
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 2, 1-12 (2020)

www.astesj.com

ASTES Journal
ISSN: 2415-6698

A New Distributed Reinforcement Learning Approach for Multi-
agent Cooperation Using Team-mate Modeling and Joint Action
Generalization

Wiem Zemzem 1, Ines Hosni2*

1Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka, Saudi
Arabia, wzemzem@ju.edu.sa

2Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka, Saudi
Arabia, itabbakh@ju.edu.sa

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 02 January, 2020
Accepted: 22 February, 2020
Online: 09 March, 2020

Keywords:
Distributed reinforcement
learning
The curse of dimensionality
Cooperative learning
Dynamic environments
Avoiding collisions

This paper focuses on the issue of distributed reinforcement learning (RL) for
decision-making in cooperative multi-agent systems. Although this problem has been
a topic of interest to many researchers, results obtained from these works aren’t
sufficient and several difficulties have not yet been resolved, such as, the curse of di-
mensionality and the multi-agent coordination problem. These issues are aggravated
exponentially as the number of agents or states increases, resulting in large memory
requirement, slowness in learning speed, coordination failure and even no system
convergence. As a solution, a new distributed RL algorithm, called the ThMLA-
JAG method, is proposed here. Its main idea is to decompose the coordination of all
agents into several two-agent coordination and to use a team-mate model for man-
aging other agents’ experiences. Validation tests on a pursuit game show that the
proposed method overcomes the aforementioned limitations and is a good alternative
to RL methods when dealing with cooperative learning in dynamics environments
while avoiding collisions with obstacles and other learners.

1 Introduction

Reinforcement Learning (RL) focuses on the question of an
agent learning by interacting with its environment and analyz-
ing the effects of these interactions and has been successfully
applied in many single-agent systems [1, 2]. Throughout RL,
the learning takes place iteratively and is carried out through
trials and errors, making it a safe tool to deal with complex
and uncertain environments [3].
Given RL properties, a growing interest was developing these
last years in order to extend reinforcement learning to multi-
agent systems (MASs). MASs are applied to a wide variety
of domains including robotic teams [4, 5], air traffic manage-
ment [6] and product delivery [7].
We are specifically interested in distributed cooperative mo-
bile robots, Where multiple cooperative robots can perform
tasks faster and more efficiently than a single robot. The
decentralized point of view provides many potential benefits

such as speed-up, scalability and robustness [8, 9]. Cooper-
ative systems means that the agents (robots) share common
interests (e.g., the same reward function), thus the increase in
individual’s benefit also leads to the increase of the benefits
of the whole group[10, 11].
In recent years, an increasing number of researches have
shown interest in extending reinforcement learning (RL) to
MASs in the powerful framework of Markov games (MG, also
known as stochastic games, SG), and many promising multi-
agent reinforcement learning (MARL) algorithms have been
proposed [10][12]-[13]. These methods can be divided into two
big categories: the case of independent learners (ILs) where
each agent only knows its own actions [13] and the case of
joint actions learners (JALs) where each agent collects infor-
mation about their own choice of action as well as the choices
of other agents [14].
Many algorithms derived from these both IALs and JALs can
learn the coordinated optimal joint behaviors and provide cer-

*Corresponding Author: Ines Hosni, Dept. of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka,
Saudi Arabia, itabbakh@ju.edu.sa

www.astesj.com
https://dx.doi.org/10.25046/aj050201

1

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050201

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

tain convergence guarantees as well but in simple cooperative
games (matrix games, few players, not fully stochastic envi-
ronment, etc). However, they fail when the domain becomes
more complex [15, 16], especially when the number of agents
or state spaces increases, resulting in large memory require-
ment, slowness in learning speed and then more challenging
coordination.
As JALs offer good coordination results but suffer from the
curse of dimensionality, a new kind of distributed multi-agent
reinforcement learning algorithm, called the ThMLA-JAG
(Three Model Learning Architecture based on Joint Action
Generalization) method, is proposed here. The main idea is
to decompose the coordination of all JALs into several two-
agent coordinations. Validation tests which are realized on
a pursuit problem show that an overall coordination of the
multi-agent system is ensured by the new method as well as
a great reduction of the amount of information managed by
each learner, which considerably accelerates the learning pro-
cess.
To the best of our knowledge, this is the first distributed
MARL system that decompose the multi-agents learning pro-
cess into several two-agents learning systems. The system is
decentralized in the sense that learned parameters are split
among the agents: each agent learns by interacting with its
environment and observing the results of all agents’ displace-
ments. Hence no direct communication is required into learn-
ing agents, a communication that can be expensive or insuf-
ficient because of bad synchronization and/or limited com-
munication range [17]. As such, the proposed approach is
different from methods that learn when such communication
is necessary [9][18]-[19]. We particularly show that the system
remains effective even when agents’ information are distorted
due to frequent environmental changes.
The rest of the paper is arranged as follows. In section 2,
we introduce some basic reinforcement learning concepts. In
section 3, two existing RL methods on which our proposed
approach is based are presented. Section 4 is dedicated to
present the ThMLA-JAG method. Several experiences are
conducted in section 5 showing the efficiency of our propos-
als. Some concluding remarks and future works are discussed
in section 6.

2 Reinforcement learning

Markov Decision Processes (MDPs) are often used to model
single-agent problems. MDPs [20] are suitable for studying
a wide range of optimization problems that have been solved
by dynamic programming and reinforcement learning. They
are used to model scenarios where an agent has to determine
how to behave based on the current state’s observation.
More precisely, a Markov model is defined as a 4-tuple
(S,A, T,R), where S is a discrete set of environmental states,
A is a discrete set of agent actions, R : S×A→ < is a reward
function and T : S × A → Π(S) is a state transition func-
tion (Π(S) is a probability distribution over S). We write
T (s, a, s′) as the probability of making a transition from s to

s′ taking action a. The action-value function Q∗(s, a) is de-
fined as the expected infinite discounted sum of rewards that
the agent will gain if it chooses the action a in the state s and
follows the optimal policy. Given Q∗(s, a) for all state/action
pairs, the optimal policy π∗ will be developed as the mapping
from states to actions such that the future reward is maxi-
mized [1].
One of the most relevant advances in reinforcement learn-
ing was the development of the Qlearning algorithm, an off-
policy TD (temporal-difference) control algorithm [15, 21].
Q-learning is especially used when the model (T and R) are
unknown. It directly maps states to actions by using a Q
function updated as in (1):

Q(st, at) = (1− αt)×Q(st−1, at−1) + αt × [rt + γ ×maxa′
t∈A

Q(s′t, a
′
t)]

(1)

where,

• (1− αt)×Q(st−1, at−1): the previous estimation,

• αt× [rt +γ×maxa′
t∈A)Q(s′t, a

′
t)]: the new experience,

• α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the dis-
count factor.

Despite its multiple successful results in single agent cases,
Qlearning can’t be directly applied to multi-agent systems. In
fact, learning becomes a much more complex task when mov-
ing from a single agent to a multi-agent setting. One problem
is the lack of the single agent framework’s convergence hy-
potheses. For instance, the environment is no longer static
from a single-agent perspective due to many agents working
on it: this is a commonly cited source of multi-agent learning
systems difficulties [22]. Another issue is the communication
between agents: How to ensure a relevent information ex-
change for effective learning [23]?, and finally the problem of
multi-agent coordination in order to ensure a coherent joint
behavior.
In what follows, several MAL methods derived from Qlearn-
ing are presented and classified according to the state/action
definition.

2.1 Individual state / individual action

Many researchers are interested on extending Qlearning to
distributed MAS using cooperative ILs. They aim to design
multiple agents capable of performing tasks faster and more
reliably than a single agent. Examples include PA (Policy Av-
eraging) [24], EC (Experience Counting) [25], D-DCM-Multi-
Q (Distributed Dynamic Correlation Matrix based MultiQ)
[17], CMRL-MRMT (Cooperative Multi-agent learning ap-
proach based on the Most Recently Modified Transitions) [26]
and CBG-LRVS [27]. Here, each entry of the Qfunction is rel-
ative to the individual state/action pair of the agent itself like
in the case of single-agent learning and a direct communica-
tion is used to share information between different learners.
These methods use also the assumption that all learners can

www.astesj.com 2

http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

be in the same state at the same time which eliminates the
coordination problem. So, these methods succeed to establish
a cooperative learning but become inapplicable when consid-
ering the collision between learners, like the case in reality of
mobile and autonomous robotic systems.

2.2 Joint state / individual action

To better address the coordination problem, many other
learning algorithms have been proposed in literature while
keeping collisions between learners, like, decentralized Qlearn-
ing [23], distributed Qlearning [15], WoLF PHC [22], Implicit
coordination [28], Recursive FMQ [16] and Hysteritic learners
[29].
In such methods, agents are fully cooperative which means
that they all receive the same reward and are non-
communicative that are unable to observe the actions of other
agents. These methods are based on Markov games, i.e, each
learner updates its Qvalues using joint states (relatives to
all agents and even other elements presenting in the environ-
ment) and individual actions (specific to the agent itself).
Their performances can greatly vary between successful and
unsuccessful coordination of agents.
As explained in [13], no one of those algorithms fully resolves
the coordination problem. Complications arise from the need
of balance between exploration and exploitation to ensure ef-
ficiency like in single RL algorithms. But the exploration of
an agent induces noise in received rewards of the group and
can destabilize the learned policies of other ILs.
To sort out this problem, called the alter-exploration prob-
lem, many parameters, which the convergence relies on, are
introduced. So, the main drawbacks of these methods are
that parameter tuning is difficult and that when the number
of agent increases, the difficulty of coordination increases and
the alter-exploration problem outweighs. The learning veloc-
ity is also highly affected when altering the number of agents
and/or the environment size due to the use of joint states.

2.3 Joint state / joint action

Given ILs’ limitations, methods using JALs are much more
used for stochastic games[14]. They can provide distributed
learning while avoiding collisions between agents. They solve
ILs’ problems since the whole system’s state is considered by
each learner, i.e, the Qvalues are updated using joint states
and joint actions. However, JALs suffer from combinatorial
explosion of the size of the state-action space with the number
of agents, as the value of joint actions is learnt by each agent,
contrary to ILs that ensure a state space size independent of
the number of agents.
As an example, TM-LM-ASM (team-mate model- learning
model- Action Selection Model) [30] is a JAL method that
combines traditional Q-learning with a team-mate modeling
mechanism. To do that, each learner has to memorize a table
Q storing all possible joint states/actions pairs and a table P
storing all possible joint states/actions pairs except its own
action. The Q table is used by the learning model as simi-

lar as the Qlearning method and the P table is used by the
teammate model to estimate the behaviors strategies of other
agents. Then, the strategy used by the learner to select an
action is done by the action selection module using both the
P and Q tables.
Experiments done on a pursuit game [30] using two preda-
tors and one moving prey show the effectiveness of the TM-
LM-ASM method and that it ensures a global coordination
without the need of a direct communication between different
members. However, obtained results are limited to two-agent
systems. A problem of state space explosion can be obviously
detected when increasing the number of agents because of
the use of joint states and joint actions. As an example, let’s
consider the case of Nagents agents able to execute Nactions

actions in an L × L grid world. If the state of every agent
is relative to its position in the grid, every learner has to
store a table Q containing (L2 ·Nactions)

Nagents entries and a

table P having (L2·Nactions)
Nagents

Nactions
entries, without forgetting

the significant number of possible team-mates actions’ com-
binations to consider when updating the table P and when

choosing the next action to execute, that’s: N
Nagents−1
actions pos-

sible actions’ combinations.
If we examine the case of 4 agents which can make 5 actions
in a 10× 10 grid world, we obtain:

• 625 · 108 entries of the table Q,

• 125 · 108 entries of the table P,

• 125 possible combinations of team-mates’ actions in ev-
ery state.

As it is mentioned in the theoretical convergence of the
Qlearning algorithm [15], an optimal policy is only achieved
if every state action pair has often been performed infinitely.
For the above described example, we can see that a first visit
of each state/action pair isn’t obvious and requires a long
time. The amount of memory needed for storing the tables
P and Q is also significant. A huge computing power is thus
required so that all possible combinations of team-mates’ ac-
tions can be taken into account and this is at every learning
step (during the updates of P and Q and when choosing ac-
tions).

2.4 Learning by pair of agents

To solve the state space explosion problem along with en-
suring a satisfactory multi-agent coordination, Lawson and
Mairesse [18] propose a new method inspired by both ILs and
JALs approaches. The main idea is to learn a joint Q-function
of two agents and to generalize it to any number of agents.
Considering a system of Nagents agents, at any learning step,
each agent has to communicate with its (Nagents − 1) team-
mate agents, update its (Nagents − 1) Q tables of two agents
and then identify the next joint action to follow. Note that
the same joint action must be chosen by all the learners. Ad-
ditional computations are then required. Indeed, the most
promising joint action is not directly determined from a joint

www.astesj.com 3

http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

table Q, as in the case of joint actions learners, but it needs
the evaluation of the sum of (Nagents − 1) values of Q. Also,
(Nagents − 1) updates of Q are done instead of one update of
the joint table. However, this increase in required computing
power is widely compensated by the advantages that present
this method compared with the approaches using ILs or JALs,
namely:

• By learning through agents’ pairs as the JAG method,
a huge reduction in the number of state/action pairs is
ensured which leads to the acceleration of the system
convergence. As illustrated in Table 1, these memory
savings widen with the increase of the environment size
and/or the number of agents.

• Contrary to independent agents, a global coordination is
provided by the JAG method because this method eval-
uates all possible joint actions of every pair of agents and
chooses the global joint action (of the whole multi-agent
system) after maximizing the Qvalue of each of these
pairs. This is based on the assumption that a global
coordination is ensured by coordinating each couple of
agents, provided that the policy obtained for two agents
is optimal.

Several experiences are made by Lawson and Mairesse [18]
on the problem of the navigation of a group of agents in a dis-
crete and dynamic environment so that each of them reaches
its destination as quickly as possible while avoiding obstacles
and other agents. The results of these experiences confirm
the aforesaid advantages, namely an acceleration of learning
with a global coordination as in the case of JALs.
However, the distribution of learning does not facilitate the
task but results in an identical treatment of the same infor-
mation by all the agents. More precisely, in every iteration,
agents communicate their new states and rewards to all their
team-mates. As a consequence, each of them updates the Q-
entries of all agents’ couples and executes the JAG procedure
to choose the next joint action. Another communication is
then necessary to make sure that the same joint action is cho-
sen by all learners. Thus, the JAG method seems to be less
expensive by adopting a centralized architecture: only one
agent is responsible for updating information and for choos-
ing actions and informs other agents of their corresponding
actions. Conversely, every agent executes its own action and
informs the central entity of its new state and the resulted
reward.

3 Proposed reinforcement learning
algorithm

As explained earlier, the JAG method [18] ensures a global co-
ordination while using independent learners but needs a cen-
tralized process to make sure that all agents choose the same
joint action at each learning step, whereas the TM-LM-ASM
method [30] is a full distributed learning approach that also
provides a global coordination but employs joint action learn-
ers which make it unsuitable for systems considering many

agents and/or large state spaces.
Our objective is to develop a new intermediate approach be-
tween TM-LM-ASM and JAG. The main idea is to generalize
the TM-LM-ASM architecture which is learned by two agents
to a larger number of agents while using the JAG decompo-
sition instead of joint state-action pairs. The new proposed
approach is called ThMLA-JAG (a Three-Model Learning Ar-
chitecture using Joint Action Generalization).
According to the ThMLA-JAG method, the multi-agent co-
ordination process is divided into several two-agents learning
tasks. Assuming that the system contains Nagents agents,
each agent must memorize (Nagents − 1) P-Tables of two
agents for the team-mates’ model and (Nagents− 1) Q-Tables
of two agents for the learning model.

3.1 The team-mates’ model

Consider a system of N learning agents in a joint state
s = (s1, ..., sNagents). At a learning step t, a learning agent
i under consideration executes an action a∗i and observes its
partners’ actions (a∗1, ..., a

∗
i−1, a

∗
i+1, ..., a

∗
N), the new obtained

state s′ = (s′1, ..., s
′
Nagents

) and the resulted reward r. Then,

it updates (Nagents − 1) P-tables concerning each partner j
for each action aj that can be tried by this agent j in the
experimented state s = (si, sj). The table Pij concerning the
pair of agents (i, j) can be updated using (2), similarly to the
TM-LM-ASM method when is applied to two-agent systems.

Pij t(s, ai) =

Pij (t−1)(s, aj) + βT−t+1

∑
at∈Aj−{aj} Pij (t−1)

(s, at), aj = a∗

(1− βT−t+1)Pij (t−1)(s, aj), elsewhere

(2)

where, β ∈ [0, 1] is the learning rate that determines the ef-
fect of previous action distribution, and T is the number of
iterations needed for the task completion. s and s′ are joint
states that present the instantaneous positions of agents (i, j)
in the environment.

3.2 The learning model

Similar to the JAG method, (Nagents − 1) updates are made
by each learner at each learning step. Each update concerns
an entry of one of the (Nagents − 1) Q-tables that are saved
by this learner and is relative to one of its partner.
If we consider that the transition (si, ai) → s

′

i had been ex-
ecuted by a learner i while another learner j executed the
transition (sj , aj) → s′j , the table Qij corresponding to the
pair (i, j) with the joint state s = (si, sj) and the joint action
a = (ai, aj) can be updated using (3), as when applying the
TM-LM-ASM method for two agents.

Qij (s, ai, aj) = (1− α)Qij (s, ai, aj) +

α
(
r + γmaxa′∈Ai

Qij(s
′, a

′

i, a
′

j)
) (3)

www.astesj.com 4

http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

Table 1: Comparison of the Q size following the joint and the JAG method. Note that Nagents agents evolve in an L×L grid world by executing
Nactions possible actions and the state of each agent corresponds to its position in the grid

Nagents Nactions L
Size of Q using
TM-LM-ASM

the JAG method
Size of Q for two
agents

Total size of all
agents’ Q

N A L (L2 ×A)N (L2 ×A)2 (L2 ×A)(N−1)

4
4

5 108 104 6 · 104

10 2.56 · 1010 1.6 · 105 9.6 · 105

50 1016 108 6 · 108

8 4
5 1016 104 28 · 104

10 6.5536 · 1020 1.6 · 105 44.8 · 105

50 1032 108 28 · 108

where,
a

′

j = argmaxb∈Aj
Pij(s

′, b)

Thus, the team-mate model is exploited by the learning
model. More precisely, the best move in the next state s′

relies on the next action a
′

i of the agent i under considera-

tion and the next action a
′

j of its partner j. Given that the
Q function of this later isn’t known by agent i, a prediction
of its action is done using the memorized team-mate model.
For the examined agent, the action that should be preferably
executed in the next state is determined by the exploitation
of its Q function.

3.3 The action selection model

For a better selection of the next action to execute, a gener-
alization of the action selection model proposed by Zhou and
Shen [30] for 2 agents to N agents (N >= 2) is possible by
exploiting all stored P-tables and Q-tables of the learner. To
this end, for each agent i having (Nagents−1) team-mates and
staying at a joint state s = (s1, ..., si, ..., sNagents

), the action
a∗i to be executed in that state s can be selected by using (4):

a∗i = argmaxai∈AiV (ai|a∗1, ..., a∗i−1, a∗i+1, ..., a
∗
Nagents

) (4)

where, (a∗1, ..., a
∗
i−1, a

∗
i+1, ..., a

∗
Nagents

) are predicted by agent
i as the next actions to be executed by its partners in the
joint state s, Ai is the set of possible actions of agent i and
V (ai|a∗1, ..., a∗i−1, a∗i+1, ..., a

∗
Nagents

) is the conditional expec-
tation value of action a∗i of agent i when it considers the
team-mates’ model:

For all ai ∈ Ai, V (ai|a∗1, ..., a∗i−1, a∗i+1, ..., a
∗
Nagents

) is cal-

culated using (5):

V (ai|A1, ..., Ai−1, Ai+1, ..., ANagents) =

Nagents∑
j=1,j 6=i

∑
ak∈Aj

Pij((si, sj), ak)Qij((si, sj), ai, ak)
(5)

where, (si, sj) is the actual state of agent i and its team-mate
j and Aj is the set of all possible actions of agent j.
Here, all possible actions of team-mates are equally considered

and there’s no prediction of any particular joint action. This
can be explained by the fact that, for each pair of agents (i, j),
Pij and Qij have initially the same values for all state/action
pairs. As the learning progresses or new circumstances take
place (such as collisions or environmental changes), a particu-
lar set of state/action pairs will become favoured as a result of
the increase of their corresponding Pij and Qij values. There-
fore, different values V will be attributed to each action ai of
agent i. Then, a greedy choice following (4), allows the agent
i to select the most promising action a∗i in the current state
s.

3.4 Improving multi-agent coordination

When updating a table Qij related to the team-mate j, the
learner i has to predict the most promising joint action (a′i, a

′
j)

in the next state. As described in (3), its own action a′i is that
maximizing Qij in that state. However, our proposition as-
sumes that each agent has (Nagents−1) Q-tables correspond-
ing to its (Nagents−1) partners and all these Q-tables will be
exploited during the choice of the action to be really executed.
Thus, by referring to the unique table Qij when predicting a
possible next action, the predicted action will not necessary
reflect the one which will be really experimented in the next
state. As a result, the learner can continuously oscillate be-
tween two consecutive states if those states are updated ac-
cording to a predicted state different from that really visited.
For that, it would be better to predict the action maximizing
the next state using the maximum amount of information, ex-
plicitly, all the Q-tables and P-tables which have been stored
by the learner. Thus, the updated version of (3) is shown by
(6):

Qij (s, ai, aj) = (1− α)Qij (s, ai, aj)+α
(
r
′
+ γQij(s

′
, a

′

i, a
′

j)
)

(6)
where, a∗j is identified as before in (4) and a∗i is calculated
using the predefined action selection model of (4): it is the
same strategy used for real actions’ selection.
This modification in the update of the Q-function will be fur-
ther justified in the experimental section.

www.astesj.com 5

http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

3.5 The proposed learning algorithm

A possible extension of the algorithm proposed by Lawson
and Mairesse [18] for a system having more than two agents
is presented by algorithm 1 and illustrated in Figure 1. Note
that all agents are learning synchronously, specifically:

Figure 1: The ThMLA-JAG learning architecture

• Initialize learning (the steps 1,...,14 of algorithm 1),

• Select the action, execute it and observe the result (the
steps 17,...,20 of algorithm 1),

• Update P-table (the step 22 of algorithm 1),

• Update Q-table (the step 23 of algorithm 1). Two alter-
natives of updating a Q-table will be compared in the
experimental section: (3) and (6),

• Test the end of learning or the release of a new episode
(the steps 25 and 26 of algorithm 1),

• Go to a new iteration in the same episode (the steps 27
and 28 of algorithm 1).

It should also be noted that the reward is defined by pair of
agents in accordance with the learning architecture, i.e, every
two agents receive a specific reward that describes the result
of their own displacement. In what follows, we are going to
examine two test cases:

• In the first case (S1: a temporary dynamic environ-
ment), the prey is temporary moving and each predator
should be able to build an optimal path from its starting
position to that target while avoiding obstacles, other
predators and the prey as well as to correct this path
after each environmental change. An episode ends if
the prey is captured or that it exceeds 1000 iterations.
Initially, the environment is in the form of Figure 2. Af-
ter 1200 episodes, the prey moves to a new position as
shown in Figure 2-b.

Figure 2: The testing environment of S1

Figure 3 describes the environment used to test
this scenario. Once an episode is ended, agents are
relocated on the right extremity of the labyrinth
and a new trial begins. Because collisions between
agents aren’t permitted and in order to test a
system containing more than four agents, we sup-
pose that the prey is captured if each hunter is
in one of its eight neighboring cells including cor-
ners. Figure 3-a describes a possible capture position.

Figure 3: Example of capture position

• In the second case (S2: a highly dynamic environment),
agents move in a frequently dynamic environment and

www.astesj.com 6

http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

Algorithm 1 Algorithm ThMLA-JAG

Require:
N : the total number of agents
S = {(si, sj); i, j = 1...N} is the set of possible states for all agents’ pairs (i, j)
Ai is the set of possible actions of agent i

Ensure:
for agent: i = 1...N do
for team−matei : j = 1...N, j 6= i do
for s = (si, sj) ∈ S × S do

for a = (ai, aj) ∈ Ai ×Aj do
Qij ← 1

|Ai|·|Aj |
Pij ← 1

|Aj |
end for

end for
end for

end for
while learning in progress do
for agent i = 1...N do
t← 0, initialize its own current state si,t

end for
for each learning step do
for agent i = 1...N do

Observe the current joint state st = (s1,t, s2,t, ..., sN,t)
Choose an action ai,t following equation(4)
Execute ai,t and observe the actions being simultaneously executed by other team-mates
for team−matei : j = 1...N, j 6= i do

Determine the new state st+1 = (si,t+1, sj,t+1) and the corresponding reward rt+1 = rij
Update Pij(si,t, sj,t, aj) following equation (2),for all aj ∈ Aj

Update Qij(si,t, sj,t, ai,t, aj,t) following equation (3) or equation (6) , where aj,t is the simultaneous action of
agent j

end for
if the new state st+1 is the goal state then

The episode is ended, go to 11
else {st+1 6= goal state}
t← t+ 1, go to 15

end if
end for

end for
end while

devoid of obstacles. At each stage of learning, the prey
has a probability equal to 0.2 to remain motionless or
to move towards vertically or horizontally neighboring
cells. As to hunters, they can share the same position
except the one containing the prey. These agents are
initially in random positions. They move according to
5 above-mentioned actions in a synchronized way until
they catch the prey or their current episode exceeds 1000
iterations. Once an episode is ended, these agents are
relocated at new random positions and a new episode
begins. The prey is captured when all hunters are posi-
tioned in the vertically and/or horizontally neighboring
cells of that prey.

In the rest of the paper, the term agent refers to only a preda-
tor (a learner). Some experiences are conducted while vary-

ing the number of agents. The results reported below are
obtained by average results of 30 experiments where each one
contains 2200 episodes.

3.6 Communication between agents

Communication between the different agents must be ensured
by an autonomous multi-agent network system which aims
to exchange data between the different nodes while meeting
and maintaining certain communication performance require-
ments(coordination, synchronization of messages and cooper-
ation). As wireless technology has led to consider a new era
for robotics, where robots are networked and work in cooper-
ation with sensors and actuators, we have defined a wireless
communication allowing the different agents to work in coop-
eration, and to exchange data locally in a multi-agent system.

www.astesj.com 7

http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

A wireless access point is used to operate in the command
link of a mobile agent. The link will carry data signals for the
other agents.

3.7 Parameter setting

As most RL methods, the major problems met during the
implementation of the ThMLA-JAG algorithm (algorithm 1)
are essentially the initialization of its parameters. To do it,
several values had been experimented and the best configura-
tion was then adopted to test the above-mentioned test cases.
As a result, the same distribution of rewards is used in both
scenarios, namely:

• a penalty of 0.9 is attributed to every agent striking an
obstacle and/or to every couple of colliding agents,

• a reward of 3 is received by every couple of agents having
captured the prey,

• a reward of -0.05 is given to every agent moving to a
new state without neither colliding nor capturing the
prey.

Concerning the other parameters, they are initialized as fol-
lows:

• the learning rates α = 0.8 and β = 0.8,

• the update factor γ = 0.9,

• the Qvalues (values of Q-table) are set to 0.04,

• the Pvalues (values of P-table) are set to 0.2,

Finally, the ThMLA-JAG method is tested in scenarios S1
and S2 while comparing both possibilities of update of the
table Q, that are:

• according to (3) where the Qtable concerning one team-
mate is only updated according to the information saved
by the current learner about this latter. In this case, the
learning method to be tested is indicated by ThMLA-
JAG1,

• according to (6) where the Qtable concerning one team-
mate is updated according to all information saved by
the current learner, including those concerning other
team-mates. Here, the variant to be tested is denoted
by ThMLA-JAG2.

3.8 Memory savings

According to the ThMLA-JAG method and regardless of the
manner in which the Q-tables are updated, a lot of saving in
memory is ensured comparing to the TM-LM-ASM method (a
JAL method) as well as the Hysteritic Qlearning method (an
IL method) and this is all the more important as the number
of agents increases. Table 2 illustrates this result.

3.9 Computation savings

In addition to memory savings, important computation sav-
ings are provided by the ThMLA-JAG1 method and are de-
scribed in Table 3. Note that a Pentry (respt. a Qentry)
designates an entry in the table P (respt. Q).

3.10 Comparing the two variants of ThMLA-JAG

In this section, we will compare ThMLA-JAG1 and ThMLA-
JAG2 using 4-agent systems in both test cases S1 and S2.

3.10.1 Testing S1

As noted by Figure 4 and Table 4, both ThMLA-JAG1 and
ThMLA-JAG2 lead to the system convergence before and
after the environmental change. Figure 4-a shows the number
of iterations needed for each episode over time while Figure
4-b describes the number of collisions in each learning episode.

Figure 4: Testing the S1 scenario with a four-agent system (average of
30 experiences)

We can see that in both environments, the agents
succeed to catch the prey without colliding with each other
or with obstacles and this is after some iterations (about 850

www.astesj.com 8

http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

Table 2: Variation of the saved information’s size according to the adopted method and the number of learners (|S| = 361 and |A| = 5)

Learning
method

NAgents Size of tables P Size of tables Q

Hysteritic Q

N |S|N · |A|
2 651605
4 84917815205
8 1442207067838105838405

TM-LM-ASM

N |S|N · |A|N−1 |S|N · |A|N
2 651605 3258025
4 2122945380125 10614726900625
8 22534485434970403725078125 112672427174852018625390625

ThMLA-JAG

N (N − 1)|S|2 · |A| (N − 1)|S|2 · |A|2
2 651605 3258025
4 1954815 9774075
8 14561235 22806175

episodes in the first environmental form and 450 episodes
after moving the target). On another hand, when updating
a Q-table by only using the information of the corresponding
team-mate (ThMLA-JAG1), the number of collisions is less
than by exploiting the information of all other team-mates
(ThMLA-JAG2). This is because with ThMLA-JAG2, the
action resulting previous collisions is more likely to be chosen
again, especially if these collisions concerned only some
members of the multi-agent system.

On the contrary, the learning following ThMLA-JAG1
is much slower than that using ThMLA-JAG2. Figure 4-a
and Table 4 show this result. Using ThMLA-JAG1, the
first episodes are longer and the adaptation to the new
environmental form requires more iterations than ThMLA-
JAG2. Moreover, after displacing the target, the agents
following ThMLA-JAG1 risk to not find a path leading to
the new position of the target. Some experiences considering
the ThMLA-JAG1 method are ended without a successful
adaptation to the new environmental form. This explains
the reason why the average length of the constructed path
is equal to 80 steps in case of ThMLA-JAG1 and only 12
steps with ThMLA-JAG2. Besides, by observing the curves
of collisions of ThMLA-JAG1 (Figure 4-b), we notice the
existence of few collisions even after the system convergence.
These collisions are related to failed experiences.
The weakness of ThMLA-JAG1 is caused by the difference
that can happen between the predicted action when updating
the Qvalue and that will be really chosen using the adopted
policy. This difference can block the learner between consec-
utive states. As the updates of Q no longer depend on recent
movements, the Qvalues will remain invariants after some
updates and the agent can’t modify or correct it.

3.10.2 Testing S2

The same remains true with the scenario S2. Figure 5
describes the number of captures done each 1000 episodes
by considering two systems of 4 learning agents following

ThMLA-JAG1 and ThMLA-JAG2, respectively. Results
show that the number of captures after the system conver-
gence are much more important and stable by considering
ThMLA-JAG2: After 16 · 104 iterations, the number of cap-
tures is slightly changing in the case of ThMLA-JAG2 due
to the movement of the prey but is significantly degrading in
the case of ThMLA-JAG1. This difference in learning perfor-
mance lies in the fact that, with ThMLA-JAG2, the Q-update
is more in line with the adopted PEE, contrary to ThMLA-
JAG1 where the system fails to converge to a final solution
because the saved information can be considerably distorted
by the movement of the prey which can occurs at every stage
of learning.

Figure 5: Variation of captures in function of the used learning method
with the test case S2 (average of 30 experiences)

3.11 Effect of increasing the number of agents on
the learning performance

In this section, we aim to evaluate the ThMLA-JAG2 method
in both cases S1 and S2 while varying the number of agents
from 2 to 6.

www.astesj.com 9

http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

Table 3: Operations made by each learner at each learning iteration with |A| = 5

Operations Nagents TM-LM-ASM ThMLA-JAG1 ThMLA-JAG2

team-mate
model

Number of P-entries to
update at each learning
step

N |A|N−1 (N − 1) · |A| (N − 1) · |A|

2 5 5 5
4 125 15 15
8 78125 35 35

Action selection
Model

Calculate V (ai) for every
possible action ai of the
current learner i by
performing k sum of
(Pentry ·Qentry) where k
is equal to

N |A|(N−1) (N − 1) · |A| (N − 1) · |A|

2 5 5 5
4 125 15 15
8 78125 35 35

Learning
model

Number of Q-entries to
update at each learning
step

N 1 (N-1) (N-1)
2 1 1 1
4 1 3 3
8 1 7 7

Number of P-entries to
be browsed to predict the
possible next action of all
team-mates

N |A|N−1 (N − 1) · |A| (N − 1) · |A|
2 5 5 5
4 125 15 15
8 78125 35 35

3.11.1 Case of T1

From Figure 6, we can see that the multi-agent system con-
verges to a near optimal and collision free path and this is
regardless of the number of agents.

Figure 6: Effect of increasing the number of agents on the ThMLA-JAG2
method in the case of S1 (average of 30 experiences)

Likewise, agents succeed to adapt to the new environmen-
tal form once the prey is moved and the learning time isn’t
considerably delayed by the addition of new agents as well.
As shown by Table 5, the 4-agent system needs more episodes
to converge than the 2-agent system but a smaller number of
iterations and collisions. As for the 6-agent system, the learn-
ing is slightly slower than the other cases.

3.11.2 Case of S2

Promising results are also obtained in case of S2. Figure 7
shows the number of captures done each 1000 episodes by
considering three systems containing 2, 4 and 6 agents and
using the ThMLA-JAG2 method. The results prove that the
learning is accelerated by adding new agents.

Figure 7: Variation of captures in function of the number of agents in
the case of S2 (average of 30 experiences)

• From the beginning of learning to the 15 · 104th itera-
tion, the number of captures done each 1000 episodes
increases over time and is all the more important as

www.astesj.com 10

http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

Table 4: Comparing ThMLA-JAG1 and ThMLA-JAG2 in the case of S1 with a four-agent system (average of 30 experiences)

ThMLA-
JAG1

ThMLA-
JAG2

Episodes [0-1200[

Total of iterations ∈ [0− 800] 100596 94001
Total of collisions ∈ [0− 800] 19080 22017
Length of the path after convergence 16 13

Episodes [1200-2200[

Total of iterations ∈ [1200− 1850] 90144 52693
Total of collisions ∈ [1200− 1850] 10781 13541
Length of the path after convergence 80 12

Table 5: Impact of varying agents’ number on the performance of ThMLA-JAG2 in the case of S1 (average of 30 experiences)

Episodes Number of learners 2 4 6

[0-1200]

Episodes for convergence 583 850 1028
Iterations for convergence 114382 94786 140343
Total of collisions before conver-
gence

24776 22051 43991

Total of collisions after conver-
gence

0 0 0

[1200-2200]

Episodes for convergence 1694 1658 1948
Iterations for convergence 97795 50326 62682
Total of collisions before conver-
gence

21047 13533 23205

Total of collisions after conver-
gence

0 0 0

agents are more numerous.

• From the 15·104th to the 42·104th iteration, the number
of captures further increases in case of 2-agent systems
and converges to approximately 140 captures every 1000
episodes in the case of 4-agents and 6-agents systems
with low oscillations due to the movements of the prey.

4 Conclusion

In this paper, we have studied the problem of cooperative
learning with avoiding collisions between agents. For that,
a new learning method, called ThMLA-JAG, has been
proposed. Using this method, a global coordination is
ensured between agents as well as a great reduction in the
amount of stored information and the learning computations
with regard to classic joint RL methods. This is effectively
due to the decomposition of learning into pairs of agents.
By this decomposition, the learning process is considerably
accelerated and the problem of the states’ space explosion is
partially resolved.
This research is still in its early stages. Experimental results
so far point to the fact that the proposed method is a good
alternative to RL algorithms when dealing with distributed
decision making in cooperative multi-agent systems. How-
ever, all conducted tests on the ThMLA-JAG method are
restricted to small environments with a limited number of
agents. We expect to further improve our work by expanding

it with the ability to solve more complex scenarios. Possible
test cases include more agents, several targets, as well as
continuous state spaces. Such complex elements typically
describe real-world applications.

Furthermore, all agents in our current Markov game model
can observe the global state space, while in reality this may
not be feasible. More research into how agents can still ef-
ficiently collaborate when only partial state information is
available would be worthwhile. In addition, the study of fully
competitive MARL methods is also a good focus for next re-
searches.

Acknowledgements

This research received no specific grant from any funding
agency in the public, commercial or not-for-profit sectors.

References
[1] R. Sutton, A. Barto, Reinforcement Learning: An Introduction,

IEEE Transactions on Neural Networks 9 (5) (1998) 1054–1054.
doi:10.1109/TNN.1998.712192.

[2] W. Zemzem, M. Tagina, A New Approach for Reinforcement Learn-
ing in non Stationary Environment Navigation Tasks, International
Review on Computers and Software 7 (5) (2012) 134–143.

[3] W. Zemzem, M. Tagina, A novel exploration/exploitation policy
accelerating learning in both stationary and non stationary envi-

www.astesj.com 11

http://dx.doi.org/10.1109/TNN.1998.712192
http://www.astesj.com

W. Zemzem et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 1-12 (2020)

ronment navigation tasks, International Journal of Computer and
Electrical Engineering 7 (3) (2015) 149–158.

[4] M. Wu, W.-H. Cao, J. Peng, J.-H. She, X. Chen, Balanced
reactive-deliberative architecture for multi-agent system for sim-
ulation league of RoboCup, International Journal of Control,
Automation and Systems 7 (6) (2009) 945–955. doi:10.1007/

s12555-009-0611-z.

[5] L. Parker, C. Touzet, F. Fernandez, Techniques for learning in
multi-robot teams, Robot Teams: From Diversity to Polymorphism.
AK Peters.

[6] K. Tumer, A. Agogino, Improving Air Traffic Management with
a Learning Multiagent System, IEEE Intelligent Systems 24 (1)
(2009) 18–21. doi:10.1109/MIS.2009.10.

[7] S. Proper, P. Tadepalli, Solving multiagent assignment Markov deci-
sion processes, in: Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems, A.C.M, Budapest,
Hungary, 2009, pp. 681–688.

[8] P. Stone, M. Veloso, Multiagent systems: a survey from a machine
learning perspective, Autonomous Robots 8 (3) (2000) 345–383.
doi:10.1023/A:1008942012299.

[9] Y. Cai, Intelligent Multi-robot Cooperation for Target Searching
and Foraging Tasks in Completely Unknown Environments, Ph.D.
thesis, University of Guelph (2013).

[10] C. Claus, C. Boutilier, The dynamics of reinforcement learning in
cooperative multiagent systems, in: Proceedings of the National
Conference on Artificial Intelligence, 1998, pp. 746–752.

[11] X. Chen, G. Chen, W. Cao, M. Wu, Cooperative learning with
joint state value approximation for multi-agent systems, Jour-
nal of Control Theory and Applications 11 (2) (2013) 149–155.
doi:10.1007/s11768-013-1141-z.

[12] J. Hao, D. Huang, Y. Cai, H.-f. Leung, The dynamics of reinforce-
ment social learning in networked cooperative multiagent systems,
Engineering Applications of Artificial Intelligence 58 (2017) 111–
122. doi:10.1016/J.ENGAPPAI.2016.11.008.

[13] L. Matignon, G. J. Laurent, N. Le, Independent reinforcement
learners in cooperative Markov games: a survey regarding coor-
dination problems, Knowledge Engineering Review 27 (1) (2012)
1–31. doi:10.1017/S026988891200057>.

[14] E. Yang, D. Gu, Multiagent reinforcement learning for multi-robot
systems: A survey, Tech. rep., 2004 (2004).

[15] C. Watkins, P. Dayan, Q-learning, Machine Learning 8 (1992) 279–
292.

[16] L. Matignon, G. Laurent, N. L. Fort-Piat, A study of FMQ heuristic
in cooperative multi-agent games, in: In The 7th International Con-
ference on Autonomous Agents and Multiagent Systems. Workshop
10: Multi-Agent Sequential Decision Making in Uncertain Multi-
Agent Domains, aamas’ 08, Vol. 1, 2008, pp. 77–91.

[17] H. Guo, Y. Meng, Distributed Reinforcement Learning for Coordi-
nate Multi-Robot Foraging, Journal of Intelligent and Robotic Sys-
tems 60 (3-4) (2010) 531–551. doi:10.1007/s10846-010-9429-4.

[18] J.-Y. Lawson, F. Mairesse, Apprentissage de la coordination dans
les systèmes multi-agents, Master’s thesis, Catholic University of
Louvain (2004).

[19] W. Zemzem, M. Tagina, M. Tagina, Multi-agent Coordination us-
ing Reinforcement Learning with a Relay Agent, in: Proceedings of
the 19th International Conference on Enterprise Information Sys-
tems, SCITEPRESS - Science and Technology Publications, 2017,
pp. 537–545. doi:10.5220/0006327305370545.

[20] M. L. Puterman, Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming (1994). doi:10.1080/00401706.1995.

10484354.

[21] K. Tuyls, G. Weiss, Multiagent Learning: Basics, Challenges, and
Prospects, AI Magazine 33 (3) (2012) 41. doi:10.1609/aimag.

v33i3.2426.

[22] M. Bowling, M. Veloso, Multiagent learning using a variable learn-
ing rate, Artificial Intelligence 136 (2) (2002) 215–250. doi:10.

1016/S0004-3702(02)00121-2.

[23] M. Tan, Multi-Agent Reinforcement Learning: Independent vs. Co-
operative Agents, in: In Proceedings of the Tenth International
Conference on Machine Learning, 1993, pp. 330—-337.

[24] M. Tan, Multi-agent reinforcement learning: independent vs. coop-
erative agents, in: the tenth international conference on machine
learning, Morgan Kaufmann Publishers Inc., 1997, pp. 330–337.

[25] B. Cunningham, Y. Cao, Non-reciprocating Sharing Methods in
Cooperative Q-Learning Environments, in: 2012 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent
Technology, IEEE, 2012, pp. 212–219. doi:10.1109/WI-IAT.2012.

28.

[26] W. Zemzem, M. Tagina, Cooperative multi-agent learning in a
large dynamic environment, in: Lecture Notes in Computer Sci-
ence, Springer, 2015, Ch. MDAI, pp. 155–166.

[27] W. Zemzem, M. Tagina, Cooperative multi-agent reinforcement
learning in a large stationary environment, in: 2017 IEEE/ACIS
16th International Conference on Computer and Information Sci-
ence (ICIS), IEEE, 2017, pp. 365–371. doi:10.1109/ICIS.2017.

7960020.

[28] M. Lauer, M. Riedmiller, Reinforcement Learning for Stochas-
tic Cooperative Multi-Agent Systems, in: Ithe 3rd International
Joint Conference on Autonomous Agents and Multi Agent systems,
IEEE Computer Society, New York, USA, 2004, pp. 1516–1517.
doi:10.1109/AAMAS.2004.226.

[29] L. Matignon, G. J. Laurent, N. L. Fort-Piat, Hysteretic q-learning
:an algorithm for decentralized reinforcement learning in coopera-
tive multi-agent teams, in: 2007 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IEEE, 2007, pp. 64–69.
doi:10.1109/IROS.2007.4399095.

[30] P. Zhou, H. Shen, Multi-agent cooperation by reinforcement learn-
ing with teammate modeling and reward allotment, 8th Interna-
tional Conference on Fuzzy Systems and Knowledge Discovery,
FSKD 2011 2 (4) (2011) 1316–1319. doi:10.1109/FSKD.2011.

6019729.

www.astesj.com 12

http://dx.doi.org/10.1007/s12555-009-0611-z
http://dx.doi.org/10.1007/s12555-009-0611-z
http://dx.doi.org/10.1109/MIS.2009.10
http://dx.doi.org/10.1023/A:1008942012299
http://dx.doi.org/10.1007/s11768-013-1141-z
http://dx.doi.org/10.1016/J.ENGAPPAI.2016.11.008
http://dx.doi.org/10.1017/S026988891200057>
http://dx.doi.org/10.1007/s10846-010-9429-4
http://dx.doi.org/10.5220/0006327305370545
http://dx.doi.org/10.1080/00401706.1995.10484354
http://dx.doi.org/10.1080/00401706.1995.10484354
http://dx.doi.org/10.1609/aimag.v33i3.2426
http://dx.doi.org/10.1609/aimag.v33i3.2426
http://dx.doi.org/10.1016/S0004-3702(02)00121-2
http://dx.doi.org/10.1016/S0004-3702(02)00121-2
http://dx.doi.org/10.1109/WI-IAT.2012.28
http://dx.doi.org/10.1109/WI-IAT.2012.28
http://dx.doi.org/10.1109/ICIS.2017.7960020
http://dx.doi.org/10.1109/ICIS.2017.7960020
http://dx.doi.org/10.1109/AAMAS.2004.226
http://dx.doi.org/10.1109/IROS.2007.4399095
http://dx.doi.org/10.1109/FSKD.2011.6019729
http://dx.doi.org/10.1109/FSKD.2011.6019729
http://www.astesj.com

	Introduction
	Reinforcement learning
	Individual state / individual action
	Joint state / individual action
	Joint state / joint action
	Learning by pair of agents

	Proposed reinforcement learning algorithm
	The team-mates' model
	The learning model
	The action selection model
	Improving multi-agent coordination
	The proposed learning algorithm
	Communication between agents
	Parameter setting
	Memory savings
	Computation savings
	Comparing the two variants of ThMLA-JAG
	Testing S1
	Testing S2

	Effect of increasing the number of agents on the learning performance
	Case of T1
	Case of S2

	Conclusion

