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 Stress occurring in the early days of an individual was often assumed to cause several health 
consequences. A number of reports indicated that having to deal with unfavourable events 
or distress situation at a young age could tweak stress responses leading to a broad spectrum 
of poor mental and physical health condition. Therefore, changes identified within stress 
response were recommended to be taken as a measure in regulating and managing such 
health situation. This study combines the biomarker that represents both autonomic nervous 
system (ANS) and hypothalamic-pituitary-adrenocorticol (HPA) as a single measure to 
classify the stress response based on traumatic childhood experience and propose a stress 
response index as a future health indicator. Electrocardiograph (ECG), blood pressure, 
pulse rate and salivary cortisol (SCort) were collected from 12 participants who had 
traumatic childhood experience while the remaining 11 acted as the control group. The 
recording session was done during a Paced Auditory Serial Addition Test (PASAT). HRV 
was then computed from the ECG and the HRV features were extracted. Next, the best HRV 
features were selected using Genetic Algorithm (GA). Biomarkers such as BP, PR and SCort 
were then integrated with 12 HRV features picked from GA. The integrations were conducted 
using two fusion methods which are Euclidean distance and serial fusion. The differences in 
reaction of the fused features were then identified. Based on the result, the Euclidean 
distance (ed) which is the fused feature by the parallel fusion, displayed the most efficient 
reaction with accuracy, sensitivity, and specificity at 80.0%, 83.3% and 78.3%, respectively. 
Support Vector Machine (SVM) was utilized to attain such result. The fused feature 
performance was then fed into SVM which produced indexes on stress responses. The result 
retrieved from these indexes acts as a measure in handling future health deliverability and 
perhaps could eventually enhance the health care platform for midlife individuals. 
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1. Introduction 

This paper is an extension of the work [1] originally presented 
in the IEEE-EMBS Conference on Biomedical Engineering and 
Sciences (IECBES), 2018. Stress is identified as a biological and 
mental reaction to any threat or external pressure.  During normal 
conditions, stress encourages a person to concentrate, stay active and 
attentive. Nevertheless, in critical events, stress assists in powering 
up an individual and this may lead to the ability in saving someone’s 
life. However, stress becomes damaging to the physical and 
psychological health of an individual when the body fails to cope and 
solve problems [2]. Stress can initially be a positive contributing 

factor in an individual’s life but due to immoderate demands that 
complies with the advanced and modern world eventually becomes 
a major threat. Many acute diseases have been listed as the effect of 
stress. This includes cardiovascular diseases, diabetes, asthma, 
anxiety disorders and depression [3].  

Stress is classified into three types which are known as acute, 
episodic and chronic [3,4,5]. Acute stress is known as stress 
occurring at a short period of time.  Factors contributing to this kind 
of stress are usually work-related, athletic performances and 
examination. Episodic stress occurs due to repetitive acute stress, 
like that of a daily work stress.  Chronic stress is related to a high 
intensity stress factors that develops over a long period of time. This 
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can be damaging to the physical and psychological well-being of an 
individual [6].  Factors that can lead to development of chronic 
stress are marital affairs, work stress, financial condition [7], and 
traumatic life experiences [8, 9] such as an unpleasant childhood 
incident.  

Several researchers have been caught up studying stress factor 
developed from traumatic childhood experiences.  Recent studies 
in illness management and prevention indicates that being stressed 
at an early age may lead to a series of health issues [10, 11, 12, 13], 
and alterations in physiological behaviour [14, 15, 16, 17]. This fact 
is significant in developing methods that could improve 
healthcare management for individuals approaching adulthood, 
since there is an indicator of the current health status of the 
particular child. Therefore, this study focuses on traumatic 
childhood experience which is classified as chronic stress. In 
sequence to investigate the stress response of individual with 
traumatic childhood experience, mental stress test which is an 
acute stress is used. 

Early life stress has shown a number of health outcomes to be 
predictive [18, 11]. Studies conducted a few years ago showed that 
individuals with unfavourable and stressful situation tend to fall in 
a broad spectrum of mental and physical health problems which 
eventually lead to alcohol abuse, obesity, depression, smoking, 
substance abuse, intrusive sexual acts [19], as well as acute 
illnesses like cardiovascular disease [20, 21]. The output of these 
studies has brought latest discovery that indicate children who are 
vulnerable to potentially traumatic events may experience 
cardiovascular stress reactivity due to acute physiological 
processes. There are a number of cases that displayed changes in 
cortisol as well as severe mental stress that increases heart rate 
within individuals who had at least one or more traumatic incident 
[14, 15]. Nevertheless, studies also showed changes in 
cardiovascular reactivity to stress task amongst children who were 
exposed to aggressive adolescent behaviours [17]. These 
evidences indicate that stress reactivity is detected via incidents 
taking place at an individual’s tender age, and that the immensity 
of stress reactivity is in relation to stress exposure and may 
influence health of an individual in years to come [22, 23].  Since 
there are compelling evidences on this matter, detecting changes 
in stress response due to traumatic events of a child is significant 
to be utilized as an indicator for better healthcare.  

It is important to pick the most suitable biomarker to identify 
and determine changes taking place in stress response. Heart rate 
variability (HRV) is one of the biomarkers proven to be the most 
powerful and depicts autonomic nervous system [24-27]. However, 
there is not much research on the application of HRV in measuring 
stress responses among children with traumatic incidents. In fact, 
only conventional frequency domain method was applied [28, 29]. 
Hence, both conventional and improved approaches extracted 
from HRV analysis should be applied in measuring stress 
responses of a child who had been through traumatic incidents.  

Integrating two of the major body systems known as autonomic 
nervous system (ANS) and hypothalamic-pituitary-adrenocorticol 
(HPA) is strongly recommended as it plays an important role in 
regulating stress response [30,31]. Although numerous studies 
indicate that in measuring stress responses, multiple biomarkers 
were used. In conjunction to that, the results for each biomarker 
were analysed singly [32, 33].  

Therefore, this study proposes a latest fusion method for stress 

response classification on traumatic childhood occurrence. Since 
children’s traumatic incident causes inconsistency in stress 
response, the health status during adulthood can be determined via 
a proposed stress response index which could indicate the future 
health condition and lead to preventative measurements as well as 
further diagnosis that may refine the healthcare management. The 
objective of this study is to integrate both HPA and ANS so as to 
classify stress responses among children who faced traumatic 
experiences along with a stress response index that would be able 
to indicate health statuses in the later years of these individuals.  

2. Method 

2.1. Participants 

609 students were screened with lifetime adversity inventory 
based on C-DIS-IV items and Childhood Traumatic Questionnaire 
(CTQ) [34]. This group of participants is made up of 511 females 
and 98 males (age, M = 19.2, SD = 2.99 years). Participants who 
scored within 2 to 5 and 2 or higher on the lifetime adversity 
measure and CTQ, respectively, were identified as individuals with 
traumatic childhood incidents whereas those who scored 0 on the 
lifetime adversity measure and CTQ were made the control group 
[14, 34]. A total of 23 participants, 12 participants who had 
traumatic childhood experience and 11 participants who were from 
the healthy control group. These participants have no history of 
cardiovascular illnesses, incurable diseases or other acute infection, 
and a current endocrine or immune disorder. Participants’ consent 
was obtained and the study was approved by the University of 
Birmingham Ethnics Committee. 

2.2. Mental Stress Test 

The psychological stress test in this research was conducted 
with the Paced Auditory Serial Addition Test (PASAT) and it 
usually takes about 10 minutes to complete. Participants were 
given a series of single-digit numbers and were requested to add 
the digit to the numbers they previously heard. They were to say 
their answers out loud.    

2.3. Procedure 

A standard three-lead ECG placement and blood pressure (BP) 
cuff, were attached to the participants in sitting position. The test 
began with a 10 minutes adaptation period followed by another 10 
minutes of resting baseline phase. Three saliva samples were 
collected from every subject with the first sample obtained at the 
last minute of the baseline phase. 10-minute PASAT was then 
completed and saliva sample was obtained once again. The 
recovery phase took place for the next ten minutes followed by last 
saliva sample collection. Participants’ BP and heart rate (HR) were 
recorded every two minutes, four times for each phase, whereas 
ECG readings were recorded throughout the test.  

2.4. Saliva Sampling and Cortisol Assays 

In order to obtain samples of saliva, participants had salivette 
dental swab positioned in their mouth which was gently chewed 
for one minute and placed in the salivette tube. Three stimulated 
saliva samples were obtained in this study whereby first sample via 
a 10-minute baseline phase. As for the second and third sample, it 
was obtained right after stress test and initially 10 minutes to task, 
respectively. The salivettes were then centrifuged for five minutes 
at room temperature and 3500 rpm before being aliquoted. It was 
then made to freeze at -20 degrees until the time to be assayed.  
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The assayed cortisol was then duplicated by an enzyme-linked 
immunosorbent assay (ELISA) via a commercial kit (DRG 
Diagnostics).   

2.5. Pre-Processing: From ECG to HRV 

HRV were being quantified via MATLAB software based on 
obtained and pre-processed ECG signals. A notch filter was used 
in eliminating the 50 Hz power line interference. Pan and 
Tompkin’s algorithm were applied to identify the QRS waves 
database [35]. 

 
Figure 1: Derivation of Heart Rate variability for Electrocradiograph 

2.6. Feature Extraction 

In this research, HRV feature extraction is carried out through 
time, frequency, non-linear time-frequency and Wavelet analysis. 

2.6.1. Time-Domain Analysis 

 The time-domain analysis was measured with Standard 
Deviation of the Normal-to-Normal intervals (SDNN), Standard 
Deviation of the Average of Normal-to-Normal intervals 
(SDANN), Root Mean Square Successive Difference (RMSSD) 
and HRV triangular index (HTI) [26] and computed via 
recommendation by Task Force (1996). 

2.6.2. Frequency Domain Analysis 

 For the frequency domain analysis Autoregressive (AR) 
spectral analysis was applied [36,37]. AR model is interpreted as 
follow: 

 
𝑥𝑥[𝑛𝑛] =  ∑ 𝑎𝑎𝑖𝑖𝑥𝑥[𝑛𝑛 − 1] + 𝜀𝜀[𝑛𝑛]𝑁𝑁

𝑖𝑖=1  (1) 

where, x[n] is the current value of the HRV time series, a1, . . . , 
aN are the predictor coefficients, N is the model order.  With 
this method, the power spectral density (PSD) can be presented 
at a precise estimation. This would allow the feature extraction 
process to be carried out at ease as shown in Figure 2 [38]. 

Next, nine features were obtained via PSD extraction. These 
nine features are VLF (0.003-0.04 Hz), LF (0.040-0.15 Hz), HF 
( 0.15-0.4 Hz), the standard unit (n.u.) of LF and HF (LFnu and 
HFnu), LF/HF ratio, Total Power (TP) [26, 38,39], log LF (lnLF) 
and log HF (lnHF)[40]. 

 
Figure 2: Power Spectral Density (PSD) using AR  

2.6.3. Time-Frequency Domain Analysis 

Since HRV contains slow varying signal, Modified B-
Distribution (MBD) tend to be one of the most efficient Time 
Frequency Domains (TFDs) in exhibiting a high time-frequency 
resolution [41]. MBD’s fundamental is [41]:  

g(ν ,τ )=Γ(β+ jπν )2/Γ2(β )   (2) 

where, gamma function is identified as Γand β is a positive real 
number between 0 and 1 that monitors the commutation between 
components’ resolution and cross-term suppression [41].  

 Figure 3 shows an example of TF plotted via application of 
MBD to obtain HRV signals that were recorded during resting 
baseline. TFD measured via TFD-based Shannon and Renyi 
entropy led to an overall computation of TFD and as well as 
entropy within LF and HF domain [42,43]. 

 
Figure 3: Time and frequency details via HRV’s time-frequency distribution 

2.6.4. Wavelet Transform Analysis 

 Wavelet analysis bring forth the localizations of time and 
frequency resulting in wavelet coefficients which can be utilized 
as features in classifiers [44,45]. HRV signal can be disintegrated 
using wavelet family ψa,b, a basis function that involves dilatation 
and translations of a distinctive and valid mother wavelet ψ(t). This 
process is defined as, 
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 𝜓𝜓𝑎𝑎,𝑏𝑏 =  1
√𝑎𝑎
𝜓𝜓 𝑡𝑡−𝑏𝑏

𝑎𝑎
  (3) 

where, scale and location is indicated by a and b, respectively [44, 
45]. Basis function of DWT is represented at scale 2-m whereas, n 
indicates the time instant specified as follow, 

 𝜓𝜓𝑚𝑚,𝑛𝑛 = ∫ 2−
𝑚𝑚
2𝜓𝜓(2−𝑚𝑚𝑡𝑡 − 𝑛𝑛∞

−∞ ) (4) 

Hence, DWT’s signal x(t) is specified as follow:  

 𝑇𝑇𝑚𝑚,𝑛𝑛 = ∫ 𝑥𝑥(𝑡𝑡)𝜓𝜓𝑚𝑚,𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑∞
−∞   (5) 

 A discrete wavelet was transformed from eight-order 
Daubechies mother wavelet (db8) to five levels before being 
implemented to HRV. This transformation causes signal 
disintegration of five-level wavelet.  Following this, using the 
suggested HRV frequency bands, Detail (D) and Approximate (A) 
coefficients were reassembled [26]. The A5 coefficient allowed 
rebuild of VLF range at < 0·04 Hz; D5 and D4 coefficients for LF 
range at 0·04–0·15 Hz; D23, D2, and D1 coefficients for HF range 
[46]. Hence, a total of 83 features were obtained from the HRV 
signal. 

2.7. Feature Selection 

 The feature selection process is carried out via Genetic 
Algorithm (GA) MATLAB Toolbox.  Iteration process occurred 
whereby chromosome is being engineered for production of new 
population via application of genetic functions like crossovers and 
mutations. Theoretically, healthy species will make through the 
evolution process whereas the weak ones disintegrate.  

 An initial population of chromosomes was randomly selected 
in order for GA’s process to begin. Encoded bit strings usually 
depicts chromosome that is made up of sequence of features.  
These features each is classified as genes.  In each chromosome, 
based on positional index, a gene value of ‘1’ determines that the 
feature selected is positioned at ‘1’ but the feature is not picked if 
the gene value is found to be at ‘0’. When iteration process takes 
place, combinatorial set of genes or features in the current 
population, identified as individual was observed via fitness 
function. 

 For the current work, the fitness function (FitFunc) was 
computed using kNN-based classification error with k = 3 
[47,48,49] which is defined as: 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  𝛼𝛼
𝑁𝑁𝑓𝑓

+ exp (− 1
𝑁𝑁𝑓𝑓

)     (6) 

where, kNN-based classification error is indicated by α and Nf 
is the number of elements in selected features. In record, one study 
proposed the application of SVM classification error in extracting 
fitness function [50]. Unfortunately, despite being a substantial 
machine learning tool, SVM needs a durable computational load. 
Hence, in this research, this method was not applicable due to the 
constraint and fact that GA consumes computational space.  

The initial populations of chromosomes were then ranked upon 
creation. The fittest individuals known as elitism solutions were 
selected from these ranks for survival in the next generation. 
Individuals that were not selected formed crossover and mutation 

solutions by genetically going through functional crossover and 
mutation. New generations were then formed by individuals 
selected through the elite, crossover and mutations.  

GA operator’s optimization was carried out to detect the prime 
value of initial population, crossover and mutation. Table 1 
indicates the tested values extracted via references from studies 
carried out previously [47, 49, 51]. The outcomes of chosen 
features integrating with tested parameters were recorded and 
chromosomes with the optimum outcome were utilized in the next 
stage. 

Table 1: Tested parameter figure utilized selection of HRV feature in GA. 

Parameter Tested Value 

Initial Population 

20 

30 

40 

50 

60 

Crossover 

0.1 

0.01 

0.001 

Mutation 
0.8 

0.9 

 

Selection tool was required in choosing the best individual. 
Hence, in this research, two individuals or chromosomes were 
picked as defeater of the tournament by applying tournament 
selection of size 2. This selection was applied because of its clarity, 
rapidity and competency [47, 48]. The process is carried out in 
repetition until formation of new population is achieved. 

Individuals like elite, crossover, and mutation kids were added 
to create the new population. 

New Generation= Number (Elite kids) + Number (Crossover    
kids)….               + Number (Mutation kids) (7) 

New Generation Score = Fitness (New Generation)             (8) 

This process continued until GA achieved the condition that 
puts it to stop. The stopping conditions utilized are Maximum 
Number of Generations (MaxNG) and Stall Generation Limit 
(SGLim). Both were set at 100 and 10, respectively [49].  If the 
mean alteration in the fitness gain between the chromosomes over 
SGLim generations was below than or equivalent to 0.000001 
which is the value of Tolerances Function (TolFun), then the GA 
will be dismissed. The process ends if TolFun also known at 
termination tolerance, has a function gain whereby if |f(xi) – 
f(xi+1)| < TolFun. Since GA observes the variance in values of 
fitness within all generations. The mean of these variances for 10 
generations were recorded. If the recorded values were less than or 
equal to 0.000001, GA will be dismissed. This indicates that 
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resemblance in fitness value also known as genetic homogeneity 
among chromosomes of the generation have the most excellent 
chromosome and therefore coincides with GA. 

2.8. Feature Fusion 

 In obtaining reactivity demarcation, the features were measure 
based on normalization equation as follow [52, 53]: 

𝑌𝑌𝑛𝑛 = 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠− Ŷ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
ŝ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

   (9) 

where, sample feature vector throughout stress texting is Y, the 
average of sample feature during resting baseline is indicated as Ŷ, 
and standard deviation of feature vector throughout resting 
baseline is indicated as ŝ.  

Linking feature vectors of the biomarkers obtained from HRV 
feature extraction (h), and BP, PR and SCort (b, p and c, 
respectively) led to construction of serial fusion, whereas parallel 
fusion was designed by integrating feature vectors and complex 
vector. To introduce combined features with complex vector, the 
following equation, c = a + ib, where a and b a re  two varied 
feature vectors of the same sample S and i is an imaginary unit, 
was applied.  

The purpose of fusion was to integrate the essentials within 
ANS and HPA leading to a finer presentation of the elements. 
Hence, the differences are obtained via fusion of biomarkers. ANS 
biomarkers are HRV, BP and PR, whereas HPA biomarker is 
cortisol. 

2.9. Classification 

 In order to speculate an input’s output group with existing data, 
a classifier is required. In this research, SVM classifier was used 
to classify stress response between two types of group which are 
of individuals with traumatic childhood incidents and a control 
group. Other classifiers like Naive Bayes [54, 55] and k-Nearest 
Neighbour (kNN) [56, 57] were used in this study to distinguish 
and prove that SVM is the most effective classifier. The 
evaluations of classifier were carried out by applying 10-fold cross 
validation [46]. 

2.10. Stress Response Index 

 The stress response index is depicted via classifiers that 
indicate greater deliverability. The future health is then predicted 
via irregularity patterns in stress response that were detected within 
the index. 

3. Result and Discussion 

3.1. HRV Feature Extraction 

From the HRV feature extraction, a total of 83 features that has 
been extracted. Previous researches indicated that most features 
selected in obtaining HRV classifications were of conventional 
methods which are based on time and frequency analysis [58-60]. 
Nevertheless, there were studies that indicate the application of 
feature analysis that are more advanced such as that of wavelet, 
time frequency, and non-linear [46, 61, 62]. However, in this 
study, obtaining HRV features were carried out with the fusion of 
both conventional and newest advance analysis.  

3.2. HRV Feature Selection 

From genetic algorithm, 12 features were selected which are 
RMSSD from time domain analysis, Normalized unit of high 
frequency (Hfnu) from AR PSD, Mean LF, SDNN D1, SDNN D4, 
Apen (Approximate entropy) D4, SampEn (sample entropy) D3, 
Kurtosis D4, SkewD5, from wavelet and ShanEn LF, ShanEn 
(Shannon entropy) HF, ShanEn LFHFr from TFD. 

3.3. Feature Fusion 

The extracted HRV features via GA feature selection were then 
made to integrate with biomarker obtained in this study to produce 
stress response index.  The initial biomarker fusion was carried out 
with the application of Euclidean distance (ed) classified as 
parallel fusion followed by serial fusion, a regular and simple 
fusion method, carried out for resemblance identification. 
Theoretically, the fusion of biomarkers that depicts ANS and HPA 
was applied in this research. This is because both ANS and HPA 
are biological systems with their own pathological characteristics 
and are strongly connected. Hence, a booming stress response 
index was likely to be extracted from the fusion of these systems 
[30, 31, 63]. Biomarkers depicting ANS were made to integrate 
with biomarker that depicts HPA, known as, Scort. With this 
fusion, HRV-Scort, BP-Scort and PR-Scort, were produced.  

Table 2 shows the result of integrated biomarkers via the 
application of SVM in the context of accuracy, sensitivity and 
specificity. Outstanding performance can be seen with application 
of Euclidean distance by HRV-Cort as accuracy, sensitivity and 
specificity scored 80.0%, 83/3%, and 78.3%, respectively. The 
table also indicated that, biomarkers like PR, BP and HRV 
representing ANS with Scort had poor performance. From this 
result, it can be seen that HRV is a strong biomarker and can be 
utilized for ANS.  

Following this, a single biomarker was used to measure the 
differences between outcomes of new fused feature and stress 
response classifications. Results indicated that the latter had better 
performance than single biomarker. However, since SVM model 
indicated excellent outcomes in categorizing fused biomarker 
(HRV-SCort), it was then utilized in exhibiting stress response 
index. 

Table 2: Outcomes of SVM classifiers applied in fused biomarker   

Fusion Method Acc % Sen% Spe% 

Serial 

HRV-Cort 63.3 51.7 75.0 

BP-Cort 67.2 68.3 66.7 

PR-Cort 58.3 66.7 48.3 

HRV-BP-PR-Cort 65.0 58.3 71.7 

Euclidean 
distance 

HRV-Cort 80.0 83.3 78.3 

BP-Cort 21.7 13.3 28.3 

PR-Cort 59.4 91.7 26.7 

HRV-BP-PR-Cort 68.9 81.7 60.0 
*Notes: Acc: accuracy, Sen: sensitivity, Spe: Specificity 

3.4. Support Vector Machine Model Fusion 

The fused feature vector was then utilized as model with SVM 
MATLAB toolbox application.  The input was placed in SVM 
model. Values of alpha (α), support vector, scale factor, shift and 
bias were obtained. The stress response index was recorded with 
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SVM classification (Csv) algorithm as reference. The algorithm 
is interpreted as follow: 

  𝐶𝐶𝑠𝑠𝑠𝑠 =  ∑ 𝛼𝛼𝑖𝑖𝑘𝑘𝑙𝑙(𝑠𝑠𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏𝑖𝑖   (10) 

where, si acts as support vector, α is the support vector’s weight, b 
signifying bias and defined as the interception of hyperplane that 
forms normalized data space by division of two groups, and x is 
the recorded scale training vector from 

  (𝒇𝒇𝑒𝑒)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × (𝒇𝒇𝑇𝑇𝑇𝑇 + 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖) (11) 

Meanwhile k1 is the dot product which is also recognized as 
linear kernel, as follow: 

Linear kernel = dot product = conj(si).*x = siT.*x (12) 

Hence, based on (13), proposed stress response index (SRi) was 
indicated as:  

 SR𝑖𝑖 = ∑ 𝛼𝛼𝑖𝑖 × (𝑠𝑠𝑖𝑖𝑇𝑇 .∗ [(𝑯𝑯𝑅𝑅) + 𝑖𝑖(𝑪𝑪𝑅𝑅)]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) − 0.057𝑖𝑖  (13) 

where HRV reactivity occurred via HR and SCort reactivity is 
via CR. 

 Figure 4 shows the suggested Stress Response Index (SRi) 
o f  HRV and salivary cortisol (HRV-SCort) with ed-SVM of 
children’s traumatic incidents. The figure indicated that two 
groups of stress response were divided by index boundary at a 
value of ‘0’. Normal stress response was identified with index 
sample ≥ 0, while other samples exceeding normal stress response 
were categorized as irregular stress response. Irregular stress 
response is often made up of participants who had no traumatic 
experiences during their early years.  

 
Figure 4: SRi of HRV and HRV-SCort with ed-SVM of traumatic childhood 

experience 

A recent stress response index in reference to traumatic 
childhood incidence was proposed with the obtained 
comprehensive feature extraction. This extraction is made up of 
robust HRV feature with the application of GA and integration of 
ed and SVM. Linear regression was referred in designing 
the stress response index. Hence, the scalar value is 
inconsistent and changes based on sample’s size. 

Assumption made is that the greater number of sample leads to 
stress response index being more accurate.  

Nevertheless, alcohol intake, smoking, diet, present stress and 
psychosocial situation may influence the precision of stress 
response index [64]. This is a take on for researchers to further 
study on the factors influencing stress response as well as 
conducting the study with a bigger sample size to create a more 
complete index that acts as the fundamentals of stress response 
index.  Furthermore, the reaction of traumatic childhood incidents 
within an individual against the stimulated stress requires further 
comprehensive research. Chances are that these individuals could 
be more at risk physically and mentally or they are able to manage 
themselves being in such situation. Findings from this research can 
be utilized to upgrade the approach within adult’s healthcare [65].  

4. Conclusion 

This research proposed stress response index based on the 
combination of biomarker representing both autonomic nervous 
system and hypothalamus pituitary adrenocortical to classify stress 
response for traumatic childhood experience. 12 HRV features, 
form time, frequency, Time, frequency, TF and wavelet were 
extracted then combined with other biomarkers, blood pressure, 
pulse rate, and salivary cortisol.  The biomarker combination 
represents two main body systems which are autonomic nervous 
system and hypothalamus pituitary adrenocortical axis. The 
classification was performed using support vector machine and the 
result proved that the combination between HRV and Salivary 
Cortisol demonstrated the highest performance with 80.0% 
accuracy, 83.3% sensitivity and 78.3% specificity. Finally, The 
fused vector was fed into the SVM model to develop the stress 
response index. This index could be used to predict the future 
health and therefore allow the individual to take more cautious 
about his/her health.  
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