followed (time distribution,
productivity, etcetera). These estimates are compared with the
actual figures when the program has been implemented and tested.
The result is the estimation inaccuracy, which can be calculated
with the following

Equation:

2.2. Relating Size and Effort: Productivity

By measuring the size and effort of programs, the
productivity can be calculated in retrospect. When the
productivity has been measured, however, it can be used to
proactively calculate the expected effort or time needed to
develop a program when the size of the program has been
estimated, the equation being:

2.3. Yield

When developing a program subsequent development phases
are passed through. In each development phase defects will be
injected and removed. Removed defects might have been injected
in the current development phase; however, they might also have
been injected in previous development phases. The yield of a
development phase can be defined as a number, expressing the
number of defects removed in a particular phase divided by the
sum of the number of defects inherited from previous phases and
the defects injected in the phase itself:

Where #= Number of Defects and Px is ”Phase x” The yield of a
phase can vary from 0% to 100% (if the denominator equals 0, the
yield of the phase is equal to 100%). When the yield of a phase
equals 0 it means that in that particular phase no defects have been
removed. They are all carried forward to the next phase. When the
yield of a phase equals 100%, it means that in that particular phase

http://www.astesj.com/

Indranil Nath / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 36-40 (2017)

www.astesj.com 38

all existing defects are removed. These are both the defects
inherited from previous phases and the defects injected in that
particular phase itself. In the ideal case, the yield of each
development phase is equal to 100%. This means that in each
phase all injected defects are also removed and that the final
product is free of defects.

But in practice, not all defects will always be removed.
Defects will be carried forward to the subsequent phases. If they
are not found in, they will be shipped being part of the final
product. Note that the yield of the different development phases
can only be calculated when all defects have been found. Only
then it is known how many defects were injected and removed in
the different phases.

If an injected defect is carried forward to subsequent phases,
it is very important to detect and remove the defect as early as
possible. The rework effort is proportional to the difference
between the injection phase and the detection and removal phase.
If an early injected defect is found in one the latest phases of
development, the rework effort will extend over more phases.
Very expensive defects are the ones that are injected during the
Analysis and Design phase and detected during the Test phase. It
is assumed here, that there are no defects in the requirements.
Another approach is now to calculate the Yield of the phases
Analysis and Design (A&D) combined:

This metric denotes the quality of the early phases before handing
over of the product for further implementation and testing.

2.4. Appraisal/Failure Ratio (A/FR)

Striving for a high combined Yield means investing effort in
appraisal to detect defects as early as possible. An example of an
appraisal action is, for instance, a peer review. The objective of
appraisal actions is to pass forward a reliable product to the next
phase. Advantages are twofold. In the first place, this will
probably lead to a more reliable final product. It is a utopia to
think that all transported defects will be found at a later stage. In
the second place, the total failure cost in subsequent phases due to
fixing detected defects will probably decrease as the number of
expensive defects decreases. A new metric is introduced, called
the Appraisal/Failure Ratio or A/FR. This is the ratio between the
appraisal cost in the early development phases and the failure cost
in subsequent development phases, its equation:

The A/FR can vary from 0 to infinite (if the denominator equals
0, the A/FR is equal to 0 if defects are found but not removed and
the A/FR is undefined if no defects are found). An A/FR equal to
0 means that no appraisal effort is spent in detecting and removing
defects in the early phases of development. The failure cost to be
made in subsequent phases later will presumably be very high,
assuming that the reliability of the final product is important.

2.5. Defect Injection and Defect Removal Rate

Collecting defect data enables one to calculate the defect
injection and defect removal rate in each development phase. It
can, for instance, be related to the effort spent in that particular
phase:

2.6. Defect Density

The defect density can be calculated by relating the total
number of defects found during development to the resulting
program size:

A defect density equal to 0 means that no defects are introduced

during development; in other words, the Yield of each
development phase equals 100%. These metrics are powerful to
analyze the software process and adjust the process in order to
implement improvements. Most metrics are self-explaining with
regard to their best values. The best values for Estimation
Inaccuracy and Defect Density are for instance 0%, for Yield the
best value would be 100%. This is however not evident for a metric
like A/FR. But there is more. The best value does not necessarily
mean that it is the optimal value. There might be practical
limitations to obtain a Yield of 100% for instance. Human work is
not perfect, causing the injection of defects, and a project budget
is normally limited, meaning that time for appraisal and failure
expenditures is limited. It is worth considering the question
whether there are optimal combinations of a set of metrics, that
there is no metric that allows helping management to decide on
prioritizing requirements in the 3-Degree-Of-Freedom [6] of
Software Engineering (Software Development Process, System
Components and View onto the Systems).

3. The Derived Metrics

This section will have all the derived metric from above and
how the derived metrics can be used to support the re-engineering.
The set of derived metrics will offer the possibility to analyze and
re-engineer processes and their respective work products. Finally,
this re-engineering will allow for efficient Requirement Analysis

and bi-directional requirement traceability [7-9].

 One of the most common life-cycle approaches adopted by
most software development organizations is the evolutionary
approach. This approach, coupled with incremental software
release offers the opportunity for prioritizing requirements [10].
Customers receive part of the full working system early on as a
beta release and it is easier to schedule and estimate for each
delivery. This approach also enables user feedback early on
(during development stage) and changes and additions to
requirements are easily handled. Release management is
mathematically modeled as follows.

http://www.astesj.com/

Indranil Nath / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 36-40 (2017)

www.astesj.com 39

Let us consider a set of requirements ℜ

{ }1 2, ,..., nr r rℜ =

Assign ℜ into an evolutionary life cycle release categories C
as:

I. Next Release (1nR +)

II. Next but one release (2nR +)

III. Not yet assigned (n mR +)

Requirement Dependencies D and requirement precedence
within the domain ℜ are specified as:

• Requirement Coupling (RC): ir must be in the same release

as kr

• Requirement precedence (RP): ir must be implemented

before kr

Effort constraints Ω are formulated as:

• The total effort for implementing ℜ is Ω
• For ir ∈ℜ , an estimated effort is assigned iω

•
1

n

i
I
ω

=

≤ Ω∑

Stakeholders Prioritization S is formulated as:

• Set of stakeholder: { }1 2, ,..., mS s s s=

• Weight of each stakeholder ():k ks S w s∈

• Each stakeholder s assigns a priority to the situation that ir

is assigned to the option (): , ,ik P s r k

Thus, in the evolutionary life-cycle, a software release is defined
as:

4. Discussion

Release Re-engineering using Requirement Analysis [11].
For software vendors, the process to determine the requirements
[12] for the next release of a software product is often difficult.
The mathematical formalization of release composition with a
corresponding optimization tool that aims to support product
managers and development project managers during release
planning is discussed as above. The tool is based on integer linear
programming and assumes that an optimal set of requirements is
the set with maximum projected revenue against available
resources in a given time period. The input for the optimization is
twofold. Input data like the list of candidate requirements

estimated revenue and required team resources per requirement,
whether or not a requirement is mandatory, comprise the first type
of input. Secondly, several managerial steering mechanisms
provide flexibility in the optimization environment.

Companies developing software products face complex
challenges when determining requirements for upcoming releases.
Often the wish list of requirements extends the capacity of
available resources, requirements may not be unambiguous, they
may be difficult to prioritize, etc. As a matter of fact, many aspects
influence the definition of an optimal set of requirements for a
next release. Several scholars have presented lists of such aspects
including importance or business value, personal preference of
certain customers and other stakeholders, the penalty if not
developed, the cost of development in man days, development
lead-time, requirement volatility, requirement dependencies, the
ability to reuse, and requirements quality.

In order to deal with this multi-aspect optimization problem,
different techniques and procedures have been applied. The
analytical hierarchy process [13] assesses requirements according
to certain criteria by taking all possible requirement pairs,
relatively valuing each pair, and subsequently using matrix
calculations to determine a weighted list of requirements. Jung
extended the work of Karlsson and Ryan by reducing the
complexity of applying the analytical hierarchy process to large
amounts of requirements using linear programming techniques

[14]. Through cumulative voting (Leffingwell and Widrig (2000))
different stakeholders are asked to distribute a fixed amount of
units (e.g. euros) between all requirements, from where an
average weighted requirement list is constructed. With discrete
event simulation, the effect of the development of requirements is
modeled, allowing what-if analysis.

The set of derived metrics shown in Section 3 offers the
possibility to analyze projects, Software Requirement, and their
respective work products in detail [15]. The following can be
concluded:

• Predictability: There is a considerable budget overrun
(+50%) and schedule overrun (+19%), but the realized
product size is less than predicted (-24%). The realized
overall productivity is nearly half the predicted value (-49%).
These data need to be further analyzed in order to find out the
reasons for these deviations.

• Effectiveness: The cumulative Yield at the Detailed Design
phase and the Implementation phase is very low, 10% and 19%
respectively. This implies that many defects are transported
to subsequent phases and that the failure cost in these phases
will probably be high. This is confirmed by the fact that the
total amount of rework equals 38% of the overall lifecycle
effort.

• Efficiency: The efficiency is very low because many defects
have been found in the later phases. As a consequence, the
overall failure cost is high (38% of overall life cycle effort).
This is confirmed by the fact that the cumulative A/FR before
the Detailed Design phase and Implementation phase is very
low (0.02 and 0.03 respectively).

This analysis gives an organization the possibility to select
improvements for future projects, assuming that this project has

http://www.astesj.com/

Indranil Nath / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 36-40 (2017)

www.astesj.com 40

not been very exceptional but comparable with similar projects.
Improvements might be:

A) Improve the predictability by using a lower productivity
figure when estimating projects. In this way, more realistic
estimates will be obtained.

B) Increase the quality of the resulting product by increasing
the Yield in the earlier development phases. This can be
done by increasing the review effort (A/FR higher) or by
adjusting the review method.

C) Improve the efficiency by increasing the A/FR in the various
development phases before the Integration Test phase.
Special interest might be given to the Implementation phase
and Unit Test phase as in these phases the Detection Rate
and Removal Rate are very high.

In all cases, the available data can be used to make
predictions about the expected effects in terms of return on
investment. This is not always easy, as the various parameters
might be correlated (for instance, a higher A/FR will probably
contribute to a higher Yield).

However, by building a record of experiences, the
capabilities in this area can be stepwise improved. In this example,
the following approach might be applied in an iterative way:

1) Increase the cumulative A/FR by increasing the appraisal
cost in the earlier development phases.

2) Estimate what the effect will be on the cumulative Yield at
the Detailed Design phase: what will be the reduction of
defects injected in the Requirements phase and Architecture
phase?

3) Take measures to improve the inspection and review process
during the Implementation phase and Unit Test phase and
estimate the effect on the Defect Detection Rate and the
Defect Removal Rate in these phases.

4) Use the cumulative Yield at the Detailed Design phase to
predict the number of defects that will be passed forward to
subsequent phases and use the Defect Detection Rate and
Defect Removal Rate to calculate the failure cost.

5) Calculate the effect on effort, time, and expected corrective
maintenance cost.

6) Repeat the steps 1 till 5 until satisfactory (and realistic)
values have been obtained.

5. Conclusion

The derived metrics can be considered to be useful for
organizations still having to build a measurement foundation for
their software projects and products as well as for organizations
looking for further improvements of their software processes. The
mature organizations will analyze their available data, select the
most promising improvements and re-engineer and re-measure
their performance over time. The less mature organizations will
not be able to implement re-engineering from day one but need to
define a strategy how to implement the model in subsequent steps.
The order of the steps can be derived from the most urgent
problems the organization is faced with:

I. Predictability. In this case, the first step might be to collect
estimates and actual for size, effort and time.

II. Effectiveness. In this case, the focus is on the output of the
project, being the quality of the product. Important

measurements to be considered first are defects (Yield
values per phase and cumulative).

III. Efficiency. In this case, attention must be paid to appraisal
cost related to failure cost (A/FR) and defect rates (Defect
Detection Rate and Defect Removal Rate).

In all cases, supporting methods and tools might be selected
to facilitate the measurements, as long as it is understood that “a
fool with a tool still remains a fool”. A method or tool will not
solve the problem; they can only support a defined process.

Conflict of Interest

The authors declare no conflict of interest.

References
[1] J.W.E. Greene, “Software Process Improvement: Management

Commitment, Measure, and motivation”, QSM Ltd. SPI98ADR
[2] CMMI-SVC, V1.3, Improving processes for providing better services,

Software Engineering Process Management Program, Software
Engineering Institute, November 2010

[3] Tom Gilb, “Competitive Engineering, A Handbook for Systems
Engineering, Requirements Engineering and Software Engineering Using
Planguage”, Page 4. Elsevier Butterworth-Heinemann, 2006.

[4] R.S. Pressman, “Software Engineering – A Practitioner’s Approach”, Page
300, 301, 309-310, 305, 793, 438, 646. McGraw-Hill, 2001.

[5] Humphrey, W. Managing the Software Process, Addison-Wesley
Publishing Company, 1990.

[6] I. Nath, S Kundu, “Is Software Requirements a Corporate Asset?” Fig.2.
Degrees of Freedom in the Software Engineering Components of SE-
CUBE, IEEE International Engineering Maangement Conference
Proceedigs, Innovation and Entrepreneurship for Sustainable Development,
Volune 1, 2004

[7] Davis, A. M., “Software Requirements: Analysis and Specification”,
Prentice Hall, 1990.

[8] Kovitz, B. L., “Practical Software Requirements: A Manual of Contents &
Style”. Manning, 1999.

[9] Potts, C., “Requirements Models in Context”, 3rd International Symposium
on Requirements Engineering (RE'97), Annapolis, USA, 6-10 January
1997, pp. 102-104, 1997.

[10] Nancy Mead., “Requirements Prioritization Introduction, Software
Engineering Institute, Carnegie Mellon University, September 2006.

[11] A.G. Sutcliffe & M. Ryan, “Experience with SCRAM, a Scenario
Requirements Analysis Method”, 3rd Int’l. Conf. on Requirements Eng.,
pp. 164-171, 1998.

[12] Nguyen, L. and Swatman, P.A., “Managing the Requirements Engineering
Process”, Working Paper 2000/15, School of Management Information
Systems, Deakin University, Australia, 2001.

[13] Melvin Alexander, “Decision-Making using the Analytic hierarchy Process
(AHP) and SAS/IML”, Social Security Administration, Baltimore, MD,
2012.

[14] John W. Chinneck, “Practical Optimisation “ a Gentle Introduction”, 2001
[15] Mack W. Alford, “Software Requirements Engineering Methodology

(SREM) at the age of two”, In 4th Int. Computer Software & Applications
Conference, New York, pages 866–874. IEEE, 1980.

http://www.astesj.com/

	2. General Process Metrics
	2.1. Estimation Accuracy
	2.2. Relating Size and Effort: Productivity
	2.3. Yield
	2.4. Appraisal/Failure Ratio (A/FR)
	2.5. Defect Injection and Defect Removal Rate
	2.6. Defect Density

	3. The Derived Metrics
	4. Discussion
	5. Conclusion
	Conflict of Interest
	References

