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Many real-life applications based on the wireless sensor networks are equipped with data
aggregation mechanisms for suppressing or even overcoming negative environmental effects
and data redundancy. In this paper, we present an extended analysis of the linear average
consensus algorithm for distributed summing with bounded execution over wireless sensor
networks. We compare a centralized and a fully-distributed stopping criterion proposed
for the wireless sensor networks with a varied initial configuration over random geometric
graphs with 200 vertices in order to identify the optimal initial configuration of both analyzed
stopping criteria and the algorithm as well as finding out which stopping criterion ensures
higher performance of the examined algorithm in terms of the estimation precision and the
convergence rate expressed as the iteration number for the consensus.

1 Introduction
This paper is an extension of work originally presented in the confer-
ence Proceedings of the IEEE 17st World Symposium on Applied
Machine Intelligence and Informatics, (SAMI 2019) [1].

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs), a technology operating in an
unattended ad-hoc mode, may be formed by hundreds to thousands
autonomous sensor nodes1, example shown in Figure 1, to gather
information from the adjacent environment and to detect certain
events of interest over the monitored area (e.g., buildings, homes,
forests, oceans, mountains, etc.) [2–5]. Over the past years, this
technology has found the application in many different areas, e.g.,
disaster detection, industrial monitoring, health assistance, military
surveillance, etc. [6]. Therefore, the design of the sensor nodes has
to be adapted to environmental conditions (e.g., the sensor nodes
for underground operation have an increased transmission power
whereby noisy channel attenuations can be overcome) [3]. However,
as these sensor nodes are simple and low-cost devices, they suffer
from limited energy capacity and computation capabilities, resulting
in decreased robustness to potential threads such as radiations, pres-
sure, temperature, attacks, etc. [7–9]. Thus, many of the real-life
WSN-based applications are equipped with data aggregation mech-

anisms for suppressing or even overcoming the impacts of these
negative factors on the operation of WSNs. Moreover, data aggrega-
tion can eliminate highly correlated and duplicated information as
well [8].

1.2 Data Aggregation

In general, data aggregation poses any process in which data from
multiple sources is transformed into a summary form for further
statistical processing or analyzing. The data aggregation mecha-
nisms are designed to process measured information from multiple
independent sensor nodes in order to provide a greater quality of
servise (QoS) [8]. Xiao et al. define two categories of the data
aggregation mechanisms, namely [9]:

• Centralized

• Distributed

In the centralized data aggregation schemes, the sensor nodes trans-
mit their measured information to a fusion center either directly or
by multi-hop communication. In the second scenario, each sensor
node has to establish and update the table with routing informa-
tion, which is not a too effective way to deliver information to a
fusion center over mobile networks and networks with limited en-
ergy sources such as WSNs [9]. Therefore, the distributed schemes
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Figure 1: Example of WSNs – Memsic's classroom kit (Source: Reprinted from [13])

are more frequently applied nowadays [10–13]. In these schemes,
the adjacent sensor nodes communicate with each other and update
their states according to the collected data [14]. Thus, a fusion
center is not necessary for data aggregation as well as the sensor
nodes know only local information whereby data aggregation is
significantly simplified. In [15], Jesus et al. divide distributed ag-
gregation schemes into three groups in terms of the communication
perspective:

• Structured

• Unstructured

• Hybrid

Structured algorithms are dependent on network topologies and
routing algorithms and therefore are not appropriate for mobile sys-
tems. Moreover, a single point of failure (e.g., a dead node, a link
failure) can have a fatal impact on a whole system, especially in
sparsely connected topologies such as tree-based structures. The
next category, Unstructured algorithms, is independent of network
topology and structure unlike the first category, and thus, network
topology does not have to be predefined. These algorithms are char-
acterized by simplicity, high scalability, high robustness, etc. The
last category, i.e., Hybrid algorithms, utilizes strengths and suppress
weaknesses of the previous approaches by their combination.

In terms of the computation perspective, the distributed data
aggregation mechanisms can be classified as follows [15]:

• Computation of decomposable functions

• Computation of complex functions

• Counting

As mentioned earlier, we focus our attention on linear consensus-
based algorithms for distributed summing, which can be classified
as unstructured algorithms for computation of decomposable func-
tions. These algorithms have significantly attracted the attention of
the academy recently [16–18]. In [19], Gutierrez-Gutierrez et al.
define two categories of these algorithms, namely:

• Deterministic

• Stochastic

From this set of the algorithms, we choose deterministic linear av-
erage consensus (referred to as AC), characterized by a variable
mixing parameter ε, for distributed summing [20].

A properly configured stopping criterion can significantly op-
timize data aggregation over WSNs; therefore, its implementation
is an essential complement for distributed data aggregation mech-
anisms. As mentioned above, we assume that the execution of
the examined algorithm is bounded by a stopping criterion in our
analyzes.

1.3 Summary of Contribution

In this paper, we analyze AC for distributed summing whose ex-
ecution is bounded by a stopping criterion. We vary its initial
configuration and the configuration of the analyzed stopping criteria
(we examine a centralized and a fully-distributed one) in order to
identify which configurations ensure the highest performance of
the examined algorithm and in order to compare the analyzed stop-
ping criteria in terms of the precision and the convergence rate. As
mentioned earlier, a properly configured stopping criterion and al-
gorithm optimize data aggregation, thereby saving energy, reducing
the computation/the communication requirements, prolonging the
network lifetime, etc.

In this paragraph we clarify the novelty of the presented paper
in a comparison with the existing work presented in [1]: In [1],
we analyze AC bounded by the fully-distributed stopping criterion
defined in [13] - we vary the mixing parameter and the parame-
ters of the implemented stopping criterion in order to identify the
best-performing initial configurations of both the algorithm and the
stopping criterion. In that paper, the inner states are multiplied by
the network size before AC begins. In this paper, we compare these
results with the scenario when the inner states are multiplied after
AC is completed. The goal of this contribution is to identify when
it is the most optimal to carry this multiplication out in terms of
the precision and the convergence rate expressed as the iteration
number for the consensus achievement. Furthermore, we also ana-
lyze the performance of the centralized stopping criterion from [6]
and compare it with the results from [1] and the results from the
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extended analysis presented in this paper in order to identify which
stopping criterion achieves higher performance.

1.4 Paper Organizanization

The paper is organized as follows: Section 2 is concerned with
theoretical insight into the topic, i.e., we provide a mathematical
model of AC and WSNs, the convergence conditions, and an expla-
nation of the analyzed stopping criteria. Section 3 deals with the
applied methodology and the used metrics for performance evalua-
tion. Section 4 consists of the experimentally obtained results and a
consecutive discussion. Conclusions are presented in Section 5.

2 Theoretical Background
The primary purpose of AC is to estimate the arithmetic mean from
all the initial states. However, it can fulfill also other functionalities
- in this paper, we analyze AC for distributed summing, i.e., the
sum from all the initial states is estimated. In this case, the infor-
mation about the network size n is necessary to be known by each
sensor node, and the inner states have to be multiplied by this value,
otherwise, the arithmetic mean is estimated instead of the sum [1].

2.1 Model of AC for Distributed Summing in WSNs

We model WSNs as simple finite graphs determined by the vertex
and the edge sets, i.e., G = (V, E) [20]. The vertex set V is formed
by all the graph vertices, which represent the sensor nodes in a net-
work, i.e., V = {v1, v2, ... vn}. The graph order is equal to the number
of the sensor nodes in a network, and so, |V| = n. Two vertices vi

and v j are adjacent when they are connected to one another by an
edge, i.e., ei j ∈ E.

In AC, each vertex vi stores and update its inner state xi(k)2,
represented by a scalar value - the inner states are initiated by for
example a local measurement. After the initialization, the inner
states asymptotically converge to the arithmetic mean from all the
initial inner states by being updated at each iteration, as described
in 1, [21]:

x(k + 1) = W × x(k) (1)

Here, x(k) is a variant column vector gathering all the inner states
at the corresponding iteration, and W poses the weight matrix, af-
fecting many aspects of the algorithm such as the convergence rate
of the algorithm, the initial configuration, meeting/violating the
convergence conditions, etc. [22]. As already stated, the inner states
asymptotically converge to the estimated aggregate function, which
can be expressed using 2, [21]:

lim
k→∞

x(k) = lim
k→∞

Wk × x(0) =
1
n
.1 × 1T × x(0) (2)

Here, 1 represents a column all-ones vector formed by n elements.
The algorithm works correctly iff the limit from (2) exists, which

is ensured by meeting these convergence conditions described by
3–5, [21], [23, 24]:

1T ×W = 1T (3)

W × 1 = 1, (4)

ρ(W −
1
n
· 1 × 1T) < 1 (5)

Here, ρ(·) represents the spectral radius of the corresponding vec-
tor/matrix, which is the largest eigenvalue in the modulus, i.e. 6, [22]

ρ(·) = max
i
{| λi(·) |} (6)

One of the ways to configure the weight matrix W is to allocate a
constant value3 to all the edges in a graph. Such a matrix is referred
to as the Peron Matrix and is defined by 7, [25]:

[W]i j =


ε, if ei j ∈ E

1 − di.ε, if i = j
0, otherwise

(7)

Here, di is the degree of the corresponding vertex, i.e., the number
of its neighbors. As discussed in [23], the convergence of the algo-
rithm is ensured in each non-bipartite non-regular graph when the
mixing parameter ε is selected from the interval described in 8:

0 < ε ≤
1

dmax
(8)

Here, dmax is the degree of the best-connected vertex in a graph, so
it can be represented using 9:

dmax = max
i
{di} (9)

2.2 Analyzed Stopping Criteria

In this subsection, we introduce the implemented stopping criteria
for bounding the execution of AC.

The first analyzed stopping criterion is proposed in [13] and
poses a fully-distributed approach, i.e., no global information is nec-
essary for its proper functioning. It is determined by two constants,
namely accuracy and counter threshold, which are the same for each
sensor node and preset before AC begins. Moreover, each sensor
node has its own counter, which is initiated with ”0” at each node.
The principle of the stopping criterion is based on the calculation
of the finite difference between the inner states at two consecutive
iterations. If the finite difference is smaller than accuracy, the corre-
sponding sensor node increments its counter by ”1”. If not, counter
is reset4 regardless of its current value. When the finite difference
is smaller than accuracy more times5 in a row, the algorithm is
completed at the corresponding sensor node. Thus, this sensor node
does not participate in AC and update its inner state any longer.

The other implemented stopping criterion from [6] is a cen-
tralized approach, i.e., it requires global information for its proper
functioning. This stopping criterion is determined by only one
constant accuracy, which is preset and the same for each sensor
node again. Its principle lies in comparing the maximum and the

2Here, k is the label of an iteration, and k = 0 represents the initial inner state
3referred to as the mixing parameter ε
4i.e., set to ”0”
5equal to the value of counter threshold
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minimum from all the inner states with accuracy. The algorithm is
globally stopped at the first iteration when the difference between
the maximum and the minimum is smaller than the value of accu-
racy. Thus, the algorithm is executed until the condition described
by 10 is met:

| max{x(k)} − min{x(k)} |< accuracy (10)

3 Applied Methodology
In this section, we introduce the applied methodology and the used
metrics for performance evaluation.

As mentioned earlier, AC described by the Perron Matrix meets
all three convergence conditions in non-bipartite non-regular graphs
when its mixing parameter ε takes a value from the interval (8).
Thus, we select these four initial configurations for evaluation:

• ε = {0.25 · 1
dmax

, 0.5 · 1
dmax

, 0.75 · 1
dmax

, 1
dmax
}

These values are furthermore abbreviated as ε = { 0.25, 0.5, 0.75,
1}. As it is not likely that real-life WSNs are bipartite regular
graphs [21], we omit these critical topologies from our analyzes.

As mentioned above, we bound the execution of AC by the
stopping criteria from [6, 13]. In Section 2.1, it is stated that the
fully-distributed stopping criterion from [13] is determined by two
preset constants, whose values take these following values in our
analyzes:6

• accuracy = {10−2, 10−4, 10−5, 10−6}

• counter threshold = {3, 5, 7, 10, 20, 40, 60, 80, 100}

Moreover, as mentioned earlier in this paper, we compare two sce-
narios related to this stopping criterion: either the initial inner states
or the final estimates are multiplied by the network size n.

Furthermore, the performance achieved with the implemented
stopping criterion from [13] is compared to MSE and the con-
vergence rate when the centralized stopping criterion from [6] is
implemented. As stated in the previous section, it is determined
by accuracy, which takes the same values as the examined fully-
distributed approach, i.e.:

• accuracy = {10−2, 10−4, 10−5, 10−6}

In this paper, AC is analyzed over RGGs of dense connectivity7. We
generate 30 RGGs with unique topologies that are formed by 200
vertices each. A representative of the generated graphs is shown in
Figure 2.

In our analyzes, each vertex initiates its inner states with a ran-
domly generated scalar value of the standard Gaussian distribution,
describe by 11:

xi(0) ∼ N(0, 1), f or ∀vi ∈ V (11)

To evaluate the performance of the algorithm, we apply two met-
rics for this purpose, namely the mean square error (MSE) and the

convergence rate expressed as the iteration number necessary for
the consensus achievement. In all the presented figures, we show
MSE/the convergence rate averaged over 30 RGGs.

The first metric, MSE, is applied for precision evaluation of the
final estimates and is defined in 12, [26]:

MSE =
1
n
.

n∑
i=1

(
xi(kl) − 1T ×

x(0)
n

)2

(12)

Here, kl is the label of the iteration when the algorithm is completed
at each vertex. The other metric, i.e., the number of the iterations,
is applied in order to identify how long the algorithm has to be
executed until the consensus upon the sum of all the initial inner
states is achieved.

Figure 2: Representative of generated RGGs

4 Experiments and Discussion
In this section, we present the results obtained in Matlab2016a and
Matlab2018b and discuss the character of the depicted functions
and observable phenomena.

In the first experiment, we analyze the precision of the final
estimates quantified by MSE when AC is bounded by the stopping
criterion presented in [13]. As already mentioned, we examine two
scenarios: either the initial states (i.e., before AC begins – referred
to as scenario 1) or the final estimates (i.e., after AC is completed
– referred to as scenario 2) are multiplied by the network size n.
From the results shown in Figure 3 and 4, we can observe in both
examined scenarios that a decrease in the value of accuracy (see (a),
(b), (c), and (d) in both figures for the results achieved for diffent
values of accuracy) and an increase in the value of counter threshold
ensure that MSE is smaller for each analyzed mixing parameter ε.
Moreover, it can be seen that also an increase in the value of the
mixing parameter ε results in a decrease in MSE for each accuracy
and counter threshold. Furthermore, in scenario 2, we can see that

6the values 10−1, 10−3 are omitted in order to ensure good readability of the paper
7in [1], also an analysis of AC for distributed summing in sparsely connected RGGs is provided, but it is not extended in this paper in order to achieve better readability

of the paper
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(a) MSE in decibels for accuracy = 10−2 (b) MSE in decibels for accuracy = 10−4

(c) MSE in decibels for accuracy = 10−5 (d) MSE in decibels for accuracy = 10−6

Figure 3: MSE [dB] averaged over 30 dense RGGs – fully-distributed approach is implemented, initial inner states are multiplied by network size

(a) MSE in decibels for accuracy = 10−2 (b) MSE in decibels for accuracy = 10−4

(c) MSE in decibels for accuracy = 10−5 (d) MSE in decibels for accuracy = 10−6

Figure 4: MSE [dB] averaged over 30 dense RGGs – fully-distributed approach is implemented, final estimates are multiplied by network size
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the precision of the final estimates is much smaller than in scenario
1, and a decrease in accuracy (see (a), (b), (c), and (d)) and an
increase in counter threshold have a significantly smaller impact on
an increase in the precision compared to scenario 1.

In the next experiment, we analyze the convergence rate ex-
pressed as the number of the iterations for the consensus achieve-
ment in both scenarios again. From the presented results in Figure
5 and 6, it can be seen that a decrease in the values of accuracy (see
(a), (b), (c), and (d)) and an increase in the values of counter thresh-
old result in a deceleration of the algorithm (i.e., AC requires more
iterations to be completed) for each examined mixing parameter ε
in both analyzed scenarios. Again, it is seen that AC with a larger
mixing parameter ε achieves a higher performace like in the previ-
ous analyzes. However, unlike the previous analysis, AC in scenario
2 outperforms AC in scenario 1 for each value of both accuracy and
counter threshold, and therefore, mutliplying the initial states with
the network size n ensures higher precision of the final estimates,
but a higher convergence rate is achieved in scenario 2.

In the last experiment, we test AC with the centralized stopping
criterion from [6]. In Figure 7 and 8, we depict MSE and the conver-
gence rate expressed as the number of the iteration for the consensus
for same accuracy as in the previous two experiments. From Figure
7, it can be observed that a decrease in accuracy (see (a), (b), (c), and
(d)) results in a decrease in MSE, and so, the precision of the final
estimates is increased. Compared to the analysed fully-distributed
approach, we can see that the value of the mixing parameter ε has
only a marginal impact on MSE regardless of accuracy of the stop-
ping criterion (in fact, increasing ε ensures a small increase in the
performace). Regarding the convergence rate, a higher value of the
mixing parameter ε ensures a higher convergence rate just like in the

previous analyzes. Also, it is seen that a decrease in accuracy (see
(a), (b), (c), and (d)) results in a lower convergence rate; therefore,
more iterations are necessary for AC to be completed.

In the two following paragraphs, we turn our attention to a com-
parison of the centralized and the fully-distributed stopping criterion,
which are analyzed in the previous parts - in all the comparisons, the
results achieved for ε = 1 are examined (i.e., the results achieved by
the best performing initial configuration). From Figure 3, Figure 4,
and Figure 7, where the precision of the final estimates is analyzed,
we can see that a decrease in accuracy (see (a), (b), (c), and (d))
results in a decrease in MSE in all three cases. Also, it is seen that
the value of the mixing parameter ε has only a marginal impact on
MSE when the centralized stopping criterion is applied in contrast
to the fully-distributed approach. In addition, in Figure 4, it is seen
that the value of the mixing parameter ε less affects the precision of
the final estimates for lower values of accuracy and higher values
of counter threshold. Furthermore, in the first case, when AC is
bounded by the fully-distributed stopping criterion in scenario 1,
MSE is from the range <-97.12 dB – 9.63 dB>, meanwhile, in sce-
nario 2, MSE takes the values from this interval <12.95 dB – 26.67
dB>. In the third case, when the centralized stopping criterion is
implemented, the values of MSE are from <-131.80 dB – -52.07
dB>. Therefore, the centralized stopping criterion significantly out-
performs the fully-distributed approach in terms of the estimation
precision. Even though this approach achieves a significantly higher
performance according to the MSE-metric, it is less appropriate
for real-life implementations since it requires time-variant global
information – the maximum and the minimum from all the current
inner states at each iteration.

In terms of the convergence rate expressed as the number of

(a) Convergence rate for accuracy = 10−2 (b) Convergence rate for accuracy = 10−4

(c) Convergence rate for accuracy = 10−5 (d) Convergence rate for accuracy = 10−6

Figure 5: Convergence rate averaged over 30 dense RGGs – fully-distributed approach is implemented, initial inner states are multiplied by network size
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(a) Convergence rate for accuracy = 10−2 (b) Convergence rate for accuracy = 10−4

(c) Convergence rate for accuracy = 10−5 (d) Convergence rate for accuracy = 10−6

Figure 6: Convergence rate averaged over 30 dense RGGs – fully-distributed approach is implemented, final estimates are multiplied by network size

(a) MSE in decibels for accuracy = 10−2 (b) MSE in decibels for accuracy = 10−4

(c) MSE in decibels for accuracy = 10−5 (d) MSE in decibels for accuracy = 10−6

Figure 7: MSE [dB] averaged over 30 dense RGGs – centralized approach is implemented
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(a) Convergence rate for accuracy = 10−2 (b) Convergence rate for accuracy = 10−4

(c) Convergence rate for accuracy = 10−5 (d) Convergence rate for accuracy = 10−6

Figure 8: Convergence rate averaged over 30 dense RGGs – centralized approach is implemented

the iterations necessary for the consensus achievement (the results
from Figure 5, Figure 6, and Figure 8 are compared), we can see
that a decrease in accuracy (whereby a higher precision is achieved
– see (a), (b), (c), and (d)) causes a deceleration of the algorithm
in all three cases again. In the case, when AC is bounded by the
fully-distributed stopping criterion in scenario 1, the convergence
rate is from <121 - 560.4>. In scenario 2, the convergence is from
the following interval <12.63 - 383.1>, and, in the third case, when
the centralized stopping criterion is implemented, the convergence
rate takes the following values <105.9 – 408.50>. So, it is seen
that the highest convergence rate is achieved by the fully-distributed
stopping criterion when the final estimates are multiplied by the
network size n.

5 Conclusion
In this paper, we address AC for distributed summing whose ex-
ecution is bounded by either a centralized or a fully-distributed
stopping criterion. The results from our experiments show that de-
creasing accuracy ensures a higher precision of the final estimates
but at a cost of a deceleration of the algorithm regardless of the
applied stopping criterion. The precision of the final estimates can
be improved also by increasing counter threshold when the fully-
distributed stopping criterion is implemented. Moreover, it is proven
that an increase in the mixing parameter ε optimizes the algorithm
in terms of both the precision and the convergence when AC is
bounded by the fully-distributed stopping criterion. In the case of
the implementation of the centralized one, the value of ε has only a
marginal impact on the precision of the final estimates, however, its
higher values ensure a higher convergence rate like in the case of the
fully-distributed stopping criterion. The fully-distributed stopping

criterion achieves a higher precision when the initial inner states
are multiplied by the network size n instead of the final estimates.
However, on the other hand, multiplying the final estimates with n
results in a higher convergence rate. Furthermore, it is proven that
the centralized stopping criterion achieves higher performance in
terms of the precision, however, this approach is less suitable for
real-life implementations because it requires the information about
the maximum and the minimum from all the current inner states
at each iteration for its proper operating. The fastest is AC with
the fully-distributed stopping criterion when the final estimates are
multiplied by the network size n. On the other hand, in this case,
the precision of the final estimates is significantly lower.
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