

www.astesj.com 408

Resource Selection Service Based on Neural Network in Fog Environment

Nour Mostafa*

College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 14 January, 2020
Accepted: 18 February, 2020
Online: 25 February, 2020

 As an emergent technology in Internet of Things (IoT), the ultimate target of fog computing
is to provide a widely distributed computational resources and data repository closer to the
network edge providing heterogeneous systems both in terms of software and hardware.
The fog system must have the capability to deal with huge number of resources and users
at the same time, such increased size sometimes presents the issue of performance
degradation. Therefore, the fog should be able to support adaptability, scalability, and
extensibility to avoid such degradation by adopting efficiently and effectively an optimal
resource selection and allocation model. As many fog users have limited interest in, or
knowledge of fog middleware issues, it follows that in a large fog environment the best
approach would be to have an automated system for resource selection and allocation. Such
an approach eliminates the need for user intervention. This paper proposes a fog resource
selection service based on neural network to perform resource selection tasks by
coordinating with the metascheduler. Five different selection algorithm were used to
evaluate the prediction model for resource selection. In addition to introducing a history
update and management algorithm to manage and control the storage of the history log
records.

Keywords:
Cloud
Fog
Fog-to-Cloud
Fog-to-Fog
IoT
e2e delay

1. Introduction

Fog and IoT systems are handling huge numbers of users,
resources and tasks. The fog and IoT environment are widely
distributed with great diversity, therefore, it is expected that
resource selection will be carried out by run time estimates. With
the increase size of the fog and IoT and also with its wider
acceptance by the ‘ordinary’ users, some form of automatic
resource selection system is desirable. This resource selection
system should have the capability to evaluate available resources
on the basis of specific criteria as determined by the user.

Because of its huge volume, the fog requires special services for
its efficient utilization. With the expansion in the size of the fog
and IoT, users are facing new challenges of resource selection to
meet their computational requirements without getting into the fine
details of available resources. Although, evolving very rapidly and
becoming widely accepted, normal users of the fog and IoT find it
very difficult to use middleware technologies. Middleware
services provide a means to virtualize and aggregate resources.
Fog resources are heterogeneous and very complex and require
intelligent solutions for resource discovery and characterization.

Therefore, in fog environment, the network and fog designers are
facing a serious challenge to grant efficient utilization of such huge
and widely distributed resources. Such increased size sometimes
presents the issue of performance degradation. Therefore the fog
system should be able to support adaptability, scalability, and
extensibility to avoid such degradation. In order for the fog system
to scale well with the increase size of resources and users, we
propose a Fog Resources Selection Service (FResS) for fog
systems based on neural network that will meet a user’s
preferences in an optimal response time. The proposed strategy
presents a predictive resources selection model to predict and
determine the optimal resource to fulfill the user’s task. The work
introduced in [1] has been extended in this paper where the IoT
framework is integrated within the FResS, in addition to testing
and analyzing different selection algorithms. Moreover, a history
update and management algorithm has been introduced to manage
and control the storage of the history log records. This situation
requires that the fog user should be provided with a helper service
to facilitate resource selection. Resource selection can be done by
taking into consideration either, cost, time, cost and time,
performance, or any other constraint. This resource selection
service can have its own resource selection algorithms and can also
be deployed at varying distribution levels. Currently the majority

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Nour Moustafa, nour.moustafa@aum.edu.kw

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj050152

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050152

N. Moustafa. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com 409

of metaschedulers are deployed at the cloud level which will be a
bottleneck for larger fog and IoT systems. A higher distribution

level will alleviate this bottleneck. The future fog and IoT is also
intended to be more user focused.

The advanced fog selection for task execution is enabled by the
resource selector which uses the FResS to make a rum time
prediction to select the best host/resource. Due to the resource-
limited fogs, the proposed model avoid incurring overhead when
executing the task. In addition to decreasing the overall end-to-end
(e2e) latency of the system. The proposed FResS model select
resources based on criteria mentioned by the user, which provide
QoS levels that meet the users’ expectations. Experimental
performance evaluation shows an overall improvement in terms of
bandwidth consumption and task execution times, in addition to
maintaining adequate QoS levels.

The reminder of the paper is organized as follows: Section 2
presents background reading and related work. To provide a
deeper understanding of this area, section 3 introduces the fog
prediction and selection scheme. Section 4 presents the multi-level
load balancing technique. Section 5 presents the evaluation results
using workloads and simulations respectively. Finally, the paper
concludes with section 6, focusing on the contribution along with
future recommendation.

2. Related Work

The emergence of cloud, fog and IoT approaches as a
comparatively new approaches to distributed computing, which
has become popular in the last few years. These approaches
addresses the problem of organizing large scale computer
societies, called Virtual Machine, which are able to use and share
large sets of distributed resources (e.g. computational resources
and data repositories) among them. With the emergence of several
cloud and fog service providers, it is expected that system
performance and run time estimates will be used for resource
selection, which make organization to move from one service
provider to another to meet their needs. Predictions are a very
important step towards automatic resource management [1][2]. As
the capabilities of IoT devices are limited, more attention is
required when allocating tasks on these devices to assign the
workload optimally on available resources.

In [3] authors aims to enable parallel execution by splitting the
allocated services on the available resources. To achieve low delay
on service allocation the proposed model distributed/matched the
desired services among the available Fog-to-Cloud (F2C)
resources. The author in [4] proposed a resource allocation strategy
for resource selection by adopting the Price Timed Petri Nets
(PTPNs) which allow the user to select the resources
autonomously based on the price cost and time cost to complete a
task. In addition to sorting the resources into groups based on their
credibility, then the users will be assigned to different groups
because the credibility that they valuate the resources is different.
The authors in [5] proposed an online algorithm for task allocation
in mobile IoT networks by considering two scenarios to address
the scenario of tasks information is unknown and incomplete local
task information, respectively. The task allocation decision is done
based on the current network status, energy consumption in order
to satisfy the mobile device battery capacity constraint and to
minimize the energy consumption of the current location.

In [6], the authors proposed an online task scheduling scheme
called FairTS by adopting and combining the deep reinforcement
learning (DRL) and dominant resource fairness (DRF) techniques.
The proposed scheme views the agent’s policy, take the current
state using neural network to learn from experience, and outputs
the action selection probability vector. The agent observe the
resource availability, pick a task, and decide its fog resource
allocation based on a resource availability that meet the task
completion deadline to achieve resource fairness among tasks.

The author in [7] proposed offloading scheme, where the task
data submitted by the user is uploaded to its nearby fog node, then
the fog node will take a decision for offloading the task to its
neighbor fog node or remote cloud to satisfy the delay deadline
received from the end user. In [8] the authors used the machine
learning as a prediction model to predict cloud processing resource
consumption. The proposed model uses an artificial intelligence
algorithm for future request prediction by dividing the incoming
request into multiple consumption classes depending on their
consumption amount, then the request is distributed among
processing unites. For an incoming request, the adopted algorithm
is used to predict the resource amount consumed to complete the
task, a placement algorithm is used to allocate it to the best
processing unit.

Although there exists research investigating the resources
selection and allocation issues in fog computing, however it is still
premature. As mentioned earlier, this project resulted in the
development of two novel components: a run time prediction
model and a distributed architecture of a Fog Resource Selection
Service (FResS), which provides a degree of autonomy in
determining the optimal resources to execute a particular task.

3. Fog Prediction and Selection Scheme

In our paper [1] a novel approach has been introduced in fog
computing, namely, a Fog to Fog (F2F) resource selection
algorithm called FResS, that provide automatic resource selection
system. This resource selection system have the capability to
evaluate available resource on the basis of specific criteria as
determined by the user. The idea was to develop a new technique
which require no user input. This work resulted in a run time
prediction model based on historical execution logs and a fog
resource selection service. The main modules of the FResS
framework are: Task Scheduler, Resource Selector, and History
Analyzer. These modules perform different resource management
functions, the most obvious of which is resource prediction and
selection. All of these modules are discussed separately in the
coming sections.

A detailed architectural diagram of FResS is shown in Figure
1 highlighting the fact that FResS works along with the
metascheduler. The FResS architecture was developed by keeping
in mind its distribution level, which can be either IoT level, or fog
level. The recommended distribution level is the IoT level, if
deployed at the IoT level, FResS stores historical data related to
the single IoT, it makes the management of execution logs
straightforward because the overall volume of data will be very
small. It will also provide fast and accurate predictions, again

http://www.astesj.com/

N. Moustafa. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com 410

because of smaller and related data. If deployed at the fog level it
can become a single point of failure and a performance bottleneck.
Implementation details will be very much similar for the different
levels of distribution.

 architecture

3.1. Task Scheduler Module

This is the main component interacting with the fog
middleware through a metascheduler. Its implementation depends
on the underlying fog middleware. Depending on its distribution
level, whether it is IoT level or fog level, the Task Scheduler
Module can have different implementation details. At a minimum
it provides interfaces between the metascheduler and the FResS
components, but it can also act as a metascheduler in itself. For
evaluation purposes a simplified Task Scheduler Module was
implemented by removing all external constraints.

The Task Scheduler sits between an IoT devise/user and the
fog middleware. It provides interfaces to the IoT, the fog
middleware, and other modules of the metascheduler. The
sequence diagram shown in Figure 2 explains the sequence of
events during a typical task submission process. The Task
Scheduler Module and the metascheduler module coordinate with
the lower layers of the fog to execute different tasks. Lower layers
of the fog provide basic services i.e. data transfer, task submission,
task management, and information services. Once a task is
submitted by the user to the Task Scheduler, it will be connected
to a preliminary fog based on users’ location, and then the Task
Scheduler Module forwards it to the Resource Selector Module.

The configuration plays a key role in selecting resources for
each task and predicting its execution time. If the task selector
returns more than one resource for a particular task, then an
optimal resource will be selected by the Task Scheduler to fulfill
users’ request based on utilization level, which allow the users’
preference to be considered while assigning the task to resource(s)
which is more suitable for large scale domain such as fog
computing. The progress of the tasks and resources will be

constantly monitored by the proposed model, which take decisions
based on that. The History Manager will receive the execution logs
from the Task Scheduler after every execution, and subsequently
predictions will be made for future tasks using these logs. The
sequence diagram in Figure 2 shows the interaction among the
different modules of FResS during a typical task submission
process.

FResS model

3.2. Resource Selector Module

The Resource Selector Module analyses the workload of the
incoming task to provide automatic resource selection by using the
run time predictions. The Resource Selector depending on the
configuration, along with their run time predictions, will forward
a list of selected resources to the Task Scheduler. The Task
Scheduler Module returns the resource list to the metascheduler to
complete task submission. The resource selection on the fog is a
multi-step process. The first step tests the eligibility of the
discovered resources against the essential QoS criteria, e.g.
privacy, memory, cost, availability, and delay. The list of the
selected resources should be capable of executing the current task
if there is no deadline constraint. Step one is performed by the
metascheduler on its own.

In step two, the ability of resources to meet deadlines will be
evaluated by evaluating run time predictions. For optimum task
allocation, these predictions are then utilized by the metascheduler.
To make optimum resource selections the metascheduler also
considers additional constraints of user preferences, data locality,
co-allocation, cost, workflow constraints, and advance reservation.
These additional constraints are also evaluated by the
metascheduler after receiving a ranked list of resources along with
predictions from FResS. Predictions help the metascheduler to
make a decision on the required duration of advance reservation.
The co-allocation decision is facilitated with this predicted
knowledge of expected run times.

The Resource Selector Module receives its input from the Task
Scheduler Module along with the currently available resource list.
It forwards incoming tasks to the History Analyzer Module to
generate run time predictions for the available resources. The
History Analyzer Module then uses algorithm 6, discussed in the
next section, to generate run time predictions. For the evaluation

http://www.astesj.com/

N. Moustafa. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com 411

of FResS an experimental strategy was devised in which five
algorithms 1, 2, 3, 4, 5 were used by the Resource Selector Module
for resource selection. These algorithms are named as history,
static, random, history plus static, and history plus random.

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

selected resource is one with the minimum run time prediction;

return selected resource;
Algorithm 1: Selecting resource using history

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

selected resource is one with the highest mips rating;

return selected resource;
Algorithm 2: Selecting resource using static performance capability

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

select a resource randomly from the available resource list;

return selected resource;
Algorithm 3: Random resource selection

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

select 10 resources with the least run time predictions;

from these resources pick resource with highest mips rating;

return selected resource;

Algorithm 4: Selecting resource using history and mips rating

Data: workload history

Input: available resource list

Input: task submission description file

Result: selected resource

initialization;

getPredictions(new task submission description file, available resources);

select 10 resources with the least run time predictions;

from these resources pick any resource randomly;

return selected resource;

Algorithm 5: Selecting resource using history and random selection

Selecting the fastest resource depending on its static number
crunching capacity is a straightforward solution to the resource
selection problem. It is approximately comparable to the Condor
matchmaking technique [9]. It is mentioned above as static
resource selection, which suffers from the problem that it does not
have a feedback mechanism to inform the system about any
anomaly. The history based resource selection on the other hand
has a feedback mechanism to rectify any anomaly resulting from
changed resource capability.

The random resource selection results in an even distribution
of tasks among candidate resources without considering the
difference in their capabilities. On heterogeneous fog system, it is
not a desired outcome where high power resources are required to
get more tasks. The random resource selection also does not
provide any estimates of expected execution time, leaving the user
in a ‘wait and see’ situation. The historical resource selection is
combined with last two algorithms, 4 and 5 to overcome the
drawback of static and random resource selection. Another
shortcoming of the historical resource selection is the uneven load
distribution similar to the static resource selection. However, the
presence of a feedback loop shown in Figure 4 reduces the severity
of this problem. The performance of all these algorithms will be
evaluated in detail in the simulation result section. Once similar
tasks are found, run time predictions are generated for all resources
in the list. The finished list is returned to the Resource Selector
Module.

3.3. History Analyzer Module
The incoming task along with the list of available resources is

forwarded to the History Analyzer Module to generate run time
predictions by examining through the history execution logs to find
similar tasks using algorithm 6, this process is conducted using
Artificial Neural Networks (ANNs) [10]. Once similar tasks are
found, run time predictions are generated for all resources in the
list. The complete list is then returned to the Resource Selection
Module. ANNs are suitable for training over hundreds or even
thousands of passes of data sets[11]. The increased size of the fog
and IoT systems brings new challenges of scalability and
extensibility and the need for automated processing becomes clear
therefore, accurate results can be achieved. The design of ANNs
generally comprises three layers, input, middle (or “hidden”), and
output layers [10]. The input layer is the starting point where the
data enters the system. The input data are passed to the hidden
layer for processing which is the intermediate processing unit, and
then passes the new signal onto the output layer. The learning
phase plays a key role in neural network for processing information

http://www.astesj.com/

N. Moustafa. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com 412

using the interconnection weights. The strength of the input data is
measured by weights, therefore, the process of finding the best set
of weights for the neural network is referred to as training or
learning. In order to get accurate results, the weights are modified
at the input layer by passing input values, and then the network's
predictions will be measured to check how the predictions’ values
are close to the training sets. In addition, the accuracy of the
prediction results is compared to the actual system results as shown
in the simulation result section 5, Figure 3 shows a single unit
network.

Figure 3: An Artificial Neuron Unit [12]

An amount proportional will be changed to the difference
between the desired output and the actual output to achieve weight
adjustment [13]. The general mathematic definition [14] is as
shown in (1) describes the relationship between the input and
output mapping:

 𝑦𝑦(𝑥𝑥) = 𝑔𝑔(∑ (𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=0) (1)

the input of each neuron is represented by 𝑥𝑥 with (n+1) input
dendrites (𝑥𝑥0….. 𝑥𝑥𝑛𝑛) and the axon 𝑦𝑦(𝑥𝑥) computes the output. In
order to supply a node activation the weighted signals are
initialized with (𝑤𝑤0….. 𝑤𝑤𝑛𝑛). The activation function is the identity
function and is represented by 𝑔𝑔 which computes the weighted
sum of the inputs from other neurons and outputs it. The aim is to
be able to produce the output within desired accuracy matching the
input pattern [15].

After the historical execution logs are examined by the History
Analyzer to generate estimates for the required resources by
finding similar task with sufficient accuracy, once predictions are
generated, the complete list will be forwarded to the Resource
Selector to determine the optimal resources to execute the task.
Algorithm 6 forms the core of FResS, which is used to generate
rum time prediction for new tasks on the available resources.

The process of identifying the resource id dependent on five
parameters: delay, price, previous execution time, memory
requested, and submission time. Workloads can be modelled at any
level but it is found that modelling at a user level is more realistic,
this is because users of fog networks tend to repeat same tasks
using the same data [12] [16]. Therefore, the results are interesting
since prediction of required resources of the new task will be made
using past execution parameters.

The proposed algorithm combines the static and random
algorithms with the historical resource selection to overcome their
disadvantages, e.g. in certain situations there is a possibility of
selecting the same resource repeatedly by the Task Scheduler,
creating an uneven load distribution. Consequently, the presence

of the feedback loop as shown in Figure 4 overcome the severity
of this problem.

Data: user preferences and task log history

Input: available resource list

Input: new task submission description file

Result: run time prediction for the resource list

Start

While Taskset <> empty

do

process request for Task(s) ki;

if (Ki submitted by new user/device) then;

Resource Selector send available resources to Task Scheduler;

Task Scheduler send user preferences to Task Manager;

if (Task Manager found optimal resource(s));

send back optimal resource(s) to Task Scheduler;

execute ki on the optimal resource;

else if (Ki submitted by existing user/devise) then;

NN predict required resources for ki;

Send back predicted resource(s) to execute ki;

execute ki on the predicted resource;

else

execute ki on the preliminary fog;

update Task Manager log history;

select next task;

end

end
Algorithm 6: Making predictions for run time

FResS

History Feedback Loop

Output TaskInput Task

Figure 4: History as a feedback loop in the scheduling process
On the other hand the history management algorithm

(algorithm 7) works separately and is responsible for keeping the
history up to date. It means that it stores new history records after
successful executions and removes older history records which is
updated continuously after every execution and subsequently used
by ANN to make predictions for future tasks. Subsequently, the
increasing number of the historical executions records will
increase the accuracy of predictions [17][18].

3.4. History Manager Module
The History Manager is interfaced with the Task Scheduler and

history database, it is responsible for keeping the history data up to
date. History updates are performed by using algorithm 7. The
History Manager Module controls the storage and removal of

http://www.astesj.com/

N. Moustafa. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com 413

execution records as required. Algorithm 7 performs history
management by storing completed tasks data in the database as
soon as they are received. After this step, a query is sent to the
database to retrieve the size of the node related to the new task, just
stored. If the size of this node is less than, or equal to, the maximum
history limit then no action is taken. Otherwise, if the size of this
node is larger than the maximum, then the oldest member of this
node is deleted. This module gathers different QoS data e.g. delay,
cost, previous execution time and memory requested etc.

Data: workload history

Input: execution log of completed job

Input: task submission description file

Result: history updated

initialization;

store record to the history database;

if size of this cluster is more then the size limit then

 delete the oldest record;

end
Algorithm 7: Update history

3.5. Complexity of Algorithms
Algorithms 6 and 7, presented above, form the core of FResS.

The predictions algorithm (algorithm 6) is used to generate run
time predictions for new tasks on the available resources. On the
other hand the history management algorithm (algorithm 7) works
separately and is responsible for keeping the history up to date. It
means that it stores new history record after successful executions
and removes older history records.

The complexity of predictions for algorithm 6 is of O(n) where
n is the size of available resources. On the other hand, complexity
for history management algorithm 7 is of the O(1). These
algorithms will become part of the task submission service. The
history management algorithm 7 can be executed offline, after the
task is finished, so it’s speed is not very critical to the overall
execution time because it is not contributing to the overall delay.
Algorithm 6, on the other hand, will contribute to the total delay in
the execution time.

3.6. Fog Workflows and FResS
Predictions are utilized by the task management system to

select resources to execute incoming workflows consisting of
many tasks. These workflows can be very simple, consisting of
only one task, as shown in Figure 5, or can be very complex,
consisting of many interdependent tasks, as shown in Figure 6.
These tasks can have dependencies which restrict them to execute
in a certain sequential order or execute concurrently. Predictions
for each task within a workflow are generated separately.

Figure 5: Workflow consisting of only single task

Quality of Service (QoS) refers to the level of performance and
service that a given user will experience at a certain point in time,
when starting a certain operation on a certain instance of a service.
QoS support refers to the possibility of a certain level of required
performance being available from a certain resource or not. QoS is
very important to fog applications which are run collaboratively in
real time. QoS requirements can be mentioned in terms of cost,
delay, scalability, fault tolerance, etc.

Normally QoS requirements for these workflows are applied to
the entire workflow. To achieve the best timing performance it is
recommended that the workflow is partitioned in such a way that
parallel activities finish at the same time. Because of the global
nature of the fog, locality will also play its role to achieve best QoS
results. Sometimes if the user wants to see intermediate results,
then QoS can also be mentioned at the task level. Achieving QoS
either at task level or workflow level boils down to the task or
activity level. To achieve QoS at the workflow level requires that
tasks are managed properly. Incorrect management of these tasks
can damage QoS at a very high level.

The proposed FResS model is responsible for the overall
execution of workflows. These executions, in certain situations,
may also require advance reservation and co-allocation. The
FResS performs its task comparatively easily when accurate run
time predictions are available for tasks within a certain workload.
Advance reservation is a technique in which resources are reserved
for a certain task to start at a certain time and execute for certain
duration. On the fog, advance reservation will be expensive so its
accuracy is of prime importance. With the predictions already
available, the FResS can reserve resources for accurate time
duration, resulting in an efficient usage of resources.

4. A Multi-Level Load Balancing technique in Fog
Computing

Internet traffic growing exponentially and congested with
thousands and millions of devices [20], quality services should be
provided with higher availability by the service provider. With the
increase number of services in fog and IoT computing the network
load is expected to increase which will create a new challenge to
the researchers and network designer. The aim is to achieve better
performance in terms of the total time to execute the tasks load
balancing to accomplish better QoS, in addition to increasing the
number of task acceptance. The fog computing attempts to
integrate multiple distributed and heterogeneous resources, which
are normally under separate administrative domains resulting in
under-utilization or over-utilization. A multi-level load balancing
approach has been proposed to provide better load balance. As
mentioned above in algorithm 6 user preferences will be
considered for the incoming task. Therefore, satisfying the below
metrics and parameters optimally will led to achieve better
performance of the fog system.

http://www.astesj.com/

N. Moustafa. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com 414

4.1. Metrics
 Cost: IoT and fog users are interested in the best performance at

the lowest cost, but on the other hand the resource owners are
interested in the overall system throughput. Therefore, the
efficient algorithm should consider the cost parameters by
scheduling the incoming task to a resource based on the cost.

 Response time: is the total execution time taken by the task to be
completed, it starts from submitting the task by the user or
device and end with receiving the completed task from the
service provider. A smaller response time is always desirable.

 Delay: Researchers and service providers stress on the
importance of guaranteeing acceptable delay, since this is an
important metric in terms of QoS, the proposed model adopted
the tenant maximum acceptable delay (TMAD) [21]. TMAD
sorts the incoming tasks to a higher priority task or lower priority
by considering different prioritization of users based on their
important for the system according to the subscription plan each
user pay for.

 Scalability: bottlenecks in fog computing system arises from the
huge number of users, resources, and services, therefore to be
able to support scalability, and extensibility, this is an important
metric which determine if the system is able to achieve better
load balancing with a restricted number of resources.

 Fault Tolerant: the larger the system, the more frequent failures
result, IoT and fog systems should provide the ability to perform
correctly in case of failure by having a backup

5. Simulation Results

The performance of the proposed solution is evaluated in this
section by carrying out some experiments using CloudSim [21],
selected for its flexibility and wider acceptance by the cloud and
fog community. The proposed model performance was evaluated
by comparing it with existing scheme and highlighting the
differences and advancement. IoT devices were simulated as
geographically distributed nodes. The fog network represented as
a graph and storage sites were modeled as a set of nodes. A
computing power, storage capacity, narrow and broad bandwidth,
and memory have been configured to all nodes to be close to
reality. The number of tasks, and capacity of storage nodes were
varied to show the complexity of the proposed model and simulate
different scenarios. The simulator defined 2 cloud sites, 5 fog sites,
and 150 IoT devices, 5000 task requests, and 500 to 2000 mb/sec
the connectivity of the bandwidth.

Scheduling with predictions helps the scheduler to select the
best resource(s) for a certain task and it can be compared with two
other techniques i.e. random and static. In a random selection the
scheduler selects any resource from the qualifying resources.
Qualifying resources are those which meet the minimum
requirement criteria for a certain task. On the other hand static
selection is one in which the resource with the highest number
crunching speed is picked. In a real world scenario, number
crunching speed can be based on any popular benchmark.
Experimentation was conducted with CloudSim, which defines
resource capability in term of Million Instructions Per Second
(MIPS), hence in the static resource selection, resource with the
highest MIPS rating will be selected from the qualifying resources.

In a deadline based scheduling scheme the function of the
scheduler is to meet a deadline specified by the user. It is quite

possible that more than one resource can meet this deadline,
established by comparing the deadline with the predicted time. In
such cases the scheduler can select the fastest resource, which is
referred to as history based selection. It is expected that history
based resource selection will create an uneven load distribution on
the fog system. There are two other options: (1) select the fastest
resource from the selected fastest resources, (2) select any resource
randomly from the qualifying list. These options were given the
name of history plus static and history plus random.

As mentioned in section 3.2, it can be seen that in all, there are
five scheduling algorithms, i.e. History, Random, Static, History
plus Random, and History plus Static. These algorithms were
evaluated using simulation. There are two aspects of the
performance of the scheduling algorithms: (1) the execution of
tasks within a minimum possible time, (2) the distribution of loads
evenly among the available resources. The first experiment was
designed to compare the performance of these algorithms in terms
of the total execution time to complete the same tasks. In this case
the same tasks were submitted to the fog by using each of the five
algorithms, one by one, and the total time to complete these tasks
was recorded. This experiment was repeated for the tasks created
by all workloads, one by one. Results were plotted in the form of
bar graphs for each workload based tasks, separately, as shown in
Figure 7.

Figure.7 Comparison of total CPU time to execute 5000 tasks for different
resource selection algorithms

Different scheduling algorithms were used to evaluate the
performance of the predictor i.e. history, static, random, history
plus static and history plus random. It was seen that overall
execution time was minimum for the static and history based
scheduler but it also created issues of load imbalance. History plus
random and history plus static provided better load balance, but
took larger overall time to finish the same tasks. It was concluded
that selective task scheduling will create a load imbalance but a
history based solution will operate to fix this imbalance because of
the presence of a feedback loop. Random and static schedulers are
missing this feedback loop, and hence lack the self-healing
property of history based algorithms. Overall performance of
FResS was found to be better when using the historical technique,
or any hybrid technique that incorporated the historical technique

The accuracy of predictions was also compared with user
provided run time estimates. Users can provide run time estimates
while submitting tasks to the fog or IoT device. User run time
estimates are recorded by all workloads. Given that predictions are

0

500

1000

1500

2000

2500

3000

History Random Static History Random History Static

To
ta

l C
PU

 T
im

e*
 1

00
00

0

Workload based tasks

http://www.astesj.com/

N. Moustafa. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com 415

made, the next natural step is to determine the accuracy of these
predictions. The accuracy of predictions is calculated by using (3)
by the Performance Evaluator.

𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑦𝑦 = �
1 if 𝑃𝑃𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑇𝑇
𝑃𝑃𝑅𝑅𝑅𝑅/𝑅𝑅𝑅𝑅 if 𝑃𝑃𝑅𝑅𝑅𝑅 < 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅/𝑃𝑃𝑅𝑅𝑅𝑅 if 𝑃𝑃𝑅𝑅𝑅𝑅 > 𝑅𝑅𝑅𝑅

 (3)

Where, 𝑃𝑃𝑅𝑅𝑇𝑇 is predicted run time and 𝑅𝑅𝑇𝑇 is actual run time.

The accuracy of predictions achieved by both the user and the
system is presented in Table 1.

Table 1: Comparison of user’s prediction accuracy and system’s prediction
accuracy

No.
of
tas
ks

Averag
e User

%
Accura

cy

Averag
e

System
%

Accura
cy

System
90%

Confide
nce

Interval

System
95%

Confide
nce

Interval

User
90%

Confide
nce

Interval

User
95%

Confide
nce

Interval

100
0

5.9 73.0 81.4 83.6 2.0 2.0

200
0

9.8 79.8 84.7 87.9 8 10

300
0

15.3 86.9 88.8 90.7 14.7 16.5

400
0

20.0 90.2 91.9 93.3 20.8 23.4

500
0

27.1 95.0 96.2 96.9 35.0 39.0

From the results presented in Table 1, it can be seen that the
smallest accuracy of 73% was achieved for the workloads of 1000
tasks. The largest accuracy of 95% was achieved for the workloads
of 5000 tasks. The remaining workloads have also shown very high
accuracy. The accuracy of predictions was also compared with
user provided run time estimates while submitting tasks to the fog.
User run time estimates are recorded, and as shown in the results
in Table 1, the accuracy of user run time estimates lies between
5.9% and 27.1%. It can be concluded therefore that user accuracy
is very poor when compared with the achieved accuracy from the
predictor.

Another metric of interest, in the fog context, is the number of
tasks falling within a certain confidence interval. This interval is
defined by the Chebyshevs inequality theorem [22] and can be
calculated when a sample’s mean is being used as a predictor. On
the fog where deadline based scheduling is expected, this
confidence interval gives a better idea to the user about the
expected task completion time. Chebyshevs’ theorem states that
the portion of data that lies within k standard deviations to the
either side of the mean is at least 1 − 1

𝑘𝑘2
 of any data set [22] [23]

and it can be expressed as (3):

 𝑐𝑐 = �1 − 1
𝑘𝑘2
� ∗ 100 (4)

Where c is referred to as the confidence interval and k is the
number of standard deviations. The Performance Evaluator
calculates the predicted tasks falling within the 90% confidence
interval and 95% confidence interval. The results of both of these

calculations are shown in Table 1. The predictor performed better
again, since 81.4% to 96.2% tasks were completed within a 90%
confidence interval and 83.6% to 96.9% tasks were completed
within a 95% confidence interval. On the other hand, for user run
time estimates, only 2.0% to 35.0% tasks were completed within a
90% confidence interval and 2.0% to 39.0% tasks were completed
within a 95% confidence interval.

Large number of tasks were executed, first using the existing
scheme then the prediction FResS model. The prediction model
were generated using queries logs of large number of tasks from
CloudSim to evaluate the performance of the proposed model,
resource predictions from ANN were generated and used to
execute the incoming tasks. The time taken by FResS and the
current scheme to execute tasks was measured.

The stages of executing tasks on the fog are explained in the
below section, which start with submitting the task and end with
the retrieving results after completion. These stages comprise four
major components and are given below:

1. Stage in: transferring the task(s) to executable resource.
2. Waiting time: waiting in the queue for its execution turn.
3. Run time: the task is assigned for execution, which marks the

start of the run time.
4. Stage out: transferring the completed task(s) to the originating

node.

Stage in also called stage one, starts with transferring the task
from its originating node to the executing node. Once the
destination node receives all the required data, then the task is
forwarded to the local task manager, which in turns puts it in the
waiting queue. The queue wait time represent the time spent in the
queue for its execution turn, it depend on the load of the executing
node. The run time in stage three marks the start of task execution.
In stage four after execution is completed, the task is returned to
the originating node which is called the stage out phase. The total
turnaround time is given in (2).

 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑆𝑆𝑆𝑆𝑅𝑅 + 𝑇𝑇𝑄𝑄𝑄𝑄𝑅𝑅 + 𝑇𝑇𝑅𝑅𝑅𝑅 + 𝑇𝑇𝑆𝑆𝑆𝑆𝑅𝑅 (2)

where:

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 = Total Run Time
𝑇𝑇𝑆𝑆𝑆𝑆𝑅𝑅 = Stage In Time
𝑇𝑇𝑄𝑄𝑄𝑄𝑅𝑅 = Queue Wait Time
𝑇𝑇𝑅𝑅𝑅𝑅 = Run Time
𝑇𝑇𝑆𝑆𝑆𝑆𝑅𝑅 = Stage Out Time

To evaluate FResS a number of experiments we designed. The
purpose of these experiments was to evaluate overall time
performance by varying the number of tasks. The tasks response
time outlined in Figure 8 show that the FResS model outperform
the existing scheme, and the results were promising where the
tasks response time was decreased by 33%, as shown in Table 2
showing significant time savings.

Since the fog users have a limited network bandwidth to
communicate among the system, such a high communication cost

http://www.astesj.com/

N. Moustafa. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com 416

is not acceptable. In such environment, nodes within a region is
provided with broader bandwidth whereas nodes across region is
provided with narrow bandwidth. Since many nodes from different
regions try to connect to each other through a narrow bandwidth,
causing congested network traffic which in turn will affect the task
execution time which is an important factor, therefore, carrying out
some experiments by varying and expanding the network
bandwidths was important in order to simulate the real world
environment, the bandwidth between sites was varied in a set of
experiments to evaluate the performance of both models.

Figure 8: Comparative analysis of Response Time with no of tasks

Table 2. Simulation results: Task Turnaround Time using FResS and Existing
scheme

No. of
tasks

Task Turnaround Time using
existing scheme (Sec)

Task Turnaround Time
using FResS (Sec)

Difference
(Sec)

1000 14540 9920 4620

2000 26703 19710 6993

3000 39243 28608 10635

4000 53600 38214 15386

5000 67020 47512 19508

Total 201106 143964 57142

Average 28792 40221 33%

Figure 9: Total task time with varying bandwidth

Figure 9 shows the result of sets of experiments that were run
on both narrow and broad bandwidth, as shown in the results, the
FResS outperforms the existing scheme, even though setting

broader bandwidth decreases the differences of task execution
time, however, the difference is still significant in all scenarios.
Consequently, it can be concluded that the cost and resource
utilization are effectively considered in the proposed FResS model
and outperform the existing scheme.

6. Conclusion and Future Work

to overcome the drawback of the cloud computing, the fog
computing has emerged with the concept of sharing computational
resources and information services by offloading the resources to
the edge network to be closer to the devices that originate the
requests rather than transporting the tasks to the distant cloud, thus
reducing communication overhead, bandwidth consumption and
latency. However, the complexity and dynamic nature of the fog
systems demand a more coordination platform to handle such a
large-scale numbers of resources, users and tasks requests.
Therefore, the existing approaches, however, often exhibit a high
cost in terms of response time and bandwidth consumption. These
shortcomings were overcome by presenting a fully distributed
FResS, which stores historical data related to a single user, which
simplifies tasks management.

This paper proposed an extension to the resource selection
service FResS based on neural network. The proposed prediction
model minimize the total overhead of the task turnaround time of
the incoming task by predicting and informing the system the
required resources, and the database are updated constantly by
storing the result of NN tool. The proposed prediction model is
simple and shows comparatively lower overheads and provide
high possible accuracy.

An evaluation strategy was devised to test five different
algorithm used by the Resource Selector Module to provide a
detailed performance analysis for each one. A History update
algorithm was introduced to manage the history execution logs, as
the size in IoT and fog environments are very limited. In addition,
the experiments showed that the proposed prediction model
distribute the load based on the user preferences. Another major
strength of the proposed model is its effective resources utilization
achieved by decreasing overall cost, response time, and bandwidth
usage. In the future work, more metrics will be added to improve
the load balancing, in addition to distributing the proposed model
on the cloud layer. Moreover, more experiments will be carried out
to define the size of the history records.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

The writer would like to thank the American University of the
Middle East for its support.

References
[1] N. Mostafa, "Cooperative Fog Communications using A Multi-Level Load

Balancing," 2019 Fourth International Conference on Fog and Mobile Edge
Computing (FMEC), Rome, Italy, 2019, pp. 45-51.doi:
10.1109/FMEC.2019.8795325.

[2] S. Zahara, I. Pratomo and D. S. Rahardjo, "Application and data level
interoperability on virtual machine in cloud computing environment," 2015

0

10000

20000

30000

40000

50000

60000

70000

80000

1000 2000 3000 4000 5000

Ta
sk

s R
es

po
nc

e
Ti

m
e

(s
ec

)

Number of Tasks

FResS Existing Scheme

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

500 1000 1500 2000

To
ta

l T
as

k
Ti

m
e

(s
ec

)

Bandwidth/MB

FResS Existing Scheme

http://www.astesj.com/

N. Moustafa. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 408-417 (2020)

www.astesj.com 417

1st International Conference on Wireless and Telematics (ICWT), Manado,
2015, pp.1-5. doi: 10.1109/ICWT.2015.7449238.

[3] V. B. Souza, X. Masip-Bruin, E. Marin-Tordera, W. Ramirez and S.
Sanchez, "Towards Distributed Service Allocation in Fog-to-Cloud (F2C)
Scenarios," 2016 IEEE Global Communications Conference
(GLOBECOM), Washington, DC, 2016, pp. 1-6. doi:
10.1109/GLOCOM.2016.7842341.

[4] L. Ni, J. Zhang, C. Jiang, C. Yan and K. Yu, "Resource Allocation Strategy
in Fog Computing Based on Priced Timed Petri Nets," in IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1216-1228, Oct. 2017.
doi: 10.1109/JIOT.2017.2709814.

[5] J. Yao and N. Ansari, "Task Allocation in Fog-Aided Mobile IoT by
Lyapunov Online Reinforcement Learning," in IEEE Transactions on Green
Communications and Networking.
doi: 10.1109/TGCN.2019.2956626.

[6] S. Bian, X. Huang and Z. Shao, "Online Task Scheduling for Fog Computing
with Multi-Resource Fairness," 2019 IEEE 90th Vehicular Technology
Conference (VTC2019-Fall), Honolulu, HI, USA, 2019, pp. 1-5.
doi: 10.1109/VTCFall.2019.8891573.

[7] M. Mukherjee et al., "Task Data Offloading and Resource Allocation in Fog
Computing With Multi-Task Delay Guarantee," in IEEE Access, vol. 7, pp.
152911-152918, 2019. doi: 10.1109/ACCESS.2019.2941741.

[8] F. Derakhshan, H. Roessler, P. Schefczik and S. Randriamasy, "On
prediction of resource consumption of service requests in cloud
environments," the 20th Conference on Innovations in Clouds, Internet and
Networks (ICIN), Paris, pp. 169-176, 2017.

[9] Z. Zhang, B. Bockelman, D. W. Carder and T. Tannenbaum, "Lark: Bringing
Network Awareness to High Throughput Computing," 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Shenzhen, pp. 382-391, 2015.
doi: 10.1109/CCGrid.2015.116

[10] S. Yashpal, S. Alok, " Neural Network in Data Mining", Journal of
Theoretical and Applied Information Technology, 37-42, 2009.

[11] C. Krieger, "Neural Networks in Data Mining", technician report, 1996.
[12] S. Duggal, R. Chhabra , "Learning Systems and Their Applications: Future

of Strategic Expert System". Issues in Information Systems, Vol. III, 2002.
[13] G. jha, “Artificial Neural Networks,” International journal of computer

science and issues, Indian Research Institute, PUSA, New Delhi, 2005.
[14] S. Nissen, “Implementation of a fast artificial neural network library

(FANN),” Technical report, Department of Computer Science University of
Copenhagen (DIKU), 2003.

[15] D. Shanthi, G. Sahoo and N. Saravanan, “Designing an Artificial Neural
Network Model for the Prediction of Thromboembolic Stroke,” International
Journals of Biometric and Bioinformatics (IJBB), Volume (3), 10-18, 2009.

[16] S. Chen, R. Lu, J. Zhang, "An Efficient Fog-Assisted Unstable Sensor
Detection Scheme with Privacy Preserved", arXiv:1711.10190v1 [cs.CR] 28
Nov 2017.

[17] I. Rao and E. Huh, "A probabilistic and adaptive scheduling algorithm using
system- generated predictions for inter-grid resource sharing," Journal of
Supercomputer, 45, pp: 185-204, 2008.

[18] N. Moustafa, I. Al Ridhawi, and A. Hamza, "An Intelligent Dynamic Replica
Selection Model within Grid Systems, " in Proc. 8th IEEE GCC conference
on Towards Smart Sustainable Solutions, pp. 1-6, February 2015. doi:
10.1109/IEEEGCC.2015.7060061.

[19] "The Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
University of Melbourne," December. 2012, Available:
http://www.cloudbus.org/cloudsim/.

[20] S. Mostafi, F. Khan, A. Chakrabarty, D. Y. Suh and M. J. Piran, "An
Algorithm for Mapping a Traffic Domain Into a Complex Network: A Social
Internet of Things Approach," in IEEE Access, vol. 7, pp. 40925-40940,
2019. doi: 10.1109/ACCESS.2019.2906647.

[21] B. Bhuyan, H. Sarma, N. Sarma, A. Kar and R. Mall, “Quality of Service
(QoS) Provisions in Wireless Sensor Networks and Related Challenges”,
Wireless Sensor Network, Vol. 2 No. 11, pp. 861- 868, 2010. doi:
10.4236/wsn.2010.211104.

[22] W. J. Chu Using Chebyshev's Inequality to Determine Sample Size in
Biometric Evaluation of Fingerprint Data, Forgotten Books, 2018.

[23] W. Smith, I. Foster, and V. Taylor, “Predicting application run times with
historical information,” Journal of Parallel Distributed Computing, pp.
1007–1016, 2004.

http://www.astesj.com/
http://www.cloudbus.org/cloudsim/

	2. Related Work
	3. Fog Prediction and Selection Scheme
	3.1. Task Scheduler Module
	3.2. Resource Selector Module
	3.3. History Analyzer Module
	3.4. History Manager Module
	3.5. Complexity of Algorithms
	3.6. Fog Workflows and FResS

	4. A Multi-Level Load Balancing technique in Fog Computing
	4.1. Metrics

	5. Simulation Results
	6. Conclusion and Future Work
	Conflict of Interest
	Acknowledgment
	References

