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 As an emergent technology in Internet of Things (IoT), the ultimate target of fog computing 
is to provide a widely distributed computational resources and data repository closer to the 
network edge providing heterogeneous systems both in terms of software and hardware. 
The fog system must have the capability to deal with huge number of resources and users 
at the same time, such increased size sometimes presents the issue of performance 
degradation. Therefore, the fog should be able to support adaptability, scalability, and 
extensibility to avoid such degradation by adopting efficiently and effectively an optimal 
resource selection and allocation model. As many fog users have limited interest in, or 
knowledge of fog middleware issues, it follows that in a large fog environment the best 
approach would be to have an automated system for resource selection and allocation. Such 
an approach eliminates the need for user intervention. This paper proposes a fog resource 
selection service based on neural network to perform resource selection tasks by 
coordinating with the metascheduler. Five different selection algorithm were used to 
evaluate the prediction model for resource selection. In addition to introducing a history 
update and management algorithm to manage and control the storage of the history log 
records. 
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1. Introduction  

Fog and IoT systems are handling huge numbers of users, 
resources and tasks.  The fog and IoT environment are widely 
distributed with great diversity, therefore, it is expected that 
resource selection will be carried out by run time estimates. With 
the increase size of the fog and IoT and also with its wider 
acceptance by the ‘ordinary’ users, some form of automatic 
resource selection system is desirable. This resource selection 
system should have the capability to evaluate available resources 
on the basis of specific criteria as determined by the user. 

Because of its huge volume, the fog requires special services for 
its efficient utilization. With the expansion in the size of the fog 
and IoT, users are facing new challenges of resource selection to 
meet their computational requirements without getting into the fine 
details of available resources. Although, evolving very rapidly and 
becoming widely accepted, normal users of the fog and IoT find it 
very difficult to use middleware technologies. Middleware 
services provide a means to virtualize and aggregate resources. 
Fog resources are heterogeneous and very complex and require 
intelligent solutions for resource discovery and characterization. 

Therefore, in fog environment, the network and fog designers are 
facing a serious challenge to grant efficient utilization of such huge 
and widely distributed resources. Such increased size sometimes 
presents the issue of performance degradation. Therefore the fog 
system should be able to support adaptability, scalability, and 
extensibility to avoid such degradation. In order for the fog system 
to scale well with the increase size of resources and users, we 
propose a Fog Resources Selection Service (FResS) for fog 
systems based on neural network that will meet a user’s 
preferences in an optimal response time. The proposed strategy 
presents a predictive resources selection model  to predict and 
determine the optimal resource to fulfill the user’s task. The work 
introduced in [1] has been extended in this paper where the IoT 
framework is integrated within the FResS, in addition to testing 
and analyzing different selection algorithms. Moreover, a history 
update and management algorithm has been introduced to manage 
and control the storage of the history log records. This situation 
requires that the fog user should be provided with a helper service 
to facilitate resource selection. Resource selection can be done by 
taking into consideration either, cost, time, cost and time, 
performance, or any other constraint. This resource selection 
service can have its own resource selection algorithms and can also 
be deployed at varying distribution levels. Currently the majority 
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of metaschedulers are deployed at the cloud level which will be a 
bottleneck for larger fog and IoT systems. A higher distribution 

level will alleviate this bottleneck. The future fog and IoT is also 
intended to be more user focused. 

The advanced fog selection for task execution is enabled by the 
resource selector which uses the FResS to make a rum time 
prediction to select the best host/resource. Due to the resource-
limited fogs, the proposed model avoid incurring overhead when 
executing the task. In addition to decreasing the overall end-to-end 
(e2e) latency of the system. The proposed FResS model select 
resources based on criteria mentioned by the user, which provide 
QoS levels that meet the users’ expectations. Experimental 
performance evaluation shows an overall improvement in terms of 
bandwidth consumption and task execution times, in addition to 
maintaining adequate QoS levels. 

The reminder of the paper is organized as follows: Section 2 
presents background reading and related work. To provide a 
deeper understanding of this area, section 3 introduces the fog 
prediction and selection scheme. Section 4 presents the multi-level 
load balancing technique. Section 5 presents the evaluation results 
using workloads and simulations respectively. Finally, the paper 
concludes with section 6, focusing on the contribution along with 
future recommendation. 

2.  Related Work 

The emergence of cloud, fog and IoT approaches as a 
comparatively new approaches to distributed computing, which 
has become popular in the last few years. These approaches 
addresses the problem of organizing large scale computer 
societies, called Virtual Machine, which are able to use and share 
large sets of distributed resources (e.g. computational resources 
and data repositories) among them. With the emergence of several 
cloud and fog service providers, it is expected that system 
performance and run time estimates will be used for resource 
selection, which make organization to move from one service 
provider to another to meet their needs. Predictions are a very 
important step towards automatic resource management [1][2]. As 
the capabilities of IoT devices are limited, more attention is 
required when allocating tasks on these devices to assign the 
workload optimally on available resources. 

In [3] authors aims to enable parallel execution by splitting the 
allocated services on the available resources. To achieve low delay 
on service allocation the proposed model distributed/matched the 
desired services among the available Fog-to-Cloud (F2C) 
resources. The author in [4] proposed a resource allocation strategy 
for resource selection by adopting the Price Timed Petri Nets 
(PTPNs) which allow the user to select the resources 
autonomously based on the price cost and time cost to complete a 
task. In addition to sorting the resources into groups based on their 
credibility, then the users will be assigned to different groups 
because the credibility that they valuate the resources is different. 
The authors in [5] proposed an online algorithm for task allocation 
in mobile IoT networks by considering two scenarios to address 
the scenario of tasks information is unknown and incomplete local 
task information, respectively. The task allocation decision is done 
based on the current network status, energy consumption in order 
to satisfy the mobile device battery capacity constraint and to 
minimize the energy consumption of the current location. 

In  [6], the authors proposed an online task scheduling scheme 
called FairTS by adopting and combining the deep reinforcement 
learning (DRL) and dominant resource fairness (DRF) techniques. 
The proposed scheme views the agent’s policy, take the current 
state using neural network to learn from experience, and outputs 
the action selection probability vector. The agent observe the 
resource availability, pick a task, and decide its fog resource 
allocation based on a resource availability that meet the task 
completion deadline to achieve resource fairness among tasks. 

The author in [7] proposed offloading scheme, where the task 
data submitted by the user is uploaded to its nearby fog node, then 
the fog node will take a decision for offloading the task to its 
neighbor fog node or remote cloud to satisfy the delay deadline 
received from the end user. In [8] the authors used the machine 
learning as a prediction model to predict cloud processing resource 
consumption. The proposed model uses an artificial intelligence 
algorithm for future request prediction by dividing the incoming 
request into multiple consumption classes depending on their 
consumption amount, then the request is distributed among 
processing unites. For an incoming request, the adopted algorithm 
is used to predict the resource amount consumed to complete the 
task, a placement algorithm is used to allocate it to the best 
processing unit.  

Although there exists research investigating the resources 
selection and allocation issues in fog computing, however it is still 
premature. As mentioned earlier, this project resulted in the 
development of two novel components: a run time prediction 
model and a distributed architecture of a Fog Resource Selection 
Service (FResS), which provides a degree of autonomy in 
determining the optimal resources to execute a particular task. 

3. Fog Prediction and Selection Scheme 

In our paper [1] a novel approach has been introduced in fog 
computing, namely, a Fog to Fog (F2F) resource selection 
algorithm called FResS, that provide automatic resource selection 
system. This resource selection system have the capability to 
evaluate available resource on the basis of specific criteria as 
determined by the user. The idea was to develop a new technique 
which require no user input. This work resulted in a run time 
prediction model based on historical execution logs and a fog 
resource selection service. The main modules of the FResS 
framework are: Task Scheduler, Resource Selector, and History 
Analyzer. These modules perform different resource management 
functions, the most obvious of which is resource prediction and 
selection. All of these modules are discussed separately in the 
coming sections. 

A detailed architectural diagram of FResS is shown in Figure 
1 highlighting the fact that FResS works along with the 
metascheduler. The FResS architecture was developed by keeping 
in mind its distribution level, which can be either IoT level, or fog 
level. The recommended distribution level is the IoT level, if 
deployed at the IoT level, FResS stores historical data related to 
the single IoT, it makes the management of execution logs 
straightforward because the overall volume of data will be very 
small. It will also provide fast and accurate predictions, again 
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because of smaller and related data. If deployed at the fog level it 
can become a single point of failure and a performance bottleneck. 
Implementation details will be very much similar for the different 
levels of distribution. 

 architecture 

3.1. Task Scheduler Module 

This is the main component interacting with the fog 
middleware through a metascheduler. Its implementation depends 
on the underlying fog middleware. Depending on its distribution 
level, whether it is IoT level or fog level, the Task Scheduler 
Module can have different implementation details. At a minimum 
it provides interfaces between the metascheduler and the FResS 
components, but it can also act as a metascheduler in itself. For 
evaluation purposes a simplified Task Scheduler Module was 
implemented by removing all external constraints.  

The Task Scheduler sits between an IoT devise/user and the 
fog middleware. It provides interfaces to the IoT, the fog 
middleware, and other modules of the metascheduler. The 
sequence diagram shown in Figure 2 explains the sequence of 
events during a typical task submission process. The Task 
Scheduler Module and the metascheduler module coordinate with 
the lower layers of the fog to execute different tasks. Lower layers 
of the fog provide basic services i.e. data transfer, task submission, 
task management, and information services. Once a task is 
submitted by the user to the Task Scheduler, it will be connected 
to a preliminary fog based on users’ location, and then the Task 
Scheduler Module forwards it to the Resource Selector Module. 

The configuration plays a key role in selecting resources for 
each task and predicting its execution time. If the task selector 
returns more than one resource for a particular task, then an 
optimal resource will be selected by the Task Scheduler to fulfill 
users’ request based on utilization level, which allow the users’ 
preference to be considered while assigning the task to resource(s) 
which is more suitable for large scale domain such as fog 
computing. The progress of the tasks and resources will be 

constantly monitored by the proposed model, which take decisions 
based on that. The History Manager will receive the execution logs 
from the Task Scheduler after every execution, and subsequently 
predictions will be made for future tasks using these logs. The 
sequence diagram in Figure 2 shows the interaction among the 
different modules of FResS during a typical task submission 
process. 

FResS model 

3.2. Resource Selector Module 

The Resource Selector Module analyses the workload of the 
incoming task to provide automatic resource selection by using the 
run time predictions. The Resource Selector depending on the 
configuration, along with their run time predictions, will forward 
a list of selected resources to the Task Scheduler. The Task 
Scheduler Module returns the resource list to the metascheduler to 
complete task submission. The resource selection on the fog is a 
multi-step process. The first step tests the eligibility of the 
discovered resources against the essential QoS criteria, e.g. 
privacy, memory, cost, availability, and delay. The list of the 
selected resources should be capable of executing the current task 
if there is no deadline constraint. Step one is performed by the 
metascheduler on its own.  

In step two, the ability of resources to meet deadlines will be 
evaluated by evaluating run time predictions. For optimum task 
allocation, these predictions are then utilized by the metascheduler. 
To make optimum resource selections the metascheduler also 
considers additional constraints of user preferences, data locality, 
co-allocation, cost, workflow constraints, and advance reservation. 
These additional constraints are also evaluated by the 
metascheduler after receiving a ranked list of resources along with 
predictions from FResS. Predictions help the metascheduler to 
make a decision on the required duration of advance reservation. 
The co-allocation decision is facilitated with this predicted 
knowledge of expected run times. 

The Resource Selector Module receives its input from the Task 
Scheduler Module along with the currently available resource list. 
It forwards incoming tasks to the History Analyzer Module to 
generate run time predictions for the available resources. The 
History Analyzer Module then uses algorithm 6, discussed in the 
next section, to generate run time predictions. For the evaluation 
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of FResS an experimental strategy was devised in which five 
algorithms 1, 2, 3, 4, 5 were used by the Resource Selector Module 
for resource selection. These algorithms are named as history, 
static, random, history plus static, and history plus random. 

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

selected resource is one with the minimum run time prediction;

return selected resource;
Algorithm 1: Selecting resource using history 

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

selected resource is one with the highest mips rating;

return selected resource;
Algorithm 2: Selecting resource using static performance capability 

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

select a resource randomly from the available resource list;

return selected resource;
Algorithm 3: Random resource selection 

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

select 10 resources with the least run time predictions;

from these resources pick resource with highest mips rating;

return selected resource;

Algorithm 4: Selecting resource using history and mips rating 

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

select 10 resources with the least run time predictions;

from these resources pick any resource randomly;

return selected resource;

Algorithm 5: Selecting resource using history and random selection 

Selecting the fastest resource depending on its static number 
crunching capacity is a straightforward solution to the resource 
selection problem. It is approximately comparable to the Condor 
matchmaking technique [9]. It is mentioned above as static 
resource selection, which suffers from the problem that it does not 
have a feedback mechanism to inform the system about any 
anomaly. The history based resource selection on the other hand 
has a feedback mechanism to rectify any anomaly resulting from 
changed resource capability.  

The random resource selection results in an even distribution 
of tasks among candidate resources without considering the 
difference in their capabilities. On heterogeneous fog system, it is 
not a desired outcome where high power resources are required to 
get more tasks. The random resource selection also does not 
provide any estimates of expected execution time, leaving the user 
in a ‘wait and see’ situation. The historical resource selection is 
combined with last two algorithms, 4 and 5 to overcome the 
drawback of static and random resource selection. Another 
shortcoming of the historical resource selection is the uneven load 
distribution similar to the static resource selection. However, the 
presence of a feedback loop shown in Figure 4 reduces the severity 
of this problem. The performance of all these algorithms will be 
evaluated in detail in the simulation result section. Once similar 
tasks are found, run time predictions are generated for all resources 
in the list. The finished list is returned to the Resource Selector 
Module. 

3.3. History Analyzer Module 
The incoming task along with the list of available resources is 

forwarded to the History Analyzer Module to generate run time 
predictions by examining through the history execution logs to find 
similar tasks using algorithm 6, this process is conducted using 
Artificial Neural Networks (ANNs) [10]. Once similar tasks are 
found, run time predictions are generated for all resources in the 
list. The complete list is then returned to the Resource Selection 
Module. ANNs are suitable for training over hundreds or even 
thousands of passes of data sets[11]. The increased size of the fog 
and IoT systems brings new challenges of scalability and 
extensibility and the need for automated processing becomes clear 
therefore, accurate results can be achieved. The design of ANNs 
generally comprises three layers, input, middle (or “hidden”), and 
output layers [10].  The input layer is the starting point where the 
data enters the system. The input data are passed to the hidden 
layer for processing which is the intermediate processing unit, and 
then passes the new signal onto the output layer. The learning 
phase plays a key role in neural network for processing information 
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using the interconnection weights. The strength of the input data is 
measured by weights, therefore, the process of finding the best set 
of weights for the neural network is referred to as training or 
learning. In order to get accurate results, the weights are modified 
at the input layer by passing input values, and then the network's 
predictions will be measured to check how the predictions’ values 
are close to the training sets. In addition, the accuracy of the 
prediction results is compared to the actual system results as shown 
in the simulation result section 5, Figure 3 shows a single unit 
network. 

 
Figure 3: An Artificial Neuron Unit [12] 

An amount proportional will be changed to the difference 
between the desired output and the actual output to achieve weight 
adjustment [13].  The general mathematic definition [14] is as 
shown in (1) describes the relationship between the input and 
output mapping: 

                               𝑦𝑦(𝑥𝑥) = 𝑔𝑔(∑ (𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=0 )                           (1) 

the input of each neuron is represented by 𝑥𝑥 with (n+1) input 
dendrites (𝑥𝑥0….. 𝑥𝑥𝑛𝑛) and the axon 𝑦𝑦(𝑥𝑥) computes the output. In 
order to supply a node activation the weighted signals are 
initialized with (𝑤𝑤0….. 𝑤𝑤𝑛𝑛).  The activation function is the identity 
function and is represented by 𝑔𝑔 which computes the weighted 
sum of the inputs from other neurons and outputs it. The aim is to 
be able to produce the output within desired accuracy matching the 
input pattern [15]. 

After the historical execution logs are examined by the History 
Analyzer to generate estimates for the required resources by 
finding similar task with sufficient accuracy, once predictions are 
generated, the complete list will be forwarded to the Resource 
Selector to determine the optimal resources to execute the task. 
Algorithm 6 forms the core of FResS, which is used to generate 
rum time prediction for new tasks on the available resources.  

The process of identifying the resource id dependent on five 
parameters: delay, price, previous execution time, memory 
requested, and submission time. Workloads can be modelled at any 
level but it is found that modelling at a user level is more realistic, 
this is because users of fog networks tend to repeat same tasks 
using the same data [12] [16]. Therefore, the results are interesting 
since prediction of required resources of the new task will be made 
using past execution parameters. 

The proposed algorithm combines the static and random 
algorithms with the historical resource selection to overcome their 
disadvantages, e.g. in certain situations there is a possibility of 
selecting the same resource repeatedly by the Task Scheduler, 
creating an uneven load distribution. Consequently, the presence 

of the feedback loop as shown in Figure 4 overcome the severity 
of this problem.  

Data: user preferences and task log history

Input: available resource list

Input: new task submission description file

Result: run time prediction for the resource list

Start

While Taskset <> empty

do

process request for Task(s) ki;

if (Ki submitted by new user/device) then;

Resource Selector send available resources to Task Scheduler;

Task Scheduler send user preferences to Task Manager;

if (Task Manager found optimal resource(s));

send back optimal resource(s) to Task Scheduler;

execute ki on the optimal resource;

else if (Ki submitted by existing user/devise) then;

NN predict required resources for ki;

Send back predicted resource(s) to execute ki;

execute ki on the predicted resource;

else 

execute ki on the preliminary fog;

update Task Manager log history;

select next task;

end

end
Algorithm 6: Making predictions for run time 

FResS

History Feedback Loop

Output TaskInput Task

Figure 4: History as a feedback loop in the scheduling process 
On the other hand the history management algorithm 

(algorithm 7) works separately and is responsible for keeping the 
history up to date. It means that it stores new history records after 
successful executions and removes older history records which is 
updated continuously after every execution and subsequently used 
by ANN to make predictions for future tasks. Subsequently, the 
increasing number of the historical executions records will 
increase the accuracy of predictions [17][18]. 

3.4. History Manager Module 
The History Manager is interfaced with the Task Scheduler and 

history database, it is responsible for keeping the history data up to 
date. History updates are performed by using algorithm 7. The 
History Manager Module controls the storage and removal of 
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execution records as required. Algorithm 7 performs history 
management by storing completed tasks data in the database as 
soon as they are received. After this step, a query is sent to the 
database to retrieve the size of the node related to the new task, just 
stored. If the size of this node is less than, or equal to, the maximum 
history limit then no action is taken. Otherwise, if the size of this 
node is larger than the maximum, then the oldest member of this 
node is deleted. This module gathers different QoS data e.g. delay, 
cost, previous execution time and memory requested etc. 

Data: workload history

Input: execution log of completed job

Input: task submission description file

Result: history updated

initialization;

store record to the history database;

if size of this cluster is more then the size limit then

     delete the oldest record;

end  
Algorithm 7: Update history 

3.5. Complexity of Algorithms 
Algorithms 6 and 7, presented above, form the core of FResS. 

The predictions algorithm (algorithm 6) is used to generate run 
time predictions for new tasks on the available resources. On the 
other hand the history management algorithm (algorithm 7) works 
separately and is responsible for keeping the history up to date. It 
means that it stores new history record after successful executions 
and removes older history records. 

The complexity of predictions for algorithm 6 is of O(n) where 
n is the size of available resources. On the other hand, complexity 
for history management algorithm 7 is of the O(1). These 
algorithms will become part of the task submission service. The 
history management algorithm 7 can be executed offline, after the 
task is finished, so it’s speed is not very critical to the overall 
execution time because it is not contributing to the overall delay. 
Algorithm 6, on the other hand, will contribute to the total delay in 
the execution time. 

3.6. Fog Workflows and FResS 
Predictions are utilized by the task management system to 

select resources to execute incoming workflows consisting of 
many tasks. These workflows can be very simple, consisting of 
only one task, as shown in Figure 5, or can be very complex, 
consisting of many interdependent tasks, as shown in Figure 6. 
These tasks can have dependencies which restrict them to execute 
in a certain sequential order or execute concurrently. Predictions 
for each task within a workflow are generated separately. 

  
Figure 5: Workflow consisting of only single task 

Quality of Service (QoS) refers to the level of performance and 
service that a given user will experience at a certain point in time, 
when starting a certain operation on a certain instance of a service. 
QoS support refers to the possibility of a certain level of required 
performance being available from a certain resource or not. QoS is 
very important to fog applications which are run collaboratively in 
real time. QoS requirements can be mentioned in terms of cost, 
delay, scalability, fault tolerance, etc. 

Normally QoS requirements for these workflows are applied to 
the entire workflow. To achieve the best timing performance it is 
recommended that the workflow is partitioned in such a way that 
parallel activities finish at the same time. Because of the global 
nature of the fog, locality will also play its role to achieve best QoS 
results. Sometimes if the user wants to see intermediate results, 
then QoS can also be mentioned at the task level. Achieving QoS 
either at task level or workflow level boils down to the task or 
activity level. To achieve QoS at the workflow level requires that 
tasks are managed properly. Incorrect management of these tasks 
can damage QoS at a very high level. 

The proposed FResS model is responsible for the overall 
execution of workflows. These executions, in certain situations, 
may also require advance reservation and co-allocation. The 
FResS performs its task comparatively easily when accurate run 
time predictions are available for tasks within a certain workload. 
Advance reservation is a technique in which resources are reserved 
for a certain task to start at a certain time and execute for certain 
duration. On the fog, advance reservation will be expensive so its 
accuracy is of prime importance. With the predictions already 
available, the FResS can reserve resources for accurate time 
duration, resulting in an efficient usage of resources. 

4. A Multi-Level Load Balancing technique in Fog 
Computing 

Internet traffic growing exponentially and congested with 
thousands and millions of devices [20], quality services should be 
provided with higher availability by the service provider. With the 
increase number of services in fog and IoT computing the network 
load is expected to increase which will create a new challenge to 
the researchers and network designer. The aim is to achieve better 
performance in terms of the total time to execute the tasks load 
balancing to accomplish better QoS, in addition to increasing the 
number of task acceptance. The fog computing attempts to 
integrate multiple distributed and heterogeneous resources, which 
are normally under separate administrative domains resulting in 
under-utilization or over-utilization. A multi-level load balancing 
approach has been proposed to provide better load balance. As 
mentioned above in algorithm 6 user preferences will be 
considered for the incoming task. Therefore, satisfying the below 
metrics and parameters optimally will led to achieve better 
performance of the fog system. 
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4.1. Metrics 
 Cost: IoT and fog users are interested in the best performance at 

the lowest cost, but on the other hand the resource owners are 
interested in the overall system throughput. Therefore, the 
efficient algorithm should consider the cost parameters by 
scheduling the incoming task to a resource based on the cost. 

 Response time: is the total execution time taken by the task to be 
completed, it starts from submitting the task by the user or 
device and end with receiving the completed task from the  
service provider. A smaller response time is always desirable. 

 Delay: Researchers and service providers stress on the 
importance of guaranteeing acceptable delay, since  this is an 
important metric in terms of QoS, the proposed model adopted 
the tenant maximum acceptable delay (TMAD) [21]. TMAD 
sorts the incoming tasks to a higher priority task or lower priority 
by considering different prioritization of users based on their 
important for the system according to the subscription plan each 
user pay for. 

 Scalability: bottlenecks in fog computing system arises from the 
huge number of users, resources, and services, therefore to be 
able to support scalability, and extensibility, this is an important 
metric which determine if the system is able to achieve better 
load balancing with a restricted number of resources. 

 Fault Tolerant: the larger the system, the more frequent failures 
result, IoT and fog systems should provide the ability to perform 
correctly in case of failure by having a backup 

5. Simulation Results 

The performance of the proposed solution is evaluated in this 
section by carrying out some experiments using CloudSim [21], 
selected for its flexibility and wider acceptance by the cloud and 
fog community. The proposed model performance was evaluated 
by comparing it with existing scheme and highlighting the 
differences and advancement. IoT devices were simulated as 
geographically distributed nodes. The fog network represented as 
a  graph and storage sites were modeled as a set of nodes. A 
computing power, storage capacity, narrow and broad bandwidth, 
and memory have been configured to all nodes to be close to 
reality. The number of tasks, and capacity of storage nodes were 
varied to show the complexity of the proposed model and simulate 
different scenarios. The simulator defined 2 cloud sites, 5 fog sites, 
and 150 IoT devices, 5000 task requests, and 500 to 2000 mb/sec 
the connectivity of the bandwidth. 

Scheduling with predictions helps the scheduler to select the 
best resource(s) for a certain task and it can be compared with two 
other techniques i.e. random and static. In a random selection the 
scheduler selects any resource from the qualifying resources. 
Qualifying resources are those which meet the minimum 
requirement criteria for a certain task. On the other hand static 
selection is one in which the resource with the highest number 
crunching speed is picked. In a real world scenario, number 
crunching speed can be based on any popular benchmark. 
Experimentation was conducted with CloudSim, which defines 
resource capability in term of Million Instructions Per Second 
(MIPS), hence in the static resource selection, resource with the 
highest MIPS rating will be selected from the qualifying resources. 

In a deadline based scheduling scheme the function of the 
scheduler is to meet a deadline specified by the user. It is quite 

possible that more than one resource can meet this deadline, 
established by comparing the deadline with the predicted time. In 
such cases the scheduler can select the fastest resource, which is 
referred to as history based selection. It is expected that history 
based resource selection will create an uneven load distribution on 
the fog system. There are two other options: (1) select the fastest 
resource from the selected fastest resources, (2) select any resource 
randomly from the qualifying list. These options were given the 
name of history plus static and history plus random. 

As mentioned in section 3.2, it can be seen that in all, there are 
five scheduling algorithms, i.e. History, Random, Static, History 
plus Random, and History plus Static. These algorithms were 
evaluated using simulation. There are two aspects of the 
performance of the scheduling algorithms: (1) the execution of 
tasks within a minimum possible time, (2) the distribution of loads 
evenly among the available resources. The first experiment was 
designed to compare the performance of these algorithms in terms 
of the total execution time to complete the same tasks. In this case 
the same tasks were submitted to the fog by using each of the five 
algorithms, one by one, and the total time to complete these tasks 
was recorded. This experiment was repeated for the tasks created 
by all workloads, one by one. Results were plotted in the form of 
bar graphs for each workload based tasks, separately, as shown in 
Figure 7. 

Figure.7 Comparison of total CPU time to execute 5000 tasks for different 
resource selection algorithms 

Different scheduling algorithms were used to evaluate the 
performance of the predictor i.e. history, static, random, history 
plus static and history plus random. It was seen that overall 
execution time was minimum for the static and history based 
scheduler but it also created issues of load imbalance. History plus 
random and history plus static provided better load balance, but 
took larger overall time to finish the same tasks. It was concluded 
that selective task scheduling will create a load imbalance but a 
history based solution will operate to fix this imbalance because of 
the presence of a feedback loop. Random and static schedulers are 
missing this feedback loop, and hence lack the self-healing 
property of history based algorithms. Overall performance of 
FResS was found to be better when using the historical technique, 
or any hybrid technique that incorporated the historical technique 

The accuracy of predictions was also compared with user 
provided run time estimates. Users can provide run time estimates 
while submitting tasks to the fog or IoT device. User run time 
estimates are recorded by all workloads. Given that predictions are 
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made, the next natural step is to determine the accuracy of these 
predictions. The accuracy of predictions is calculated by using (3) 
by the Performance Evaluator.  

𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑦𝑦 = �
1                   if     𝑃𝑃𝑅𝑅𝑅𝑅 =  𝑅𝑅𝑇𝑇
𝑃𝑃𝑅𝑅𝑅𝑅/𝑅𝑅𝑅𝑅       if     𝑃𝑃𝑅𝑅𝑅𝑅 <  𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅/𝑃𝑃𝑅𝑅𝑅𝑅        if     𝑃𝑃𝑅𝑅𝑅𝑅  > 𝑅𝑅𝑅𝑅

                  (3) 

Where, 𝑃𝑃𝑅𝑅𝑇𝑇 is predicted run time and 𝑅𝑅𝑇𝑇 is actual run time. 

The accuracy of predictions achieved by both the user and the 
system is presented in Table 1. 

Table 1: Comparison of user’s prediction accuracy and system’s prediction 
accuracy 

# 
No. 
of 
tas
ks 

Averag
e User 

% 
Accura

cy 

Averag
e 

System 
% 

Accura
cy 

System 
90% 

Confide
nce 

Interval 

System 
95% 

Confide
nce 

Interval 

User 
90% 

Confide
nce 

Interval 

User 
95% 

Confide
nce 

Interval 

100
0 

5.9 73.0 81.4 83.6 2.0 2.0 

200
0 

9.8 79.8 84.7 87.9 8 10 

300
0 

15.3 86.9 88.8 90.7 14.7 16.5 

400
0 

20.0 90.2 91.9 93.3 20.8 23.4 

500
0 

27.1 95.0 96.2 96.9 35.0 39.0 

 

From the results presented in Table 1, it can be seen that the 
smallest accuracy of 73% was achieved for the workloads of 1000 
tasks. The largest accuracy of 95% was achieved for the workloads 
of 5000 tasks. The remaining workloads have also shown very high 
accuracy. The accuracy of predictions was also compared with 
user provided run time estimates while submitting tasks to the fog. 
User run time estimates are recorded, and as shown in the results  
in Table 1, the accuracy of user run time estimates lies between 
5.9% and 27.1%. It can be concluded therefore that user accuracy 
is very poor when compared with the achieved accuracy from the 
predictor. 

Another metric of interest, in the fog context, is the number of 
tasks falling within a certain confidence interval. This interval is 
defined by the Chebyshevs inequality theorem [22] and can be 
calculated when a sample’s mean is being used as a predictor. On 
the fog where deadline based scheduling is expected, this 
confidence interval gives a better idea to the user about the 
expected task completion time. Chebyshevs’ theorem states that 
the portion of data that lies within k standard deviations to the 
either side of the mean is at least 1 −  1

𝑘𝑘2
 of any data set [22] [23] 

and it can be expressed as (3): 

  𝑐𝑐 =  �1 −  1
𝑘𝑘2
� ∗ 100                             (4) 

Where c is referred to as the confidence interval and k is the 
number of standard deviations. The Performance Evaluator 
calculates the predicted tasks falling within the 90% confidence 
interval and 95% confidence interval. The results of both of these 

calculations are shown in Table 1. The predictor performed better 
again, since 81.4% to 96.2% tasks were completed within a 90% 
confidence interval and 83.6% to 96.9% tasks were completed 
within a 95% confidence interval. On the other hand, for user run 
time estimates, only 2.0% to 35.0% tasks were completed within a 
90% confidence interval and 2.0% to 39.0% tasks were completed 
within a 95% confidence interval. 

Large number of tasks were executed, first using the existing 
scheme then the prediction FResS model. The prediction model 
were generated using queries logs of large number of tasks from 
CloudSim to evaluate the performance of the proposed model, 
resource predictions from ANN were generated and used to 
execute the incoming tasks.  The time taken by FResS and the 
current scheme to execute tasks was measured.  

The stages of executing tasks on the fog are explained in the 
below section, which start with submitting the task and end with 
the retrieving results after completion. These stages comprise four 
major components and are given below: 

1. Stage in: transferring the task(s) to executable resource. 
2. Waiting time: waiting in the queue for its execution turn. 
3. Run time: the task is assigned for execution, which marks the 

start of the run time.  
4. Stage out: transferring the completed task(s) to the originating 

node. 

Stage in also called stage one, starts with transferring the task 
from its originating node to the executing node. Once the 
destination node receives all the required data, then the task is 
forwarded to the local task manager, which in turns puts it in the 
waiting queue. The queue wait time represent the time spent in the 
queue for its execution turn, it depend on the load of the executing 
node. The run time in stage three marks the start of task execution. 
In stage four after execution is completed, the task is returned to 
the originating node which is called the stage out phase. The total 
turnaround time is given in (2). 

                              𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑆𝑆𝑆𝑆𝑅𝑅 +  𝑇𝑇𝑄𝑄𝑄𝑄𝑅𝑅 +  𝑇𝑇𝑅𝑅𝑅𝑅 + 𝑇𝑇𝑆𝑆𝑆𝑆𝑅𝑅                 (2) 

where: 

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅  = Total Run Time 
𝑇𝑇𝑆𝑆𝑆𝑆𝑅𝑅  = Stage In Time 
𝑇𝑇𝑄𝑄𝑄𝑄𝑅𝑅  = Queue Wait Time 
𝑇𝑇𝑅𝑅𝑅𝑅  = Run Time 
𝑇𝑇𝑆𝑆𝑆𝑆𝑅𝑅  = Stage Out Time 

To evaluate FResS a number of experiments we designed. The 
purpose of these experiments was to evaluate overall time 
performance by varying the number of tasks. The tasks response 
time outlined in Figure 8 show that the FResS model outperform 
the existing scheme, and the results were promising where the 
tasks response time was decreased by 33%, as shown in Table 2 
showing significant time savings. 

Since the fog users have a limited network bandwidth to 
communicate among the system, such a high communication cost 
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is not acceptable. In such environment, nodes within a region is 
provided with broader bandwidth whereas nodes across region is 
provided with narrow bandwidth. Since many nodes from different 
regions try to connect to each other through a narrow bandwidth, 
causing congested network traffic which in turn will affect the task 
execution time which is an important factor, therefore, carrying out 
some experiments by varying and expanding the network 
bandwidths was important in order to simulate the real world 
environment, the bandwidth between sites was varied in a set of 
experiments to evaluate the performance of both models. 

 
Figure 8: Comparative analysis of Response Time with no of tasks 

Table 2. Simulation results: Task Turnaround Time using FResS and Existing 
scheme 

# No. of 
tasks 

Task Turnaround Time using 
existing scheme (Sec) 

Task Turnaround Time 
using FResS (Sec) 

Difference 
(Sec) 

1000 14540 9920 4620 

2000 26703 19710 6993 

3000 39243 28608 10635 

4000 53600 38214 15386 

5000 67020 47512 19508 

Total 201106 143964 57142 

Average 28792 40221 33% 

 

Figure 9: Total task time with varying bandwidth 

Figure 9 shows the result of sets of experiments that were run 
on both narrow and broad bandwidth, as shown in the results, the 
FResS outperforms the existing scheme, even though setting 

broader bandwidth decreases the differences of task execution 
time, however, the difference is still significant in all scenarios. 
Consequently, it can be concluded that the cost and resource 
utilization are effectively considered in the proposed FResS model 
and outperform the existing scheme. 

6. Conclusion and Future Work 

to overcome the drawback of the cloud computing, the fog 
computing has emerged with the concept of sharing computational 
resources and information services by offloading the resources to 
the edge network to be closer to the devices that originate the 
requests rather than transporting the tasks to the distant cloud, thus 
reducing communication overhead, bandwidth consumption and 
latency. However, the complexity and dynamic nature of the fog 
systems demand a more coordination platform to handle such a 
large-scale numbers of resources, users and tasks requests. 
Therefore, the existing approaches, however, often exhibit a high 
cost in terms of response time and bandwidth consumption. These 
shortcomings were overcome by presenting a fully distributed 
FResS, which stores historical data related to a single user, which 
simplifies tasks management.  

This paper proposed an extension to the resource selection 
service FResS based on neural network. The proposed prediction 
model minimize the total overhead of the task turnaround time of 
the incoming task by  predicting and informing the system the 
required resources, and the database are updated constantly by 
storing the result of NN tool. The proposed prediction model is 
simple and shows comparatively lower overheads and provide 
high possible accuracy.  

An evaluation strategy was devised to test five different 
algorithm used by the Resource Selector Module to provide a 
detailed performance analysis for each one. A History update 
algorithm was introduced to manage the history execution logs, as 
the size in IoT and fog environments are very limited. In addition, 
the experiments showed that the proposed prediction model 
distribute the load based on the user preferences. Another major 
strength of the proposed model is its effective resources utilization 
achieved by decreasing overall cost, response time, and bandwidth 
usage. In the future work, more metrics will be added to improve 
the load balancing, in addition to distributing the proposed model 
on the cloud layer. Moreover, more experiments will be carried out 
to define the size of the history records. 
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